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Abstract: Inorganic/organic hybrids of ZnO nanorods (NRs)/bisindolo quinoxaline (BIQ) were
fabricated for broadband photosensing applications. Multiple material characterizations revealed the
BIQ was self-assembled in a regular form of rod-like domain and an irregular form of amorphous
aggregation that were distributed on the ZnO NRs. Optical measurements showed that BIQ can ab-
sorb visible light with a wavelength up to 630 nm and effectively generate photoelectrons. Moreover,
clustering of BIQ can be observed via the 3D optical microscopy. ZnO/BIQ hybrids were promising
for future UV and visible light environmental monitoring applications.

Keywords: broadband light sensing; organic BIQ; ZnO nanorods; aggregation; photoluminescence

1. Introduction

ZnO-based photodetectors (PDs) with a spectral detection ranging from ultraviolet
(UV) to visible light have been intensively investigated [1]. Owing to the wide bandgap
of 3.4 eV [2], photon energy around the bandgap can be converted to electrical signals
for pure ZnO materials. Currently, ZnO-based UV photodetectors [3,4] are promising for
environmental hazardous UV light monitoring [5]. However, the wide-bandgap optical
properties prevent the ZnO-based optoelectronic devices [6] from being utilized for versatile
applications such as imaging and communication, which demand long-wavelength visible
light detection. Therefore, researchers have devoted effort to extend the spectral response
of ZnO-based PDs [7] by incorporating various materials, such as nanoparticles (NPs) [8],
perovskite [9], quantum dots (QDs) [10], and organic compounds [11,12]. Among these
additive materials, organic compounds have the advantage of easy fabrication, low cost,
and stable response to light illumination. Within three years, different organic compounds,
such as PCDTBT [13], PDI, and BIQ-TIPs [14,15], have been proved to enhance the spectral
response of ZnO-based PDs. Especially, BIQ-TIPs have self-aggregation effects on the ZnO
nanorods (NRs) [16] and enhance the spectral sensing capability for the PDs based on
ZnO/ZnS nanostructures [17,18]. Inside the BIQ-TIPs’ molecule, there are 4 TIPs moieties
connected to the BIQ. The annex of TIPs has the advantage of solubility improvement
but the disadvantage of thermal instability. When the BIQ-TIPs are operated at a high
temperature of around 100 ◦C, the bonds between TIPs and BIQ may be broken [19,20], and
the degraded BIQ-TIPs further deteriorate the BIQ-TIPs/ZnO hybrid material’s chemical
and optical properties. In contrast to the thermal instability of

BIQ-TIPs, BIQ has better sensing performance because there is no risk of TIP bonds
breaking. Without TIPs, the organic compound of BIQ can have better stability and improve
the performance of ZnO-based PDs.
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Until now, addition of BIQ (without TIPs) on the ZnO nanorods to fabricate BIQ/ZnO
PDs have not been clearly reported yet. In this study, BIQ/ZnO NRs materials were pre-
pared by spreading BIQ on top of ZnO NRs. Multiple material analyses and photoresponse
measurements were performed on the BIQ/ZnO NRs devices. Material characterizations
revealed that regular and irregular shape of BIQ domain can be formed on top of ZnO NRs,
presenting a totally different surface morphology as compared with the BIQ-TIPs/ZnO
NRs counterpart. Furthermore, devices using pure BIQ/ZnO NRs exhibited a broader
spectral sensing range (up to 630 nm; red light) than that using BIQ-TIPs/ZnO NRs (up
to 500 nm; green light). BIQ/ZnO hybrid PDs had potential for future full visible light
sensing applications.

2. Materials and Methods

The ZnO/BIQ hybrid materials were prepared on sensing chips, which were based on
a SiO2/SiO substrate (area of 2× 2 cm2) with an interdigitated electrode (area of 1× 1 cm2).
The substrate was spin-coated with a ZnO seed layer and followed by the hydrothermal
growth of ZnO NRs on the seed layer. After the deposition of ZnO NRs, 6,6′-dioctyl-
bisindolo[2,3-b]quinoxaline (BIQ) was condensed in chloroform and different quantities
of drops (0, 1, 3, and 5 drops) of BIQ solution were drop-casted on top of ZnO NRs. To
characterize the presence and clearly view the regular BIQ domain, the sample of ZnO NRs
with one drop of BIQ was selected for the morphology analysis. Different amounts of BIQ
drops on top of ZnO-NRs-based photodetector are compared to optimize the photosensing
capability of BIQ/ZnO-NRs-based photodetector. The molecular structure of BIQ is shown
in Figure 1a and is compared with that of BIQ-TlPs in Figure 1b. The flow of the fabrication
process is shown in Figure 1c.
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Figure 1. Chemical structure of (a) BIQ and (b) BIQ-TIPs. The TIPs moiety is marked by the red
dashed lines. (c) The flow of the fabrication process.

To perform the photosensing measurements, the devices were illuminated with a light
source that was switched on and off in a 30 s period. UV LED (peak wavelength at 365 nm),
green LED (peak wavelength at 500 nm), red LED (peak wavelength at 630 nm), and white
LED were used as the light sources. The sensitivity (S) of a sensing chip was calculated by
the following equation:

S(%) = [(Ilight − Idark)/(Idark)] × 100% (1)

where Ilight and Idark are the photocurrent and dark current of the devices, respectively.
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To characterize the material properties of BIQ/ZnO hybrids, various material anal-
ysis techniques including field emission scanning electron microscopy (FESEM), energy-
dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photo-
luminescence (PL) spectra and images, X-ray diffraction (XRD), confocal laser scanning
microscopy (CLSM), and color 3D laser scanning microscopy were used. JEOL JSM-7500F
and JEOL JEM 2100 PLUS instruments were utilized to take the FESEM and TEM images,
respectively. The SEM and TEM operating voltages were 200 KV and 15 kV, respectively.
XRD data were gathered using a discover micro diffractometer (Bruker D8). CLSM images
were obtained from inverted confocal microscopy (Carl Zeiss LSM700), while UV/Vis
measurements were collected using HITACHI U-3900. Color 3D laser scanning microscope
images were obtained through the utilization of KEYENCE VK-9710 K.

3. Results and Discussion

FESEM was first conducted to examine the surface and cross-sectional morphology of
BIQ/ZnO hybrids. Figure 2a showed the top-view SEM image of pure BIQ on the SiO2/Si
substrate for comparison. The SEM image revealed plenty of BIQ in a regular rod-like
domain clustering on the SiO2/Si substrate. The top-view and side-view SEM images of
BIQ on the ZnO NRs were shown in Figure 2b,c, respectively. Compared with the BIQ/SiO2,
BIQ/ZnO NRs exhibited fewer BIQ domains on the ZnO NRs, presumably owing to the
high surface energy of ZnO NRs. The top-view image in Figure 2b showed large rod-like
domains of BIQ that were sparsely distributed on top of ZnO NRs. In addition, there
were irregular domains of amorphous aggregations in between the ZnO NRs as shown in
the top-view and side-view images. Furthermore, a top-view FESEM image with a high
magnification rate, shown in Figure 2d, revealed the presence of a regular BIQ domain with
a rod-like shape and an irregular BIQ domain of amorphous aggregations, as indicated by
two red dash line. The schematic illustration of BIQ depositions on ZnO NRs was shown
in Figure 2e, which revealed that most BIQ domains present on top of ZnO NRs exhibited
a rod-like shape, while irregular, amorphous BIQ domains were present in between the
ZnO NRs.

Compared with our previous work, which was based on the BIQ-TlPs/ZnO NRs,
larger and regular BIQ domains can be seen for pure BIQ coated on ZnO NRs because TlPs
moieties in the BIQ-TlPs molecule can increase the solubility of BIQ-TlPs in the chloroform.
When the BIQ-TlPs precursor was coated on ZnO NRs, the high solubility of BIQ-TlPs
decreased the crystallization rate of BIQ-TlPs during chloroform evaporation, resulting in a
small BIQ-TlPs domain on the ZnO NRs. XRD profiles of pure BIQ on the SiO2 substrate
and on the ZnO NRs were shown in Figure 3. The characteristic peak at 21◦ can be assigned
to the BIQ (indicated by the red arrow).



Chemosensors 2023, 11, 199 4 of 10Chemosensors 2023, 11, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 2. (a) Top−view SEM image of BIQ on a SiO2/Si substrate. (b) Top−view and (c) cross−sec-
tional SEM image of BIQ/ZnO NRs. (d) Magnified top−view SEM image of (c). (e) Schematic illus-
tration of BIQ/ZnO NRs. 

Compared with our previous work, which was based on the BIQ-TlPs/ZnO NRs, 
larger and regular BIQ domains can be seen for pure BIQ coated on ZnO NRs because 
TlPs moieties in the BIQ-TlPs molecule can increase the solubility of BIQ-TlPs in the chlo-
roform. When the BIQ-TlPs precursor was coated on ZnO NRs, the high solubility of BIQ-
TlPs decreased the crystallization rate of BIQ-TlPs during chloroform evaporation, result-
ing in a small BIQ-TlPs domain on the ZnO NRs. XRD profiles of pure BIQ on the SiO2 
substrate and on the ZnO NRs were shown in Figure 3. The characteristic peak at 21° can 
be assigned to the BIQ (indicated by the red arrow). 
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To further examine the fine nanostructures of BIQ/ZnO hybrids, TEM was used
as shown in Figure 4a; the TEM image overlapping with EDX mapping was shown in
Figure 4b. The TEM image in Figure 4a revealed a rod-shaped ZnO NR overlapping with
high-contrast areas. These high-contrast areas may be related to the organic materials
owing to their low density. The TEM image with element mapping of Si, Zn, O, and C was
presented in Figure 4b. The EDX mapping of Zn and O elements revealed a low contrast
on the left side, and the EDX mapping of C has an evenly distributed signal. The results
suggested the coverage of organic materials on the ZnO NRs at these low-contrast areas.
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Furthermore, the CLSM was used to macroscopically locate the distribution of BIQ
on top of ZnO NRs by receiving the characteristic PL wavelength of BIQ. CLSM mapping
images for BIQ on the SiO2 substrate and for BIQ on the ZnO NRs were shown in Figure 5a,b,
respectively, by receiving the PL emission wavelength ranging from 510 to 810 nm was
used, while the inset in Figure 5a,b revealed the PL image of BIQ on the SiO2 and of BIQ
on the ZnO NRs, respectively, by receiving the PL emission wavelength ranging from 350
to 510 nm. The PL images of BIQ/SiO2 revealed that the bright image mainly resulted
from the densely distributed BIQ, since the receiving wavelength overlapped well with
the characteristic PL emission profile of BIQ. By contrast, the PL image of BIQ/ZnO NRs
in Figure 5b unveiled smaller bright regions compared to that of BIQ/SiO2. The CLSM
results also confirmed a smaller surface coverage of BIQ on the ZnO NRs, which was
consistent with the results obtained from the SEM image in Figure 2b. These bright regions
were ascribed to the presence of sparsely distributed BIQ on the ZnO NRs. The inset in
Figure 5b presented the PL image of BIQ/ZnO NRs which was obtained by receiving a PL
wavelength ranging from 350 to 510 nm which covered the near-band-edge PL emission of
ZnO NRs, while the defect luminescence should be around 550 nm [21]. The corresponding
PL image showed a low-brightness region that was ascribed to the ZnO NRs. Moreover,
the low PL intensity resulting from the ZnO NRs suggested effective charge transport from
ZnO NRs to BIQ and the charge in BIQ underwent radiative recombination to produce
the PL emissions beyond 350–510 nm. Figure 5c–e showed the PL image of BIQ/ZnO
NRs probed at different positions; the corresponding PL emission profile was revealed in
Figure 5f. The results indicated that the main emission wavelength of BIQ/ZnO NRs was
within 450–800 nm, with a PL emission peak at around 600 nm. The PL emission peak of
ZnO NRs defect state was at around 550 nm. The shifted PL emission peak of BIQ/ZnO
NRs also suggested the charge transfer from ZnO NRs to BIQ.

Moreover, to investigate the surface clustering effect, color 3D laser scanning mi-
croscopy was used. The color 3D images for BIQ/ZnO and BIQ/SiO2 were shown in
Figure 6a,b, respectively. Compared with deposition of BIQ on the SiO2 substrate as shown
in Figure 6b, deposition of BIQ on the ZnO NRs exhibited a nonuniform surface morphol-
ogy, which indicated the aggregation of BIQ on pure ZnO NRs. However, the aggregation
effect of BIQ on the ZnO NRs was not as strong as that of BIQ-TIP on the ZnO NRs, which
may result from high solubility of BIQ-TIP induced by the four TIPs moieties.
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Finally, the photosensing performance of BIQ/ZnO NRs devices under the UV-, white-,
green-, and red-LED illumination was shown in Figure 7a. The light intensity of various
LED sources was shown in Table 1. To optimize the photosensing performance of BIQ/ZnO
NRs device, deposition of BIQ precursor with different drops (1, 3, and 5 drops) on the
ZnO NRs was performed. Figure 7a presented the photosensing behavior of pure ZnO
NRs devices and BIQ/ZnO NRs devices with different amounts of drops of BIQ precursor
in response to the UV-LED illumination. Devices with 3 drops of BIQ had the strongest
photoresponse among all the samples, while devices with pure ZnO NRs had the shortest
response and recovery time. When the BIQ covered the ZnO NRs, most UV light was
absorbed by the outer BIQ and converted into photoelectrons that required time to undergo
charge transfer from the organic BIQ to the ZnO NRs. For the pure ZnO-NRs-based devices
illuminated with green LED, white LED, and red LED, a low photoresponse or even noise
was detected as compared with the BIQ/ZnO NRs counterpart. Among the BIQ/ZnO NRs
devices with various BIQ drops, the devices with 3 drops had a better photoresponse than
that with 5 drops. An excessive amount of BIQ drops may spread more BIQ on top of
ZnO NRs and produce thick BIQ domains. These thick BIQ domains strongly absorbed
the illuminated light and reduced the light absorbed by the ZnO NRs. As a result, low
photogenerated carriers in the ZnO NRs could decrease the photoconductivity and further
deteriorate the device photoresponse. It was noted that devices with BIQ-TlPs exhibited
photoresponse only up to green light (around 500 nm), while they had a negligible response
in red light. By contrast, devices with BIQ were capable of red-light detection as seen in
Figure 7d. The extension of the spectral response for the BIQ/ZnO NRs based devices may
result from the lower bandgap of BIQ compared with that of BIQ-TIPs. Without the four
TIPs bonding to the BIQ molecules, the interlayer stacking of BIQ is closer than that of
BIQ-TIPs to reducing the bandgap of BIQ. The sensitivity of BIQ/ZnO NRs devices was
better than that of BIQ-TIPs/ZnO NRs devices under UV and green LED illumination as
shown in Table 2.
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Figure 7. The photoresponse of ZnO NRs photodetector with various amounts of drops (0, 1, 3, and 5
drops) of BIQ solution under (a) UV, (b) white, (c) green, and (d) red LED illumination.
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Table 1. The light intensity of various LED sources.

UV LED White LED Green LED Red LED

22.2 W/m2 46.67 W/m2 41.67 W/m2 33.3 W/m2

Table 2. Comparison of photosensitivity of BIQ/ZnO NRs and BIQ-TIPs/ZnO NRs devices under
UV and green LED illumination.

UV LED Green LED

BIQ/ZnO NRs PDs 800.3% 12.3%

BIQ-TIPs/ZnO NRs PDs 169.4% 5.3%

4. Conclusions

In this study, ZnO NRs with organic BIQ spread on top of them were fabricated on
sensing chips to function as broadband photodetectors. Incorporation of BIQ into the
ZnO-NRs-based device can enhance the photoresponse and extend the spectral response
compared with the pure ZnO NRs counterpart. Multiple material characterizations revealed
that BIQ formation in regular-shape domains and irregular domains were distributed on
the ZnO NRs. PL images indicated that organic BIQ mainly emits long PL wavelength at
around 600 nm. Application of inorganic/organic ZnO/BIQ hybrids for photodetector
were promising for broadband photosensing that covered UV and visible light.
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