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Abstract: Herein, two new iridium(III) complexes, namely Ir2 and Ir3, with a phenyl or triph-
enylamine (TPA) moiety at the 4-position of the phenyl ring at 2-phenylbenzothiazole, have been
synthesized, and their emission properties have been studied systematically compared with the
non-substituted complex Ir1. These three complexes exhibit aggregation-induced emission (AIE)
in H2O/CH3CN. The TPA-substituted complex Ir3 shows the highest AIE activity. All complexes
can be used as sensors to detect picric acid (PA) in water. The Stern–Volmer constant (KSV) of Ir3 for
the detection of PA was determined to be 1.96 × 106 M−1, with a low limit of detection of 2.52 nM.
Proton nuclear magnetic resonance spectra, high-resolution mass spectrometry analysis, and density
function theory calculations confirm that the emission quenching mechanism of Ir3 is caused by
photo-induced electron transfer. Furthermore, the efficient detection of PA in natural water proves
that Ir1–Ir3 can be used as promising sensors in the natural environment. These results suggest
that the AIE-active iridium(III) complexes can be used to detect PA under environment-friendly
conditions.

Keywords: Ir(III) complex; aggregation-induced emission; picric acid; aqueous media

1. Introduction

Among nitroaromatics, picric acid (PA) containing three nitro groups shows superior
explosive power and is extensively used to manufacture high explosives, which are a
severe threat to society, human life, and property [1–3]. Additionally, PA plays an essential
role in the leather, fuel manufacturing, pesticide, chemical fiber, pharmaceutical, and dye
industries [4,5]. At the same time, a large amount of wastewater containing PA produced
during its manufacturing, carriage, and utilization may cause water and soil pollution [6].
Therefore, it is highly desirable to develop a sensitive and selective detection method for
PA.

Various analytical methods have been developed for explosives detection, including
mass spectrometry [7], electrochemical methods [8], quartz crystal microbalance [9], and
surface-enhanced Raman scattering [10]. However, these techniques usually need complex
sample pretreatment and expensive and sophisticated instrumentation. In contrast, pho-
toluminescence has been demonstrated to be an ideal analytical tool for trace explosives
detection owing to its high sensitivity, operational simplicity, and real-time monitoring
capability [11–14]. However, common luminescent materials frequently suffer from weak
luminescence at the solid or aggregated states owing to aggregation-caused quenching
(ACQ), which limits the detection of PA in aqueous media. Notably, the aggregation-
induced emission (AIE) concept proposed by Ben Zhong Tang and coworkers effectively
solves the ACQ problem [15]. Subsequently, many compounds with AIE activities have
been designed and synthesized for PA detection [16–20]. Cyclometalated Ir(III) complexes
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have numerous advantages, such as large Stokes shifts, high photoluminescence quan-
tum yields, long lifetimes, and adequate stability [21–23]. Therefore, the development of
AIE-active Ir(III) complexes for the detection of PA has become a research focus. However,
most Ir(III) complexes reported for the detection of PA are based on 2-phenylpyridine
(ppy), 1-phenylpyrazole(ppz), and their derivatives as cyclometalating ligands [24]. More
importantly, the relationship between the AIE activity of an Ir(III) complex and its detection
efficiency of PA is still elusive.

Although the AIE effect effectively settles the problems of weak emission or emission
quenching of the luminescent materials [25] in the water medium caused by the ACQ
influence and has made great progress rapidly, it is still a great challenge to control the AIE
activity of the luminescent materials. In AIE systems, the most extensively accepted mecha-
nism is the restriction of intramolecular rotations (RIR), which can block the non-radiative
pathway and open up the radiative channel. Generally, propeller-like or rotor-like substi-
tutes are often used to activate the AIE property of the luminophores [26]. The nonplanar
structure of triphenylamine (TPA) makes it an ideal building block for AIE-active lumino-
gens. In addition, TPA exhibits strong electron-donating properties. Luminescent materials
containing a TPA moiety facilitate interaction with electron-withdrawing nitroaromatic
compounds [27–29]. Very recently, we found that the introduction of a diphenylamino
group into the cyclometalating ligand significantly improved the detection efficiency of PA
of the corresponding Ir(III) complex [30]. In order to systematically understand the effect
of the molecular structure on AIE activity, in this work, two novel AIE-active cationic Ir(III)
complexes, namely Ir2 and Ir3 with 2-phenylbenzothiazole derivatives as cyclometalating
ligands, have been designed and synthesized (Scheme 1). This substantially broadens the
structural diversity of the cyclometalating ligands that are not restricted to ppy or ppz-
based ligands. By altering the substituent (phenyl or TPA) at the cyclometalating ligand, the
regulation and enhancement of the AIE activities of the Ir(III) complexes have been realized
compared with a non-substituted Ir1. Notably, the interaction of Ir(III) complexes with PA
can effectively quench their luminescence, facilitating the eminently selective and sensitive
detection of PA in a water medium. Moreover, the AIE activities of the Ir(III) complexes are
positively correlated with the detection efficiencies of PA. These results provide a new idea
for designing AIE-active Ir(III) complexes for PA detection.
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2. Materials and Methods
2.1. Materials and Measurements

Unless otherwise stated, all the raw materials were commercially bought and have
not been further purified. The solvents were handled according to requirements before
use. Cyclometalating ligands (L2 and L3) were prepared following the reported meth-
ods [31]. Proton nuclear magnetic resonance (1H NMR) spectra were recorded using a
400 MHz Varian Unity Inova spectrophotometer. Carbon-13 nuclear magnetic resonance
(13C NMR) spectra were recorded using a 500 MHz Bruker AVANCE III spectrophotometer.
High-resolution mass spectrometry (HRMS) was recorded using an Agilent-G6224 or an
LTQ Orbitrap XL spectrometer equipped with an ESI source in a positive model. Fourier-
transform infrared (FT-IR) spectra were recorded by Nicolet 6700 spectrometer using the
KBr pellet method. The Ultraviolet-visible (UV-vis) absorption spectra were recorded using
a Lambda 750s spectrophotometer. The emission spectra were recorded using a HITACHI
F-7000 fluorescence spectrophotometer. Photoluminescence quantum yields (ΦPL) were
calculated compared with [Ir(ppy)2(acac)] (ΦPL = 0.34 in CH2Cl2, under deoxygenated
conditions). Phosphorescence lifetimes were measured using an Edinburgh FLS920 spec-
trometer. Density function theory (DFT) calculations were performed by PBE0/genecp. The
LanL2DZ basis set was applied for iridium atoms, while the 6-311++G** basis set was used
to handle all other atoms. The polarizable continuum model (PCM) model was adopted to
consider the solvent effects. All of these calculations were carried out with the Gaussian 16
C.01 procedures [32].

2.2. Synthesis of the Ir(III) Complexes

IrCl3·3H2O (0.200 mmol, 70.5 mg) was reacted with 2.50 equiv. cyclometalating
ligands (0.500 mmol, L1 106 mg, L2 144 mg, and L3 227 mg) in a mixture of 2-ethoxyethanol
and water (6.00 mL/2.00 mL) at 110 ◦C for 24 h under an N2 atmosphere to obtain a
cyclometalated iridium bridged-chloride dimer. In the case of no further depuration,
the dimer and 1,10-phenanthroline (0.600 mmol, 108 mg) were added to 2-ethoxyethanol
at 120 ◦C under nitrogen for 24 h. As it cooled to room temperature, a 10-fold excess
of saturated KPF6 solution was poured, and the reaction mixture was stirred for 3 h.
After adding 15.0 mL of water, the mixture was extracted with CH2Cl2 (3 × 15.0 mL).
The combined organic layers were dried over Na2SO4. The solvent was removed by
rotary evaporation, and the crude products were subjected to depuration by column
chromatography (methanol/ dichloromethane = 1:100, v/v).

Ir1. Yield: 74%; a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.97-8.94 (m, 2H),
8.42-8.41 (m, 2H), 8.35 (s, 2H), 8.17-8.13 (m, 4H), 8.06 (d, J = 7.6 Hz, 2H), 7.30 (t, J = 7.6 Hz,
2H), 7.17 (t, J = 7.6 Hz, 2H), 7.00-6.91 (m, 4H), 6.40 (d, J = 7.6 Hz, 2H), 5.74 (d, J = 8.4 Hz,
2H). 13C NMR (125 MHz, DMSO-d6) δ 181.31, 151.19, 149.77, 148.51, 146.80, 140.18, 139.46,
132.89, 132.04, 131.16, 130.69, 128.35, 127.81, 127.43, 127.01, 125.86, 124.58, 123.19, 116.31.
FT-IR (KBr, cm−1): υ = 3057, 1581, 1469, 1447, 1407, 1298, 1267, 838, 754, 724, 557. HRMS
(ESI, m/z): calcd. for C38H24IrN4S2 [M − PF6]+, 793.1072; found 793.1072.

Ir2. Yield: 52%; a yellow solid. 1H NMR (400 MHz, DMSO-d6) δ 8.97 (d, J = 8.0 Hz,
2H), 8.54 (s, 2H), 8.37 (s, 2H), 8.20-8.13 (m, 6H), 7.47 (d, J = 7.6 Hz, 2H), 7.34-7.26 (m, 8H),
7.18 (d, J = 5.2 Hz, 4H), 6.96 (t, J = 7.2 Hz, 2H), 6.59 (s, 2H), 5.83 (d, J = 8.4 Hz, 2H). 13C
NMR (125 MHz, DMSO-d6) δ 180.87, 151.52, 150.34, 148.60, 146.81, 143.08, 139.63, 139.47,
139.41, 131.24, 130.73, 130.40, 128.86, 128.38, 128.07, 127.94, 127.54, 127.51, 126.45, 125.89,
124.57, 122.17, 116.37. FT-IR (KBr, cm−1): υ = 3055, 2038, 1583, 1461, 1426, 1263, 840, 757,
723, 557. HRMS (ESI, m/z): calcd. for C50H32IrN4S2 [M − PF6]+ 945.1698; found 945.1701.

Ir3. Yield: 49%; a brown solid. 1H NMR (400 MHz, DMSO-d6) δ 8.97 (d, J = 8.4 Hz,
2H), 8.52-8.51 (m, 2H), 8.37 (s, 2H), 8.18-8.13 (m, 4H), 8.06 (d, J = 8.0 Hz, 2H), 7.43 (dd,
J = 8.0, 1.2 Hz, 2H), 7.31-7.26 (m, 10H), 7.10-7.05 (m, 8H), 6.92 (dd, J = 16.0, 7.6 Hz, 10H),
6.79 (d, J = 8.8 Hz, 4H), 6.59 (d, J = 1.6 Hz, 2H), 5.79 (d, J = 8.4 Hz, 2H). 13C NMR (125 MHz,
DMSO-d6) δ 180.72, 151.45, 150.37, 148.60, 147.34, 146.83, 146.60, 142.24, 139.45, 138.96,
132.29, 131.13, 130.73, 129.57, 129.41, 128.38, 127.86, 127.46, 127.23, 125.75, 124.47, 123.58,
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122.11, 121.37, 116.26. FT-IR (KBr, cm−1): υ = 3057, 3032, 2040, 1578, 1510, 1489, 1429,
1323, 1283, 840, 755, 724, 696, 557. HRMS (ESI, m/z): calcd. for C74H50IrN6S2 [M − PF6]+

1279.3168; found 1279.3169.

2.3. Preparation of Stock Solutions for AIE and Detection of PA

Stock solutions of Ir(III) complexes were prepared at a concentration of 0.10 mM in
CH3CN. Samples for testing the emission properties were prepared by adding different
fractions of deionized water to solutions of Ir(III) complexes. The aqueous suspensions
of Ir(III) complexes (10 µM) in H2O/CH3CN with a water fraction (f w) of 90% were
placed in a volumetric flask. Each time, a 3.0 mL aqueous suspension of Ir(III) complexes
(10 µM) was placed in a quartz cuvette. For sensing studies, the stock solution of PA
(10 mM) was prepared in H2O/CH3CN (9/1, v/v); after that, a further dilution was
made with H2O/CH3CN (9/1, v/v) to various concentrations such as 0.10 mM, 0.20 mM,
0.30 mM, 0.40 mM, 0.50 mM, 0.60 mM, 0.70 mM, 0.80 mM, 0.90 mM, 1.0 mM, 2.0 mM,
3.0 mM, 4.0 mM, 5.0 mM, 6.0 mM, 7.0 mM, as well as 8.0 mM, and PA was detected on
this account. The emission properties of Ir(III) complexes were measured by adding PA
(30 µL) at different concentrations to suspensions of the Ir(III) complexes (10 µM, 3.0 mL)
in H2O/CH3CN (9/1, v/v). For the selectivity measurement, other analytes (8.0 mM,
including nitrobenzene (NB), nitromethane (NM), m-dinitrobenzene (1,3-DNB), phenol, 4-
methoxyphenol (MEHQ), p-cresol, and m-cresol) were prepared under the same conditions.
The selectivity experiments were conducted by adding the same doses of nitroaromatic
compounds and non-nitroaromatic compounds (30 µL) into the Ir(III) complexes assay
aqueous suspension. The competing experiments were implemented as follows: the
emission spectra were collected when various analytes were dispersed to the suspension of
Ir(III) complexes, followed by the addition of the same equivalent amount of PA. To detect
natural water samples, tap water, river water, rainwater, and seawater were collected from
the laboratory, the playground at Dalian University of Technology, Bohai (Dalian, China),
and the Lingshui River (Dalian, China), respectively. The emission spectra of the Ir(III)
complexes in different water samples after adding the PA (8.0 mM, 30 µL) were recorded.

3. Results and Discussion
3.1. Photophysical Properties

The UV-Vis absorption and the normalized emission spectra of the Ir(III) complexes
(Ir1–Ir3) in dilute CH2Cl2 are displayed in Figure 1. The intense absorption bands of these
Ir(III) complexes were observed at 250–350 nm and are associated with spin-allowed ligand-
centered (1π–π*) transitions [33]. The weaker absorption bands of Ir1 and Ir2 observed
within the following range of 380–500 nm are due to the mixing between the metal-to-
ligand charge transfer (1MLCT and 3MLCT) and ligand-centered 3π–π* transitions, which is
facilitated by enhanced spin-orbital coupling [34]. Clearly, Ir3 exhibited intense absorption
relative to Ir1 and Ir2, which was attributed to the presence of an electron-donating TPA
substituent on the cyclometalating ligands. The normalized emission spectra of Ir(III)
complexes Ir1–Ir3 in CH2Cl2 exhibited that the introduction of a phenyl or TPA substituent
on the cyclometalating ligand results in a red-shift for Ir2 (34 nm) and Ir3 (74 nm) in com-
parison with an unsubstituted Ir1. Additionally, Ir1 and Ir2 showed obvious fine vibronic
splitting features, indicating a large ligand-centered (CˆN) character (3LC). However, this
unstructured emission spectrum of Ir3 may be owing to the distinct properties of the emit-
ted excited states. Ir3 involves more 3MLCT/3LLCT features than Ir1 as well as Ir2 [35].
The phosphorescence quantum yields (ΦPL) in deoxygenated CH2Cl2 were 0.55 (Ir1), 0.20
(Ir2), and 0.05 (Ir3), respectively (Table 1). The low phosphorescence quantum yields of
Ir3 may be due to the rotational motion of the benzene ring in TPA, which helps dissipate
excited state energy in the solution state. The lifetimes (τ) of Ir1–Ir3 in degassed CH2Cl2
were 3.73, 4.81, and 10.36 µs at room temperature (see Supplementary Material, Figure S1
for the phosphorescence decay curves of Ir1–Ir3). These results indicate that introducing a
phenyl or TPA substituent on the cyclometalating ligand results in prolonged phosphores-
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cence lifetimes for Ir2 and Ir3 compared with Ir1. The radiative and nonradiative decay
rates of these Ir(III) complexes in CH2Cl2 were calculated. The results were as follows
(Table 1). The data demonstrate that the phenyl or TPA substituent has a critical impact on
the modification of the photophysical properties of these Ir(III) complexes.
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Figure 1. The UV-Vis absorption spectra (a) and normalized emission spectra (b) of Ir1 (black), Ir2
(red), and Ir3 (blue) at room temperature (10 µM in CH2Cl2).

Table 1. Photophysical data of Ir(III) complexes Ir1–Ir3.

Complex λabs
a

(nm) λem
b (nm) ΦPL

c τ d (µs)
kr

e

(106 s−1)
knr

e

(106 s−1)

Ir1

274 (5.17)
315 (3.21)
322 (3.34)
410 (0.81)

522, 559 0.55 3.73 0.148 0.120

Ir2
273 (3.61)
336 (4.15)
423 (0.88)

556, 595 0.20 4.81 0.042 0.166

Ir3
275 (3.91)
297 (4.00)
423 (3.55)

596 0.05 10.36 0.005 0.092

a Measured in CH2Cl2 at a concentration of 10 µM and extinction coefficients (104 M−1 cm−1) are shown in
parentheses. b The maximum emission value is bold. c The quantum yields (Φsolution) in deoxygenated CH2Cl2
were measured with [Ir(ppy)2(acac)] (ΦPL = 0.34) as a standard. d In deoxygenated CH2Cl2 solution. e The
radiative and nonradiative decay rates of kr and knr were calculated from kr = ΦPL × τ−1, knr = τ−1 − kr.

3.2. AIE Activities

To evaluate the AIE activities of Ir(III) complexes Ir1–Ir3, their emissions were mea-
sured in H2O/CH3CN with water fractions in the range of 0–90%. As shown in
Figure 2a–c, their emission intensities changed observably with various water contents in
an H2O/CH3CN system, exhibiting a typical AIE phenomenon. Additionally, the maxi-
mum emission intensities of Ir1–Ir3 were achieved at a water fraction of 90%, which is 1.9-,
3.5-, and 5.9-fold greater compared with those obtained in CH3CN, respectively (Figure 2d).
These results clearly demonstrate that phenyl or TPA substituent efficiently influences AIE
activities. The enhanced AIE activity of Ir2 relative to Ir1 may be due to the introduction
of a rotatable phenyl group. In a dilute solution, the rotatable phenyl group is active and
serves as a relaxation channel for the excited states to deactivate. In the aggregated state,
this phenyl group is restricted due to the physical constraint. This blocks the nonradiative
pathway and thus enables the excitons to decay radiatively [26]. Ir3 exhibits the highest
AIE activity among the three complexes. It may be that the multiple benzene rings of Ir3
contribute to the dissipation of the excited state energy through rotational motion. While in
the aggregate, the motions become constrained, giving rise to intense luminescence.
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Figure 2. The emission spectra of Ir1 (a), Ir2 (b), and Ir3 (c) at 10 µM in H2O/CH3CN with different
H2O fractions (0–90% v/v). (d) The relationship between the relative intensity of Ir1–Ir3 at the
maximal emission wavelength and distinct water fractions. The excitation wavelengths of Ir1, Ir2,
and Ir3 were 400 nm, 400 nm, and 440 nm, respectively.

3.3. Sensing of PA

The Ir(III) complexes with AIE activities availably prevent luminescence quenching
in a water medium. Thus, Ir(III) complexes Ir1–Ir3 were used as probes for PA detection
in aqueous media. To explore the potential for application of these Ir(III) complexes as
PA probes, the emission quenching experiments based on aqueous suspensions of Ir(III)
complexes in H2O/CH3CN (v/v = 9:1, 10 µM) toward different concentrations of PA were
carried out. As can be seen from Figure 3c, upon the successive addition of PA (0 to
8.0 equiv.) to Ir3 in H2O/CH3CN (v/v = 9:1, 10 µM), the luminescent intensities of Ir3 at
603 nm gradually decreased. The quenching was obviously found when 1.0 µM of PA was
added. As shown in Figure 3d, after adding PA (1.0 µM), the quenching efficiency of Ir3 was
close to 70%. Under the same conditions, just 6% and 37% of emission quenching efficiencies
were observed for both Ir1 and Ir2, respectively. Until the concentration of PA reached
30 µM, the quenching efficiency of Ir1 was over 70%, and when the PA concentration
reached 80 µM, negligible emission was identified with a high quenching efficiency of 97%
for Ir3. With the aim of measuring the quenching constant of Ir3 toward PA, the Stern–
Volmer plots of (I0/I) vs. PA concentration were fit. The luminescence quenching influence
was quantitatively analyzed by applying the Stern–Volmer (SV) equation: I0/I = Ksv[A] + 1.
The relative luminescent intensity (I0/I) exhibits good linearity within the PA concentrations
in the range of 0–6.0 µM (Figure 3e), indicating that Ir3 can be applied as a probe for the
quantitative detection of PA. The quenching constant (Ksv) was 1.96 × 106 M−1 for Ir3.
Similarly, the luminescence of Ir1 and Ir2 was also quenched by PA in H2O/CH3CN
(v/v = 9:1, 10 µM), with quenching efficiencies of 94% and 95%, respectively (Figure 3a,b).
The Ksv values of Ir1 and Ir2 were measured as 7.36 × 104 M−1 and 4.59 × 105 M−1,
respectively. Furthermore, according to the literature reports [36,37], the limit of detection
(LOD = 3σ/K, σ represents the standard deviation of the blank measurement, and K
represents the slope of the linear regression (see Figures S2 and S3 and Table S1) of Ir1–Ir3
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for PA, which were measured as 50.17, 4.64, and 2.52 nM. The outcomes show that the
AIE activities of these Ir(III) complexes Ir1–Ir3 are positively correlated with the detection
efficiencies of PA. Compared with the literature results, the sensitivities of Ir2 and Ir3 are
either comparable or better than those of some reported sensors (see Table S2). It is worth
noting that there is almost no change in the emission spectra in the detection process, thus
demonstrating that no other emissive species formed during the quenching process.
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Figure 3. The emission spectra of Ir1 (a), Ir2 (b), and Ir3 (c) at 10 µM in H2O/CH3CN (v/v = 9:1)
after adding different concentrations of PA. (d) The emission quenching efficiencies of Ir1–Ir3 at
different PA concentrations in H2O/CH3CN (v/v = 9:1). (e) Plot of relative emission intensities
(I0/I, I = emission intensity and I0 = emission intensity with no PA) versus PA concentrations in
H2O/CH3CN (v/v = 9:1). The excitation wavelengths of Ir1, Ir2, and Ir3 were 400 nm, 400 nm, and
440 nm, respectively.

Based on the sensitive detection properties of Ir(III) complexes Ir1–Ir3 for PA, the
sensing selectivity of these Ir(III) complexes was also conducted in H2O/CH3CN (v/v = 9:1,
10 µM). The phosphorescent emission quenching experiments for nitroaromatic and non-
nitroaromatic compounds were studied, including picric acid (PA), nitromethane (NM),
nitrobenzene (NB), and m-dinitrobenzene (1,3-DNB), as well as non-nitroaromatic com-
pounds such as phenol, m-cresol, p-cresol, as well as 4-methoxyphenol (MEHQ). Compared
with PA, all other analytes exhibited less of an effect on luminescence quenching under the
same conditions (Figures 4a–c and S4), which can also be confirmed from the corresponding
photos under a UV lamp at 365 nm (Figure 4a–c, inset). This might be because PA is a
representative electron-deficient compound with three electron-withdrawing nitro groups.
Ir(III) complexes Ir1–Ir3 as electron donors can cause the photo-induced electron transfer
(PET) for the emission quenching of Ir1–Ir3 [38]. The results of selectivity experiments
reveal that the Ir(III) complexes Ir1–Ir3 have significantly high luminescent quenching
efficiencies and selectivity for PA detection.

Anti-interference ability is another essential requirement for a suitable sensing probe.
Thus, the influence of other potentially competitive analytes on PA detection was evaluated.
As shown in Figure 4d–f and Figure S4, in the presence of other potential competitive
analytes, PA can still significantly quench the emission of Ir(III) complexes Ir1–Ir3 in
H2O/CH3CN (v/v = 9:1, 10 µM). These results demonstrate that Ir(III) complexes Ir1–Ir3
have an excellent anti-interference ability toward PA detection over other analytes. Addi-
tionally, to assess the actual uses of Ir(III) complexes Ir1–Ir3, their luminescent responses
for PA were evaluated in natural water samples made by tap water, river water, rainwater,
and seawater. As shown in Figure 5a–c, the luminescence of Ir(III) complexes Ir1–Ir3 is also
quenched by PA in different samples of water/acetonitrile (v/v = 9:1). Additionally, the
luminescence spectra of PA detected in the actual water samples do not change shape any
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more compared with those in deionized water. As can be seen from Figure 5d, there is little
difference in the quenching efficiency among different water samples. For example, the
quenching efficiencies of Ir3 in tap water, river water, rainwater, and seawater were calcu-
lated to be 97%, 97%, 95%, and 96%, respectively, which are similar to those in deionized
water. The results indicate that these Ir(III) complexes work well in natural water samples.
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Figure 5. The luminescent responses of Ir1 (a), Ir2 (b), and Ir3 (c) at 10 µM toward PA in different
water samples. (d) The quenching efficiency of Ir1–Ir3 in different water samples (1: deionized water,
2: tap water, 3: river water, 4: rainwater 5: seawater). The excitation wavelengths of Ir1, Ir2, and Ir3
were 400 nm, 400 nm, and 440 nm, respectively.



Chemosensors 2023, 11, 177 9 of 12

3.4. Mechanism for Sensing PA

To understand the emission quenching mechanism of the Ir(III) complexes for PA,
Ir3 was chosen to carry out the DFT calculations. The highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of Ir3 were
calculated. As shown in Figure 6, the LUMO energy of Ir3 (−1.85 eV) is over that of PA
(−2.59 eV), which contributes to electrons jumping to PA. Thus, the excited electron can
transfer from the higher energy LUMO of Ir3 to the lower energy LUMO of PA, leading to
the photo-induced electron transfer-caused luminescence quenching of Ir3. The representa-
tive energy diagram shows that the energy gap of the adduct (Ir3 + PA) (3.51 eV) is lower
than that (4.49 eV) of Ir3, indicating that the adduct (Ir3 + PA) is stable [39]. Additionally,
the 1H NMR spectra and HRMS of Ir3 with and without PA were recorded, and they have
almost identical spectra (Figure S5), demonstrating that Ir3 does not decompose in the
detection of PA. Therefore, the 1H NMR spectra, HRMS analysis, and the DFT calculations
suggest that the luminescence quenching process may be caused by PET.
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4. Conclusions

In conclusion, two new AIE-active cationic Ir(III) complexes, namely Ir2 and Ir3, with
phenyl and TPA substituted cyclometalating ligands were synthesized and characterized,
respectively. Compared with the non-substituted complex Ir1, Ir2 and Ir3 exhibit higher
AIE activities. Ir(III) complexes Ir1–Ir3 have been proved to be excellent chemosensors for
the sensitive and selective detection of PA in water. The AIE activities of the complexes are
positively correlated with their detection efficiencies of PA. Among them, Ir3 exhibits the
highest AIE activity as well as the highest quenching constant for detecting PA. The DFT
calculations, 1H NMR spectra, and HRMS analysis demonstrate that PET is responsible
for the emission quenching in sensing PA. These findings provide novel insights into the
design of high-performance Ir(III) complexes for the selective and sensitive detection of PA
in water.
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Emission spectra of Ir1–Ir3 in presence of different analytes; Figure S5: 1H NMR spectra and HRMS
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