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Abstract: A robust hierarchical model has been demonstrated for monitoring a wide range of
neptunium concentrations (0.75–890 mM) and varying temperatures (10–80 ◦C) using chemometrics
and feature selection. The visible–near infrared electronic absorption spectrum (400–1700 nm) of
monocharged neptunyl dioxocation (Np(V) = NpO2

+) includes many bands, which have molar
absorption coefficients that differ by nearly 2 orders of magnitude. The shape, position, and intensity
of these bands differ with chemical interactions and changing temperature. These challenges make
traditional quantification by univariate methods unfeasible. Measuring Np(V) concentration over
several orders of magnitude would typically necessitate cells with varying path length, optical
switches, and/or multiple spectrophotometers. Alternatively, the differences in the molar extinction
coefficients for multiple absorption bands can be used to quantify Np(V) concentration over 3 orders
of magnitude with a single optical path length (1 mm) and a hierarchical multivariate model. In this
work, principal component analysis was used to distinguish the concentration regime of the sample,
directing it to the relevant partial least squares regression submodels. Each submodel was optimized
with unique feature selection filters that were selected by a genetic algorithm to enhance predictions.
Through this approach, the percent root mean square error of prediction values were ≤1.05% for
Np(V) concentrations and ≤4% for temperatures. This approach may be applied to other nuclear fuel
cycle and environmental applications requiring real-time spectroscopic measurements over a wide
range of conditions.

Keywords: absorption spectroscopy; UV-Vis-NIR; partial least squares; principal component analysis;
nitric acid; neptunium; temperature

1. Introduction

In optical spectroscopy applications (e.g., spectrophotometry), the linear dynamic
range of a spectrometer, which is defined as the ratio between the maximum and minimum
signal intensities, is an imperative variable to consider. In general, spectrophotometers are
most accurate from approximately 0.4–0.9 absorbance units (Abs.) [1]. In high-absorbance
situations, in which minimal light passes through the samples, the intensity may be too
weak to measure. In low-absorbance situations, in which too much light passes through
the sample, distinguishing the difference between the sample and reference (i.e., blank)
spectrum is difficult. Overcoming dynamic range limitations is possible using multiple
pathlength cuvettes and either multiple spectrometers or optical switches. Alternatively,
some high-end spectrophotometers cover a wide dynamic range (~6–8 Abs.), but they are
typically large, sluggish, and not amenable to remote applications with fiber optic cables.
These significant caveats must be considered when deploying spectrophotometers for real-
time, online monitoring applications in restrictive hot cell and control room environments.
This work explores a more efficient option using hierarchical modeling to build regression
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models that cover a wide range of Np(V) concentrations with a single optical pathlength
and a plug-and-play spectrometer.

The timely quantification of the aqueous pentavalent neptunyl dioxocation (237NpO2
+)

in nitric acid (HNO3) is essential to improve Np processing efficiency, which is an ongo-
ing effort of the 238Pu Supply Program at Oak Ridge National Laboratory where 238Pu
is produced through irradiating 237Np targets [2]. Improved analytical time will help
scale up the production of heat source plutonium oxide (PuO2) to meet NASA’s projected
needs [3]. Multiple analytical techniques are available for measuring Np concentration,
including alpha- and gamma-ray spectroscopy, inductively coupled plasma–mass spec-
trometry (ICP-MS), titrimetric analysis, and optical spectroscopy. Spectrophotometry can
provide rapid feedback (e.g., 10–1000 ms intervals) and is sensitive to Np valence and
concentration [2]. This method can be readily employed in hazardous environments using
fiber optic cables, making it ideal for remote, online monitoring applications [4,5].

The Np(V) cation is the most prevalent species in aqueous conditions in the absence of
redox-active species and at acid concentrations <5 M HNO3, making it the focal point of
spectroscopic detection research [6]. The most intense 5f –5f electronic transition in the visi-
ble (vis)–near infrared (NIR) absorption spectrum of the aquo NpO2

+ ion occurs at 979 nm
(ε = 395 M−1·cm−1) [7,8]. The most intense transition originating from the 5f shell for the
isoelectronic plutonyl ion (PuO2

2+) occurs at a shorter wavelength near 830 nm [9]. The
intense Np(V) 979 nm peak and a less intense band at 616 nm (ε = 22 M−1·cm−1) have
been used analytically to determine the concentration of NpO2

+ in solution using Beer’s
law. Additional bands are also available for analysis in the spectrum with even lower
molar absorptivity values (ε = 2.5 M−1·cm−1) [10]. The 979 nm absorption band is the most
widely used because the intensity and position is sensitive to the coordination environment
of NpO2

+ for most studies at relatively low Np concentrations (~1 mM) [11,12]. Quan-
tifying Np(V) in aqueous solutions using spectrophotometry over dynamic conditions
encountered during processing is challenging because of the broad range of molar extinc-
tion coefficients, nonlinear concentration responses, concentration-dependent chemical
equilibria, and dynamic temperature effects [10,13,14].

Univariate regression methods (e.g., Beer’s law) are not suitable for in-line analysis
in this complex system [4]. Instead, multivariate chemometrics can be used to describe
complex systems with convoluted or covarying spectral features [2]. For example, partial
least squares regression (PLSR) correlates the entire spectrum to the dependent variables
(e.g., concentration) [15]. Techniques like PLSR can be combined with multiple models to
improve the measurement accuracy compared with a single model [5]. The main points of
scientific advancement in this work were (1) investigating the use of principal component
analysis (PCA) to distinguish the concentration regime of a given sample, (2) develop-
ing high accuracy supervised regression models to quantify Np(V) concentration and
temperature, and (3) combining the established PCA classification, regression models,
and a genetic algorithm for feature selection into a single hierarchical model in order to
extend the dynamic range of a single spectrometer to cover a wide concentration range
previously unattainable. The PLSR models accounted for temperature fluctuations, which
is an important variable often ignored in laboratory studies [16]. This approach accu-
rately quantified a wide range of Np(V) concentrations (0.0008–0.9 M) and temperatures
(10–80 ◦C). Results indicate that hierarchical modeling can extend the dynamic range of
plug-and-play spectrophotometers and quantify a wide range of concentrations using a
single optical pathlength. This approach maintains the simplicity of the spectrophotometric
approach while also maintaining feasibility with respect to real-world implementation in
restrictive radiological environments.

2. Materials and Methods
2.1. Materials

All chemicals were commercially obtained (American Chemical Society grade) and
used as received unless otherwise stated. Concentrated HNO3 (70%) was purchased from
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Sigma Aldrich. All solutions were prepared using deionized water with a resistivity of
18.2 MΩ·cm at 25 ◦C. Oak Ridge National Laboratory provided 237NpO 2 ( t 1

2
= 2.14 × 106

years) in-house.

2.2. Methodology

Samples were prepared by dissolving NpO2 in 8 M HNO3 and diluting to achieve
a Np concentration of 210 ± 7 g L−1 (0.886 M Np) in 1 M HNO3. The concentration
of Np in the sample was determined using ICP-MS (iCAP Q ICP-MS, Thermo Fisher
Scientific). The stock solution was used to prepare the calibration and validation samples
(0.00075–0.89 M Np). Aliquots from the stock solution were taken and sequentially diluted
in 1.0 M HNO3 using a 1 mL volumetric flask (1.00 ± 0.01 mL) to achieve the desired
total Np concentration. Calibration and validation samples used in this study are detailed
in Table 1. Here, more validation samples were used than the calibration set. This is
representative of the true application where it is desired to minimize the training set to
minimize resources used. A small fraction of Np(VI) (≤3%) was present in the higher
Np concentration samples. This oxidation state distribution is commonly observed in
process solutions. No attempts were made to adjust the valence of the Np, and the models
discussed in this study are for total Np concentration. Increasing the solution temperature
did not change the ratio of Np(V/VI) or alter the Np(VI) band [17].

Table 1. Calibration and validation sample information.

Sample Set Sample Tag Np Concentration (M) Tested Temperatures (◦C)

C
al

ib
ra

ti
on

C1 0.00

10.0, 20.0, 30.0, 40.0, 50.0,
60.0, 70.0, 80.0

C2 0.00075

C3 0.0069

C4 0.034

C5 0.069

C6 0.34

C7 0.52

C8 0.89

V
al

id
at

io
n

V1 0.00

15.0, 16.5, 24.0, 25.0, 35.0,
45.0, 48.8, 55.0, 56.7, 65.0,

71.6, 75.0

V2 0.00075

V3 0.0044

V4 0.0088

V5 0.017

V6 0.069

V7 0.17

V8 0.34

V9 0.64

V10 0.89

2.3. Spectrophotometry

A QEPro spectrometer (Ocean Insight) was used for ultraviolet (UV)-vis absorption
measurements, and a NIRQuest spectrometer (Ocean Insight) was used for NIR absorption
measurements. UV-vis spectra included absorbance measurements every 0.78 nm from
199 to 985 nm, and NIR spectra included absorbance measurements recorded every 1.65 nm
from 897 to 1717 nm. Triplicate spectra were recorded for each sample, and each spectrum
was an average of five scans. The spectrometers were referenced to pure water at 20 ◦C prior
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to each measurement unless otherwise stated. OceanView 2.0 software was used to process
each spectrum.

The stabilized incoherent light source (SLS201L, ThorLabs) was transmitted through
several meters of multimode optical fiber patch cables (Ocean Insight) with a core diameter
of 600 µm into and out of the glove box. Samples were introduced into the Hellma quartz
micro flow cell with an optical pathlength of 1 mm and a Z height of 8.5 mm (i.e., distance
from bottom of the cuvette to the light transmission point) using a syringe. A Quantum
Northwest Qpod 2e temperature-controlled sample compartment holder (Avantes) with
two quantum cascade laser-UV collimating lenses was used to adjust the temperature
of the samples with an accuracy of 0.05 ◦C. Samples were equilibrated for 2 min prior
to collecting each spectrum. No temperature-induced spectral variations were observed
after that time.

2.4. Multivariate Data Analysis

The SciKit Learn package in Python was used for PLSR and PCA. As one of the most
frequently used chemometric modeling tools, PLSR is especially useful for regressing
spectra where the number of independent variables is significantly larger than the number
of samples [15]. Each PLSR model is built using a signal matrix (spectra) and a response
matrix (concentrations) and transforms them to a latent space. The matrix is iteratively
solved for vectors, or latent variables (LVs), which explain the most covariance between the
signal and the response matrices. As an unsupervised dimension-reducing method, PCA
identifies orthogonal vectors that explain the variance of the independent variable without
knowledge of any dependent variables [18]. A key difference between PLSR and PCA
is that the former seeks to explain the most covariance between the signal and response
matrices, and the latter focuses solely on the variance of the signal matrix. Simply stated,
PCA explores the sample variability in an unsupervised manner whereas PLSR is designed
under supervision to predict a given response. Multivariate models were developed
using spectra collected on static (i.e., not flowing) samples. UV-vis and NIR spectra were
fused at 870 nm, and the combined spectra were baseline adjusted by subtracting the
minimum absorbance value between 930 and 935 nm generating a single spectrum ranging
between 400–1700 nm. An example spectrum before and after baseline subtraction and
fusion is shown in Figure S1. An in-house genetic algorithm (GA) feature selection tool was
used, and further details can be found elsewhere [19–22]. Briefly, the GA iteratively forms
binary arrays that, when applied to the spectra, act as filters. These filters are compared
based on the corresponding model prediction performance. The best filters are retained
and are also combined to form new filters, which are then evaluated in the next iteration,
simulating natural selection. Overtime an optimal filter will be reached, analogous to the
theory of evolution, that only permits the feature(s) required for regression into the model.

2.5. Statistics

The root mean square error (RMSE) was used as the primary metric for prediction
error, defined in Equation (1) as

RMSE =

√
∑(yi − ŷi)

2

n
, (1)

where yi is the known concentration, ŷi is the model-predicted concentration, and n is
the total number of samples. The RMSE of calibration (RMSEC) is determined using the
calibration set to train the data; then, the same calibration set is predicted by the model,
essentially making RMSEC a measure of fit. The RMSE of cross validation (RMSECV) was
determined using a fivefold approach where the calibration set was split into five random
groups. Then, one group was left out as the model was built and predicted the values
of the left-out group. This approach was an iterative process that proceeded until each
sample was left out at least once. The deviation of predicted values was averaged into
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a single RMSECV metric. The RMSE of prediction (RMSEP) measures the dispersion of
samples not included in a validation set (i.e., never included in model construction) around
the regression line. The RMSE values are typically discussed in terms of percentages to
ease comparisons [16,20,23]. The RMSE value was divided by the median of the model
concentration range to produce percent RMSEP (RMSEP%). For the percentage conversions
in this study, the RMSE values were divided by 0.05 for low Np concentrations, 0.40 for
high Np concentrations, and 35 for temperature models. Lower RMSE values indicate
improved model performance. In the following discussion, models were rated based on
their predictive error: strong (RMSEP% ≤ 5%), satisfactory (5 < RMSEP% ≤ 10%), or
indicative (10 < RMSEP% ≤ 15%). RMSEP% values above 15% do not offer any monitoring
value and are undesirable [23].

The limit of detection (LOD) is a typical benchmark used for quantification mod-
els. The International Union of Pure and Applied Chemistry (IUPAC) defines the LOD
as the lowest concentration that can be detected with reasonable certainty for a given
method [24]. Calculating the LOD for a multivariate model (e.g., PLSR models) is much
more involved than for univariate models. This study used a pseudounivariate approach
(LODpu) proposed by Ortiz et al. that extends the IUPAC recommendations for univariate
models for use in multivariate models [25]. In this work, the multivariate model was used
to estimate the concentrations of the calibration sample set. The slope of these predictions
versus the known values (i.e., the slope of the parity plot) was used in place of the univariate
calibration curve. The LODpu was then calculated using Equation (2):

LODpu = 3.3

√
(1+h0min+

1
N ) varpu

mpu
,

where h0min =
y2

cal
∑N

n=1 y2
n

,
(2)

and where mpu is the slope of the produced parity plot, varpu is the variance of the regression
residuals, N is the number of calibration samples, ycal is the mean concentration of the
calibration analytes, and yn is the centered analyte concentration of sample n.

3. Results and Discussion
3.1. Np Vis-NIR Spectra

The Np spectrum in 1 M HNO3 is shown as a function of Np concentration in Figure 1a.
A large range in molar absorptivity values are represented. The dominating band in the
spectrum is centered at 979 nm for Np(V) and has a molar absorptivity of 367 M−1·cm−1,
which agrees well with published data. Several additional absorption bands appear at
433, 476.5, 616.4, 687.0, 914.2, 1022, 1096, and 1116 nm with molar absorptivity values
of 7, 22, 5, 2.5, 9, 25, and 6, respectively [10]. The asymmetric Np(VI) peak is shown
in high Np concentration samples centered near 1224 nm, but the quantity is negligible.
The peak near 1616 nm is convoluted with the NIR water band response centered near
1450 nm [26]. This water band is related to the first overtone of water. The broad posi-
tive (1404 nm) and negative peaks in this region (1490 nm), which result in an isosbestic
point near 1440 nm, occur because of differences in the local tetrahedral structure of water
owing to its temperature [27].

Several peaks, such as the peak located at 616.4 nm, are complex and confounded by
nearly overlapping absorption bands, which are not easily resolved. Figure 1b shows the
spectra of a 0.0687 M Np sample in 1 M HNO3 with temperature varied
from 10–80 ◦C. The effect of temperature is visible in the water band (1300–1650 nm),
but the inset plot provides a closer examination of how the Np(V) bands change shape and
shift with temperature. These changes may appear small, but they can generate challenges
when attempting to apply Beer’s Law to monitor Np(V) concentrations. For example,
the Np(V) 979 nm band intensity decreases by 12%, and the peak position blue-shifts by
1.9 nm from 10–80 ◦C [10]. These effects necessitate the use of multivariate modeling to
accurately monitor such a system with a wide range of conditions.
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Figure 1. UV-vis-NIR absorption spectrum of (a) 0–0.886 M Np in 1 M HNO3 at 20 ◦C and
(b) 0.0687 M Np in 1 M HNO3 with temperature varied from 10 ◦C–80 ◦C. All samples were blanked
in water at 20 ◦C. The inset plot in (a) shows the Np(V) 979 nm peak saturating the detector at
higher concentrations. The inset plot in (b) highlights the effect of temperature on Np(V) bands. The
temperature effects on the water band can be seen in the full plot (≥1300 nm).

A large obstacle encountered when monitoring Np(V) by spectrophotometry in rel-
evant nuclear fuel cycle applications revolves around the 979 nm band, which can easily
saturate the detector at higher concentrations. This effect can be seen in the inset of
Figure 1a, where high Np(V) concentration samples show a plateaued peak as opposed
to the typical Gaussian shape seen in the lower Np(V) concentrations. A smaller optical
pathlength cell could be used; however, this would make the detector less sensitive to lower
concentrations. Another option is to develop a piecewise model that uses different spectral
features depending on the Np concentration. This model would recognize which portions
of the spectrum are in the ideal range for quantification and exclude regions that are not
(e.g., saturated Np(V) 979 nm peak). For online monitoring applications, the model must
discern which submodel to send the collected spectra to without human involvement.

3.2. Principal Component Analysis

In this work, PCA was particularly useful because it identified principal components
(PCs) by examining the spectra provided to it without knowledge of Np concentrations or
temperatures. With 3 PCs, 99.2% of the signal variance was explained. Through investigat-
ing loadings and score plots, the PCs were attributed to specific phenomena.

Figure 2 shows the PCA score plots colored according to the Np concentration and
the sample temperature, as well as the corresponding PC loadings to investigate feature
correlation. Figure 2a,b show a clear trend between PC-1 and Np concentration and an
absence of a clear relation to temperature. Upon looking at the PC-1 and PC-2 loadings,
both are related to Np concentration because a single PC cannot explain all the variance
from the 979 nm peak saturation. PC-1 does not rely heavily on the peak absorbance value
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of the 979 nm band, so it increases nearly linearly with Np concentration. Conversely, PC-2
does have a significant loading on the 979 nm band, so upon the Np concentration growing
above approximately 0.1 M, the PC-2 score begins to decrease as this band saturates. This
decrease resulted in the arch-shaped trend seen in Figure 2a.
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Np concentration; (b) PC-1 vs. PC-2 colored by sample temperature; and (c) PC-2 vs. PC-3 colored by
sample temperature. In (d), the principal component weights vs. wavelengths are provided. As seen
in (a), a positive PC-1 score correlates to a high Np concentration (i.e., ≥0.1 M).

Figure 2c shows that despite the complexity associated with explaining the
concentration-related signal variance, PC-3 can describe signal changes correlated to tem-
perature. The importance given to the NIR water band in the loadings plot verifies this
correlation where the PC-3 scores become more negative as the temperature increases due
to the loading being inverted to the trend seen in Figure 1b. The PC-3 loading also points to
the Np band shifts as indicators. The PCA model can distinguish low and high Np spectra
and temperature effects in an unsupervised approach.

3.3. Hierarchical Modeling

By applying the PC loadings shown in Figure 2d to spectra, the PC-1 scores can be
used to direct data to specific submodels (i.e., PC-1 score <0 indicates low Np concentration
submodel, and PC-1 score ≥0 indicates high Np concentration submodel). The calibration
samples were split into low and high Np concentration sets using this procedure and
were subsequently used to develop the PLSR submodels. The spectra sent to the high
Np concentration submodel were filtered to remove the saturated NIR Np(V) bands;
the low Np concentration submodel was built using the full spectrum. A fivefold cross
validation was performed to select the required number of LVs for each PLSR model; seven
and six LVs were chosen for the low and high Np concentration submodels, respectively
(see Figure S2).

Following the LV selection, each submodel was evaluated by predicting the Np con-
centration and temperature values of a set of validation samples. The corresponding RMSE
values for calibration, cross validation, and prediction are provided in Table 2. As seen by
the RMSEC% values, both models performed at strong levels, but during validation tests,
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the RMSEP% values for the high Np concentration submodel increased, pushing the high
Np concentration submodel performance to the satisfactory level. The differences in the
levels of prediction accuracy are shown in the parity plots in Figure 3.

Table 2. RMSE calibration, cross validation, and prediction metrics for the PLSR submodels.

RMSE

Submodel C C% CV CV% P P%

Low Np concentration Conc. 0.0004 0.78% 0.0034 6.89% 0.0004 0.85%

T 0.1471 0.42% 0.3838 1.10% 0.9892 2.83%

High Np concentration Conc. 0.0032 0.80% 0.0088 2.20% 0.0220 5.49%

T 0.1157 0.33% 0.3964 1.13% 1.7967 5.13%
Note: Conc.: concentration, T: temperature.
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Figure 3. Parity plots comparing known and (a,b) low Np concentration submodels and (c,d) high
Np concentration submodels’ predicted values for Np concentration and temperature. The 1:1 line
signifies a perfect prediction; the closer a marker to the 1:1 line, the better the prediction.

The low Np concentration submodel performed well for Np concentration and tem-
perature predictions with only slight variance seen in the validation set temperature
predictions. The high Np concentration submodel showed moderate variance around
the 1:1 line for Np concentration prediction, but the temperature prediction showed a larger
scatter. Inspection of the PLSR regression coefficients (not shown) indicated that both sub-
models rely heavily on the NIR water band for temperature, but the low Np concentration
submodel also significantly weighs the 979 nm band when predicting temperature. This
submodel shows some of the most prominent features related to temperature changes.
The prominent features explain the slightly reduced temperature prediction accuracy of
the high Np concentration submodel because this band is unavailable to be regressed.
Although these current models perform adequately, a strong performance is desired to
meet program requirements. Although the temperature sensitivity of the NIR water band
provides a straightforward model, this sensitivity may become detrimental to the model if
the absorbance blank is measured slightly off-temperature.
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Removing the reliance on the NIR water band would result in a more robust moni-
toring model. This model is more resistant to differences in blank temperatures, which
would be inevitable in process operations. Temperature differences relative to the blank
in the water spectrum <1300 nm are either negligible or essentially nonexistent. Weak
NIR absorption bands are centered near the 960 and 1190 nm water bands, but no band
is evident in the visible region from approximately 400 to 950 nm [26,28]. The absence of
these water bands allows the model to measure temperature solely based on Np spectral
variations. The previously detailed submodels were reconstructed with the spectrum
upper limit set to 1300 nm to not regress the water band features. The result was a slight
increase in the high Np concentration submodel RMSEP%, to 6.50%. Both models show a
sizable increase in temperature RMSEP% values, to 7.52% and 22.9% for the low and high
Np concentration submodels, respectively. The parity plots for these models are shown
in Figure S3. These values indicate that rather than simply cropping the spectra before
modeling, proper feature selection would be better suited towards filtering the spectra
prior to the PLSR modeling, or an alternative model for temperature is needed.

3.4. Feature Selection for Model Optimization

Previous studies have shown that the use of feature selection via a GA can result in
significant improvements for PLSR models. In this work, the GA was run on the PCA-split
low and high Np concentration calibration sets to develop independent Np concentration
and temperature filters to optimize prediction performance. The GA was completed 5 times
with 150 generations each, and the optimal filter for each submodel and variable was
selected. The changes in explained variance, the number of estimators, and the RMSE
record for each of the final GA filters are shown in Figures S4–S7. The GA selected features
are shown in Figure 4.
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Several interesting takeaways can be concluded from the GA filter results. First, the
low Np concentration filter selects the 979 nm NIR Np(V) features as expected because this
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peak is intense and not saturated in this regime, whereas the high Np concentration filter
does not retain this peak due to the saturation issues. Secondly, the temperature filters both
select at least portions of the NIR Np(V) bands (979, 1022, and/or 1096 nm), indicating the
bands are useful for regressing temperature effects despite saturation—likely due to the
peak shift phenomenon seen in Figure 1. This behavior is difficult to model linearly across
the Np concentration range; a single PLSR for temperature on the entire calibration set was
built but could not properly regress the behavior. Thirdly, the sharp 616 nm band was not
selected, although it appeared as a distinguishing feature.

These GA-selected filters improved prediction accuracy with up to an 87% reduction
in RMSEP (average percent difference equal to −75%). Parity plots for this new model are
shown in Figure 5. The GA filtered models’ RMSEP% values were 0.14% and 4.00% for low
Np concentration and temperature, respectively, and 1.05% and 2.96% for high Np concen-
tration and temperature, respectively. These results indicated a strong level of prediction
for each submodel. Because these models are independent of the NIR water band centered
near 1450 nm, the high dependency on the blank temperature was minimized.
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Np concentration submodel concentration predictions, (b) low Np concentration submodel tem-
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3.5. Final PLSR Model Evaluation

The final model design is provided in Figure 6. As one final comparison, a global PLSR
model was built on the complete calibration data set to evaluate the level of improvement
offered through the hierarchical design. The global PLSR model was developed using
the same general procedure outlined previously. The final model was built with four
LVs because the addition of further LVs caused an increase in RMSECV values. The
calibration and validation parity plots are shown in Figure S8. The RMSEP% values for
this global PLSR model were 22.06% and 49.79% for Np concentration and temperature,
respectively, at Np concentrations below 0.1 M and 6.48% and 27.46% for Np concentration
and temperature, respectively, at Np concentrations above 0.1 M. This poor performance,
particularly with low Np concentration samples (see inset plot in Figure S8), is a direct
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result of the previously discussed issues; the PLSR model cannot cope with the nonlinearity
of the saturating 979 nm peak and uses the vis Np(V) bands primarily for quantification.
Unfortunately, these peaks are very weak at low Np concentrations, so the model suffers.
Regarding temperature, improved prediction accuracy was seen in the hierarchical model
following the GA feature selection process. This comparison exemplifies the superior
performance of the hierarchical model with feature selection.
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The LODpu was calculated for the final low Np concentration submodel to evaluate
the lowest concentration that the overall hierarchical model would be able to predict with
reasonable sensitivity. Using Equation (2), the LODpu was 0.232 mM Np. To measure
lower concentrations, an alternative measurement system (e.g., larger pathlength or a
more sensitive spectrometer) would be needed, but a hierarchical model similar to the one
discussed in this work (Figure 6) could describe a lower concentration range.

4. Conclusions

This study demonstrated the design of a hierarchical model to quantify a wide range
of Np concentrations (0.00075–0.89 M) and varying temperatures (10–80 ◦C) relevant to
remote monitoring systems in a single model and without the need to complicate the
experimental setup. This approach takes advantage of multiple Np(V) absorption bands
with molar absorption coefficients covering two orders of magnitude. This new approach
pushes the burden onto the data analytics, which is relatively cheap and efficient, and
helps minimize the equipment footprint. Results indicated that spectrophotometry and
multivariate chemometrics have great potential to improve the timeliness and performance
of important aqueous Np processes—for instance, Np cation exchange column runs for
the Oak Ridge National Laboratory 238Pu Supply Program. Future work will explore
quantifying multiple Np oxidation states in the regression model.

Supplementary Materials: The following supporting information can be downloaded
at: https://www.mdpi.com/article/10.3390/chemosensors11050274/s1, Figure S1: UV-Vis (blue)
and NIR (red) spectrum before and after data fusion and baseline sub-traction. The fused spectrum is
trimmed to only range from 450–1650 nm to remove lower and upper wavelength regions subject to

https://www.mdpi.com/article/10.3390/chemosensors11050274/s1
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large noise fluctuations; Figure S2: Cross validation latent variable selection for the (a) low–Np con-
centration submodel and (b) high–Np concentration submodel. RMSECV is shown in percent value
for better visualization. LVs selected are circled; Figure S3: Parity plots comparing known and
predicted values for Np concentration and temperature: (a and b) low–Np concentration submodel
and (c and d) high–Np concentration sub-model (wavelengths <1300 nm). The 1:1 line signifies
a perfect prediction; the closer a marker is to the 1:1 line, the better the prediction is; Figure S4:
Generation record for the low–Np concentration submodel Np concentration GA filter: (top) change
in explained variance, (middle) change in the number of estimators, and (bottom) change in the
best and average RMSE vs. generation; Figure S5: Generation record for the low–Np concentration
submodel temperature GA filter: (top) change in explained variance, (middle) change in the number
of estimators, and (bottom) change in the best and average RMSE vs. generation; Figure S6: Gen-
eration record for the high–Np concentration submodel Np concentration GA filter: (top) change
in explained variance, (middle) change in the number of estimators, and (bottom) change in the
best and average RMSE vs. generation; Figure S7: Generation record for the high–Np concentration
submodel temperature GA filter: (top) change in explained variance, (middle) change in the number
of estimators, and (bottom) change in the best and average RMSE vs. generation; Figure S8: Global
PLSR model predictions vs. known values for (a) Np concentration and (b) temperature. The Np
concentration predictions appear to be fit well around the 1:1 line, but the inset figure shows that at
low Np concentrations, the model performs inadequately.
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