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Abstract: The time involved and the high economic cost of using oak barrels to age wines have
led to a significant price difference compared to non-oak barrel aged wines and may lead to some
fraudulent sales in the market. In this study, an untargeted metabolomic strategy was developed to
detect the metabolite composition of oak barrel aged and non-oak barrel aged wines in both positive
and negative ion modes by using UHPLC–HRMS combined with the recently developed chemometric
method AntDAS. The results of partial least squares discrimination analysis (PLS-DA) showed that
the samples were characterized into two categories. Finally, 51 compounds were identified in positive
ion mode, while 26 compounds were identified in negative ion mode. The results indicate that
combining UHPLC–HRMS with AntDAS can reveal the material basis of wines and has excellent
potential to differentiate between oak barrel aged and non-oak barrel aged wines.

Keywords: oak barrel aged wines; UHPLC-HRMS; AntDAS; chemometrics

1. Introduction

Wine is a popular alcoholic beverage that has been consumed for hundreds of years [1].
Wine constitutes a reliable and rich source of biologically active phytochemicals, specifically
phenolic acids and polyphenols, whose individual and summated actions are believed
to provide health benefits [2]. In addition, wine is widely consumed by the public for its
pleasant organoleptic properties. According to the literature [3], the organoleptic charac-
teristics of wine, such as smell, taste, and color, largely depend on the wine-making and
aging techniques used. The aging of wine is a process widely used in oenology to provide
added value to the wine [4]. During the production process, wine-making methods, such
as maceration, fermentation, clarification, and aging, can significantly alter the composition
and concentration of compounds [5] and substantially enhance the complexity of wine by
combining these compounds with important aging characteristic volatiles [6]; this, in turn,
affects the wine’s composition and sensory characteristics. During ageing processes wine
penetrates oak wood, Maximum sorption capacity depends principally on wood type [7].
Because of the time involved (6 to 18 months in barrels) and the high economic cost [8], the
price difference between commercially available oak barrel aged wines and non-oak barrel
aged wines is significant, leading to several consumer detriments and fraudulent sales.
Therefore, there is a great need to establish a scientific and effective method to distinguish
between oak barrel aged and non-oak barrel aged wines. This would not only provide
protection for consumers but also provide solid theoretical support for the Chinese wine
industry and government supervision.

Nowadays, the emergence of analytical instruments with high separation efficiency,
high resolution, and excellent sensitivity coupled with advanced chemometric techniques
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provides new research perspectives and approaches for analyzing wines and assessing their
authenticity. For example, Arapitsas et al. used an untargeted LC–MS method to identify
several metabolite markers, including ascorbic acid and tartaric acid, as well as the first
identified sulfonated compounds [9]. Gil et al. used ultra-performance liquid chromatog-
raphy coupled with quadrupole/time of flight mass spectrometry (UPLC–QTOF-MS) to
obtain high-resolution mass spectrometric metabolomic fingerprints of rosé wines and then
applied a statistical analysis to investigate the discrimination of rosé wines by origin [10].
Ontañón et al. used non-targeted liquid chromatography–mass spectrometry (LC–MS)
to analyze the metabolomic space introduced by wine storage under different conditions.
Credible markers that may reveal major chemical changes related to storage conditions
were also found [11]. In addition to the above studies, other researchers endeavored to
explore the organoleptic properties of aged wines, such as Laureati et al., who used gas
chromatography–mass spectrometry (GC–MS), gas chromatography–flame ionization de-
tection (GC–FID), and sensory analysis by a wine tasting panel to evaluate the organoleptic
characteristics of wines aged for extended periods (up to 15 years) [12].

As a general overview, the existing studies all describe the application of wine-based
metabolomics in the discovery of novel compounds, characterization and identification
of wine groups [13], prediction of sensory attributes [14], monitoring of storage and aging
processes [15,16], and traceability to their varietal and geographical origin [17,18]. It is
important to note that little attention has been paid to the effects of the wine barrel aging
process on the specific distribution of compounds and the exploration of characteristic
compounds between oak barrel aged and non-oak barrel aged wines. Consequently, it
is necessary to establish a scientific and effective method to explore the characteristic
compounds to distinguish oak barrel aged and non-oak barrel aged wines.

An untargeted metabolomic analysis based on UHPLC–HRMS combined with chemo-
metrics was chosen for this study to detect the metabolite composition of oak barrel aged
and non-oak barrel aged wines. This approach aims to compare the metabolite patterns of
wines before and after aging to distinguish oak barrel aged wines from non-oak barrel aged
wines. The metabolite features were effectively extracted with the automatic target-free
data analysis strategy (AntDAS) [19], developed by Yu Yongjie’s research group, to reveal
the differences between the metabolites of the two species. In addition, to better exploit the
potential of the data, clustering and discriminant analysis were performed using methods
including principal component analysis (PCA) and partial least squares discriminant analy-
sis (PLS-DA). The differences in the chemical basis of oak barrel aged and non-oak barrel
aged wines were explored and evaluated.

2. Materials and Methods
2.1. Samples and Chemicals

In this study, 66 wine samples from the wine produced in the eastern foothills of Helan
Mountain, Ningxia, China, were collected in 2022, including both oak barrel aged (n = 12)
and non-oak barrel aged (n = 54) wines. The samples were stored in a refrigerator at −18 ◦C
and protected from light until further use. In addition, the chemical reagents used in this
study included HPLC-grade methanol obtained from J.T. Baker, Avantor (Radnor, PA,
USA), and HPLC-grade formic acid from Aladdin (Shanghai, China). The LC–MS-grade
ammonium acetate that was used as a mobile phase additive was purchased from Fisher
Chemical (Waltham, MA, USA). The distilled water was obtained from Watson’s Food &
Beverage (Guangzhou, China).

2.2. Sample Preparation

Prior to analysis, the wine samples were removed from the −18 ◦C refrigerator and
thawed. A total of 1.5 mL of wine was placed in a 2 mL centrifuge tube, which was
centrifuged at 13,000 r/min for 10 min followed by transferring 1 mL of the supernatant
to a chromatography vial for subsequent UHPLC–HRMS analysis. Furthermore, quality
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control (QC) samples were prepared by mixing all wine samples to be measured in equal
volumes under the same conditions to investigate the stability of the method.

2.3. UHPLC–QTOF-MS Analysis

For the untargeted analysis of the wine, an UltiMate 3000 ultra-high-performance
liquid chromatograph coupled with a Q Exactive-Orbitrap Mass Spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) was used. The chromatographic separation was
performed using an Agilent ZORBAX SB-C18 column (2.1 × 100 mm, 1.8 µm) (Agilent,
Santa Clara, CA, USA) with the column temperature set at 40 ◦C. The mobile phase
consisted of 0.1% formic acid in water (solvent A) and 0.1% formic acid in acetonitrile
(solvent B). The flow rate was set to 0.2 mL/min, and the gradient elution procedure
was as follows: 0–1.00 min, 5–8% B; 1.00–7.00 min, 8–12% B; 7.00–13.00 min, 12–20% B;
13.00–20.00 min, 20–35% B; 20.00–24.00 min, 35–55% B; 24.00–25.00 min, 55–97% B; 25.00–
30.00 min, 97–100% B; 30.00–35.00 min, 100–100% B; 35.00–35.50 min, 100–5% B. Sequential
sampling analysis was performed with an injection volume of 2µL, and QC was added
once for every 10 samples.

Mass spectrometry was performed using an electrospray ionization source (ESI) in
positive and negative ion modes. Full scan and data-dependent MS/MS acquisition modes
(FULLMS/ddMS2) were selected for the data collection. The optimal source parameters
were optimized as follows: For the parameter setting of MS1, the capillary temperature was
set to 320 ◦C; the spray voltage was 3.5 kV; the resolution was 35,000; the AGC target was
5 × 106; and the maximum IT was set to 100 ms for scanning in the range of 120~1000 Da.
The auxiliary gas and sheath gas flow rates were 10 and 30 arcs, respectively. The optimized
parameters of dd-MS2 were as follows: collision energy 20 eV; resolution 17,500; and AGC
target 5× 106, where the minimum AGC target was 5 × 103 with an intensity threshold
2 × 105 and dynamic exclusion 4.5 s. Unlike MS1, the maximum IT of dd-MS2 was set to
25 ms. The isolation window was set to 0.4 Da.

2.4. Data Analysis

Data processing and analysis were performed with AntDAS, a data processing soft-
ware. It can directly analyze the raw data collected by the instrument, including extract
ion chromatograpy (EIC) automatic peak construction, EIC peak extraction, peak labeling,
sample time shift correction, etc. [20]. After data processing, a list of compound informa-
tion with sample × peak area was obtained. Analysis of variance (ANOVA) was used
to screen for differential components and their MS/MS spectra. Principal component
analysis (PCA), partial least squares discriminant analysis (PLS-DA), and heat map analysis
were performed on the screened differential components to evaluate the differences in
chemical basis between the oak barrel aged and non-oak barrel aged wines. Additionally,
AntDAS completed the metabolite identification by matching the compound mass spectra
to third-party databases (http://prime.psc.riken.jp/compms/msdial/main.html (accessed
on 25 February 2023).

3. Results and Discussion
3.1. UHPLC–HRMS Untargeted Metabolomic Analysis of Oak Barrel Aged and Non-Oak Barrel
Aged Wines

The total ion chromatograms (TICs) collected in the positive and negative ionization
modes are shown in Figure 1. The TIC peaks in both modes are basically well-separated
throughout the outflow section. It is also noteworthy that there is a significant difference
between the two TICs. Overall, the number of peaks collected in the positive ion mode
(39,104) is more abundant than in the negative ion mode (31,944). However, extra con-
sideration needs to be given to the fact that some metabolites may lead to ionization in
only one ionization mode due to their unique chemical properties. If only one ionization
mode is used for data acquisition, a number of key metabolites may be neglected. Given

http://prime.psc.riken.jp/compms/msdial/main.html
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these considerations, both positive and negative ionization modes were used for the data
analysis and screening of the metabolic markers in this study.
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Figure 1. (a) Comparison of the total ion chromatograms in the positive (Pos) for oak barrel aged (A)
and non-oak barrel aged (N) wine samples. (b) Comparison of the total ion chromatograms in the
negative (Neg) for oak barrel aged (A) and non-oak barrel aged (N) wine samples.

To obtain the data matrix, including retention time (RT), m/z, and peak intensity for
each sample, the collected raw data were imported into the AntDAS [21] data automation
parsing software for data analysis. A list of compound information of 39,104 × 74 was
obtained in the positive ionization mode, where 39,104 is the number of EIC peaks and 74 is
the number of samples (containing sixty-six samples and eight QCs). For the same samples
collected in the negative ionization mode, a data matrix of 31,944 × 74 was obtained. In
order to demonstrate the potential of AntDAS peak extraction, [M+H]+ and [M−H]− peaks
were extracted from the compounds with an accurate molecular weight of 304.0583. The
results are shown in Figure 2a, b. Figure 2a shows the extraction of the m/z 305.0655 peaks
under positive ions from which it is clear that 21 EIC peaks were well extracted. Another
peak extraction at m/z 303.0560 under negative ions is shown in Figure 2b, where 15 EIC
peaks were extracted. On the whole, most of the EIC peaks basically achieved baseline
separation. As shown in the local magnification of the peak extraction results in Figure 2a,
b, AntDAS demonstrates the ability to achieve a more reasonable segmentation of the
overlapping signals of the compounds in both positive and negative ion modes. On this
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basis, it can accurately identify the EIC peaks of the compounds from the background noise
of the instrument and accurately estimate the outflow range of the compounds.

Figure 2. (a) EIC extraction and detail diagram example in the positive ion mode. (b) EIC extraction
and detail diagram example in the negative ion mode. The data quality assessment diagram in the
ESI+ mode (c) and the ESI− mode (d).

To examine the reproducibility and stability of the instrument, the data quality of
the QC samples was evaluated. The data quality was assessed by calculating the relative
standard deviation (RSD) of each EIC peak area of the QC samples with the positive and
negative ion pattern results shown in Figure 2c,d. From the figure, it can be determined
that the number of peaks with a RSD ≤ 30% in the positive ion mode is 26,569, accounting
for 67.9% of the total number of peaks, compared to 21,332 peaks with a RSD ≤ 30% in
the negative ion mode, accounting for 66.8% of the total number of peaks. The number of
peaks with a RSD ≤ 20% in the positive ion mode was 18,882, accounting for 48.3% of the
total number of peaks, while the number of peaks in this range in the negative ion mode
was 16,425, accounting for 51.4% of the total number of peaks. At the level of RSD ≤ 10%,
the number of peaks in the negative ion mode still exceeded 32% of the total number of
peaks. The data given in the above figures indicate that the method is stationary during
this batch injection process, and the quality of the acquired data is reliable for subsequent
metabolomics research.

3.2. Chemometric Analysis of High-Throughput Metabolomic Data

To explore the large amount of information implied in the already established data
matrix, this study used a rational mathematical and statistical approach to transform the
chemical model into a mathematical model in order to permit the maximum collection
and extraction of useful information [22]. In this study, the EIC peaks of the registered
compounds were screened and analyzed using ANOVA at a p-value of 0.05. Approximately
774 EIC peaks that differed between the groups were screened in the positive ion mode,
while 766 differential compounds were screened in the negative ion mode. Based on the
differential compounds screened above, the principal component analysis (PCA), which is
the unsupervised pattern recognition method [23], was first used in this study to investigate
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the chemical differences between the oak barrel aged and non-oak barrel aged wines. The
PCA plots for the positive and negative ionization pattern data are shown in Figure 3a, b.
As can be observed from the figure, the first two principal components (PCs), which are
used to explain the matrix information, account for only 36.3% in the ESI+ mode (Figure 3a)
and 36.7% in the ESI− mode (Figure 3b). The samples of oak barrel aged wine are not
well distinguished from the samples of non-oak barrel aged wine. The data indicate that,
according to the unsupervised PCA analysis, no distinction can be made between the oak
barrel aged and non-oak barrel aged wines in both the positive and negative ion modes.
The analytical results might be due to the large sample difference within the same group,
and the difference between the different groups was difficult to find using the unsupervised
analysis method.
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In view of this, to solve the problems encountered in the unsupervised analysis and
observe the overall clustering effect and classification trend of the data matrix, a widely
used supervised pattern recognition method, PLS-DA [24], was adopted. The cluster
analysis plots obtained with PLS-DA are shown in Figure 3c, d. Initially, in the positive
ionization mode, Figure 3c presents a well-clustered effect and a trend of better classification
between the oak barrel aged and non-oak barrel aged wine samples. The clustering effect
in the negative ionization mode shown in Figure 3d is quite similar to that in Figure 3c.
As can be observed, some of the non-oak barrel aged wine samples overlap with the oak
barrel aged wine samples. A preliminary judgment was made that the overlapped samples
were commercially available adulterated oak barrel aged wines. Overall, there was a better
classification trend between the oak barrel aged and non-oak barrel aged wine samples
by using PLS-DA compared to PCA. The Monte Carlo simulation method was used to
further verify the applicability of PLS-DA. The simulation was performed approximately
10,000 times and, for each simulation, 80% of the samples in a group were selected for
building the PLS-DA model to predict the remaining 20% of the samples. Finally, the
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average prediction accuracies for the positive and negative ion modes were 86.3 ± 7.0%
and 84.6 ± 7.5%, respectively. These results indicate that PLS-DA can be used for the
classification of oak barrel aged and non-oak barrel aged wines.

3.3. Identification and Analysis of Candidate Metabolites

The compound identification was performed with AntDAS as well. An advantage of
AntDAS is that it can identify the insource fragment ions and give detailed information
on the MS1 and MS/MS spectra for compound identification [25]. Taking L-tryptophan as
an example, the identification process of the compound based on the AntDAS platform is
shown in Figure 4. The MS1 spectrum of the compound constructed with AntDAS is shown
in Figure 4a, whose spectrum consists mainly of fragment ions formed by cleavage within
the source of the compound at m/z 205.0973. From the MS/MS spectrum in Figure 4a, it is
observed that the ions form mainly fragment ions with m/z 118.0657, m/z 146.0603, and
m/z 188.0710 after the ion break, which is consistent with the ions in MS1 in Figure 4a. Both
primary and secondary matches of this compound are above 0.95. Overall, these results
indicate that AntDAS can construct accurate MS1 and MS/MS spectra of compounds from
complex data. For data visualization, Figure 4b shows the EIC plots corresponding to each
fragment ion with highly consistent shapes of the outflow curves in the plots. Identifying
the compound using the MS1 and MS/MS spectra constructed with AntDAS gives the
best match for the compound. The final identification result of the compound is presented
in Figure 4c. Following the above compound identification process, 51 compounds were
identified in the positive ion mode (as shown in Table 1), and 26 compounds were identified
in the negative ion mode (as shown in Table 2).
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Table 1. The results of the compounds identified with MS1 and MS/MS constructed with AntDAS in
the positive ion mode.

No. Experimental
Mass RT/min Match Factor

(MS1 + MS/MS) Formula Compound Name MS/MS Compound
Fragments IonType

1 121.0651 5.813 1.24 C8H8O Phenylacetaldehyde
53.0395, 77.0393
93.0705, 95.0497

103.0547, 105.0452
[M+H]+

2 123.0442 8.158 1.86 C7H6O2 4-Hydroxybenzaldehyde
53.0395, 67.0550
77.0394, 95.0497

105.0452
[M+H]+

3 124.0396 1.449 1.90 C6H5NO2 Niacin 78.0346, 80.0502
96.0450, 124.0396 [M+H]+

4 136.0620 1.273 1.86 C5H5N5 Adenine 67.0299, 94.0406
109.0514, 119.0356 [M+H]+

5 138.0551 1.181 1.08 C7H7NO2 Trigonelline
65.0394, 78.0344
92.0500, 94.0656

110.0603
[M+H]+

6 138.0914 1.691 1.52 C8H11NO Tyramine
77.0393, 91.0548
95.0497, 103.0547

121.0651
[M+H]+

7 144.0481 2.737 1.34 C6H9NOS 4-Methyl-5-thiazoleethanol 112.0218, 113.0299
126.0376, [M+H]+

8 144.1020 1.230 1.14 C7H13NO2 Proline betaine 58.0660, 84.0815
98.0970, [M+H]+

9 146.1655 0.995 1.84 C7H19N3 Spermidine 58.0661, 72.0816
84.0815, 112.1126 [M+H]+

10 150.0584 1.423 1.98 C5H11NO2S Methionine
56.0504, 61.0115
74.0245, 87.0270

133.0322
[M+H]+

11 156.0775 1.037 1.98 C6H9N3O2 Histidine
56.0505, 82.0533
83.0611, 93.0454
95.0610, 110.0718

[M+H]+

12 161.0598 7.001 1.46 C10H8O2 6-Methylcoumarin 79.0550, 103.0548
105.0704, 133.0653 [M+H]+

13 162.1124 1.148 1.68 C7H15NO3 L-Carnitine 85.0291, 102.0919
103.0395 [M+H]+

14 165.0547 6.143 1.80 C9H8O3 p-Coumaric acid
65.0394, 91.0549

119.0496, 123.0444
147.0443

[M+H]+

15 166.0864 10.098 2.00 C9H11NO2 Phenylalanine 79.0545, 93.0704
103.0547, 120.0812 [M+H]+

16 170.0813 1.357 2.00 C8H11NO3 Pyridoxine
106.0658, 124.0761
134.0603, 150.0558

152.0709
[M+H]+

17 175.1190 1.131 2.00 C6H14N4O2 Arginine
60.0565, 70.0659
72.0816, 116.0711

130.0978
[M+H]+

18 179.0339 7.422 1.94 C9H6O4 6,7-Dihydroxycoumarin 123.0445, 132.0285
133.0285, 151.0397 [M+H]+

19 181.0495 7.461 1.60 C9H8O4 Caffeic acid 83.0392, 117.0340
145.0287, 163.0393 [M+H]+

20 182.0815 2.138 1.90 C9H11NO3 Tyrosine
91.0549, 95.0497

119.0495, 136.0759
147.0445

[M+H]+

21 183.0654 12.008 1.76 C9H10O4 Syringaldehyde
67.0552, 95.0498

105.0453, 123.0444
125.0239, 140.0470

[M+H]+

22 185.1541 22.853 1.96 C11H20O2 delta-Undecalactone 149.1329, 150.1363
167.1435, 168.1468 [M+H]+

23 189.1348 1.131 1.90 C7H16N4O2 Targinine

57.0456, 70.0660
88.0764, 116.0711

144.1134, 158.0931
172.1083

[M+H]+

24 189.1600 3.843 1.98 C9H20N2O2 Propamocarb 58.0660, 74.0245
86.0971, 144.1022 [M+H]+

25 192.0768 5.232 1.98 C9H9N3O2 Carbendazim 132.0560, 160.0508 [M+H]+

26 199.0603 8.516 1.76 C9H10O5 Syringic acid 95.0498, 125.0236
140.0470,181.0502 [M+H]+

27 200.1187 20.348 2.00 C12H13N3 Pyrimethanil 82.0659, 107.0609
125.0710,183.0922 [M+H]+

28 204.1238 1.323 1.80 C9H18NO4 Acetylcarnitine 60.0817, 85.0291
145.0498, [M+H]+

29 205.0973 4.451 1.94 C11H12N2O2 Tryptophan 118.0657, 144.0810, 146.0603,
170.0605, 188.0710 [M+H]+

30 206.0813 11.553 1.92 C11H11NO Indolelactic acid 118.0656, 130.0656
160.0762, 170.0602 [M+H]+

31 211.1442 11.942 1.72 C11H18N2O2 Cyclo(Leu-Pro)
70.0659, 98.0606

114.0918, 138.1279
155.1543, 183.1495

[M+H]+

32 217.1278 1.239 1.66 C8H16N4O3 N-Acetylarginine 70.0660, 116.0710
130.0978 [M+H]+
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Table 1. Cont.

No. Experimental
Mass RT/min Match Factor

(MS1 + MS/MS) Formula Compound Name MS/MS Compound
Fragments IonType

33 229.0861 13.193 1.86 C14H12O3 Resveratrol
91.0549, 107.0497

119.0496, 135.0444
211.0750

[M+H]+

34 231.1021 18.211 1.08 C14H14O3 α,β-Dihydroresveratrol 91.0549, 107.0497
125.0597, 137.0599 [M+H]+

35 239.1028 2.102 1.60 C11H14N2O4 Gly-Tyr
91.0548, 123.0442

136.0759, 147.0444
165.0549, 182.0819

[M+H]+

36 261.1443 3.577 1.56 C11H20N2O5 gamma-Glutamylleucine 86.0971, 132.1025 [M+H]+

37 273.0763 13.472 2.00 C15H12O5 Naringenin chalcone 119.0501, 147.0443
153.0185 [M+H]+

38 275.0920 17.197 2.00 C15H14O5 Phloretin 107.0497, 169.0495 [M+H]+

39 281.1136 5.059 1.72 C13H16N2O5 Asp-Phe 120.0812, 130.0622
166.0864, 235.1076 [M+H]+

40 289.0707 16.503 1.72 C15H12O6 Dihydrokaempferol 107.0497, 149.0237
153.0185, 215.0709 [M+H]+

41 291.0863 9.724 1.98 C15H14O6 Epicatechin 123.0443, 139.391
147.0441, 207.0654 [M+H]+

42 291.0864 6.004 2.00 C15H14O6 Catechin
95.0499, 119.0496

123.0444, 139.0392
147.0444, 207.0656

[M+H]+

43 291.0865 6.609 1.98 C15H14O6 (-)-epicatechin
119.0496, 123.0444
139.0392, 147.0445
179.0708, 207.0656

[M+H]+

44 291.0867 4.886 2.00 C15H14O6 CIANIDANOL
123.0444, 139.0392
147.0443, 165.0552

207.0657
[M+H]+

45 294.1548 1.862 1.78 C12H23NO7 N-Fructosyl isoleucine
86.0972, 144.1024
212.1281, 258.1337

276.1449
[M+H]+

46 305.0655 10.078 1.98 C15H12O7 taxifolin
123.0443, 149.0239
153.0183, 167.0344
231.0651, 259.0604

[M+H]+

47 319.0452 16.794 2.00 C15H10O8 Myricetin
111.0084, 153.0182
245.0452, 273.0398

301.0350
[M+H]+

48 328.1392 2.879 1.84 C15H21NO7 N-Fructosyl phenylalanine 97.0289, 264.1228
292.1178, 310.1290 [M+H]+

49 345.1449 4.128 2.00 C18H20N2O5 Tyr-Tyr 119.0498, 136.0761
182.0821 [M+H]+

50 377.1457 9.819 2.00 C17H20N4O6 Riboflavin 69.0342, 99.0447
243.0879, 359.1360 [M+H]+

51 434.2028 11.504 1.64 C19H28O10 Sayaendoside 87.0447, 115.0393
133.0498, 145.0499 [M+NH4]+

Table 2. The results of the compounds identified with MS1 and MS/MS constructed with AntDAS in
the negative ion mode.

No. Experimental
Mass RT/min Match Factor

(MS1 + MS/MS) Formula Compound Name MS/MS Compound
Fragments IonType

1 121.0283 8.166 1.94 C7H6O2 Benzoic acid 93.0332, 108.0203 [M−H]−
2 125.0233 2.708 1.82 C6H6O3 Benzene-1,2,4-triol 69.0331, 95.0122, 97.0281 [M−H]−

3 135.0278 1.123 1.84 C4H8O5 Threonic acid 59.0124, 72.9916
75.0072 [M−H]−

4 137.0233 5.494 1.92 C7H6O3 Protocatechuic aldehyde 108.0202, 109.0281
119.0126, 136.0155 [M−H]−

5 147.0289 1.450 1.32 C5H8O5 Citramalate 85.0280, 87.0073
129.0189 [M−H]−

6 149.0079 5.983 1.48 C4H6O6 Tartaric acid 59.0124, 72.9916
87.0074 [M−H]−

7 151.0251 1.593 1.96 C5H4N4O2 Xanthine 108.0189, 126.0298 [M−H]−

8 161.0445 1.978 1.98 C6H10O5 Meglutol 57.0332, 59.0125
99.0436, 101.0230 [M−H]−

9 163.0388 6.141 1.98 C9H8O3 Phenylpyruvic acid 93.0332, 117.0334
119.0489 [M−H]−

10 165.0547 11.166 1.96 C9H10O3 3-phenyllactic acid 72.9917, 91.0537
119.0489, 147.0446 [M−H]−

11 169.0133 2.233 1.88 C7H6O5 Gallic acid 69.0331, 97.0280
124.0153, 125.0230 [M−H]−

12 177.0186 7.412 1.84 C9H6O4 esculetin 89.0382, 105.0332
033.0285, 149.0233 [M−H]−

13 181.0500 4.699 1.92 C9H10O4 3-(4-Hydroxyphenyl)lactic acid
72.9916, 119.0489

134.0361, 135.0440
163.0390

[M−H]−

14 191.0190 1.441 1.98 C6H8O7 Citric acid 57.0331, 85.0280
87.0073, 111.0074 [M−H]−
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Table 2. Cont.

No. Experimental
Mass RT/min Match Factor

(MS1 + MS/MS) Formula Compound Name MS/MS Compound
Fragments IonType

15 191.0555 1.197 1.84 C7H12O6

1,3,4,5-
Tetrahydroxycyclohexanecarboxylic

Acid

59.0123, 710.0123
85.0280, 93.0332 [M−H]−

16 193.0349 1.123 1.88 C6H10O7 2-Keto-L-galactonic acid

57.0331, 59.0124
71.0124, 73.0280
85.0280, 101.0230

113.0230, 131.0337

[M−H]−

17 197.0449 8.519 1.80 C9H10O5 Syringic Acid 95.0120, 123.0077
166.9973, 182.0211 [M−H]−

18 206.0817 12.401 1.88 C11H13NO3 N-acetylphenylalanine 58.0284, 91.0540
147.0454, 164.0707 [M−H]−

19 209.0297 1.147 1.74 C6H10O8 Mucic acid 71.0124, 85.0280
133.0128, 191.0177 [M−H]−

20 263.1289 19.411 1.68 C15H20O4 Abscisic acid
139.0760, 151.0753
201.1281, 204.1145

219.1382
[M−H]−

21 289.0716 6.174 1.90 C15H14O6 Catechin

151.0389, 179.0340
205.0499, 221.0814
227.0709, 245.0830

271.0612

[M−H]−

22 301.0353 19.755 1.96 C15H10O7 Quercetin 121.0283, 151.0024
178.9976, 273.0348 [M−H]−

23 303.0513 13.501 1.94 C15H12O7 taxifolin 125.0232, 175.0390
217.0499, 285.0400 [M−H]−

24 305.0668 3.526 2.00 C15H14O7
2-(3,4,5-trihydroxyphenyl)

chromane-3,5,7-triol

125.0231, 167.0339
177.0547, 219.0659

261.0769
[M−H]−

25 317.0306 16.800 1.98 C15H10O8 Myricetin 107.0126, 137.0232
151.0027, 178.9975 [M−H]−

26 577.1348 5.735 1.86 C30H26O12 Procyanidin B1
125.0231, 161.0234
287.0555, 407.0769

425.0883
[M−H]−

A heat map was drawn for the identified compounds to further explore the variation
patterns of the compounds between the two wines. Figure 5 shows the heat map visual-
ization of the metabolites identified in the positive and negative ion modes for 66 wine
samples. The heat maps show the compounds in the vertical direction and the wine samples
in the horizontal direction. Additionally, the red color represents the compounds with a
relative content above the average, and the green color represents the compounds with
a relative content below the average. The heat map in the positive ion mode is shown in
Figure 5a. The result that can be drawn from the graph is that the heat map analysis does
not classify the samples into different categories. In other words, the metabolite profiles
identified do not allow a clear distinction between oak barrel aged and non-oak barrel
aged wines. This may be due to the limited potential of the compound database during the
identification process, which led to differential metabolites not being identified through the
compound database.

For an in-depth exploration of how these metabolites behave in the two wine samples,
the relative amounts of the compounds in each group of wine samples are shown as violin
plots in Figure 6 for a comparative analysis. In this study, the main chemical components in
the wines were flavonoids, phenolic acids, etc. Therefore, the discussion of the compound
content distribution in this section will focus on these compounds. In Figure 6a, four
compounds, including two flavonoids (catechin, epicatechin) and two phenolic compounds
(caffeic acid, p-coumaric acid), were demonstrated in the positive ion mode. From the
information presented in the figure, it is possible to obtain a higher content of flavonoid
compounds in oak barrel aged wines even if they did not show a significant difference
between the two groups. In previous studies [26], compounds such as catechin and
epicatechin decreased in content after aging compared to the initial wines. Such differences
may be caused by the characteristics of the oak barrels as well as other parameters such as
grape varieties [27]. Alternatively, the graph shows that the levels of coumaric and caffeic
acids are low in non-oak barrel aged wines and high in oak barrel aged wines. Studies
suggest [28] that this may be due to an increase in coumaric and/or caffeic acids as a result
of the contact between the wine and the wood (which may contain p-coumaric and/or



Chemosensors 2023, 11, 165 11 of 14

caffeic acids) during the aging process in oak barrels. Other studies have explained that
the loss of coumarin-based anthocyanins during aging can also increase p-coumaric acid
content [29].
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The analysis of the four compounds in the negative ion mode is presented in Figure 6b.
As can be observed, the levels of 3-phenylactic acid and tartaric acid were higher in the
oak barrel aged wine samples than in the non-oak barrel aged wine samples. It is also
interesting to note that the level of quercetin was lower in the oak barrel aged wine samples
than in the non-oak barrel aged wine samples. According to the literature research [30],
oxidation and condensation reactions involving sapogenins and glycoside derivatives
could explain the reduction in myricetin and quercetin. Furthermore, the higher content
of syringic acid in the oak barrel aged wines is consistent with the results reported by
Cadahía et al. [26]. This is because compounds such as gallic acid and its dimers, ellagic
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acid and other benzoic acids (syringic and vanillic), may be present in oak, and they can be
transferred to the wine during aging.
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4. Conclusions

A combination of AntDAS and UHPLC–HRMS was used to identify metabolites in
wine samples. A total of 51 compounds were identified in the positive ion mode, including
eleven amino acids, nine flavonoids, four phenolic acids, and individual compounds
including alkaloids and coumarins, while 26 compounds were identified in the negative
ion mode, including two amino acids, eight organic acids, four flavonoids, and other
compounds. In addition, the unsupervised pattern recognition method PCA and supervised
pattern recognition method PLS-DA were used for the clustering analysis of oak barrel aged
and non-oak barrel aged wines, and from the results, it is observed that PLS-DA can achieve
good clustering and differentiation performance. The application of UHPLC–HRMS in
food metabolomics for identification and other purposes is a promising approach.
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