Self-Adaptation of Oxygen Adsorption and Sub-Surface Junction Formation in Thin Nanometric Sheets of Metal Oxides
Abstract
:1. Introduction
2. Coupling of Bulk and Surface Processes
3. Coupling between Electronic and Structural Degrees of Freedom
4. Junction Formation and Sub-Surface Vacancy Re-Arrangement in the Equilibration Scenario
4.1. Potential and Electrical Field Distributions across MOX Sensor Sheets
4.2. Supporting Electrical Charge Distributions
5. Limits to Geometrical Downscaling
6. Summary and Conclusions
- When 2d-sheets of MOX materials with nanometric cross-sections are exposed to ambient air, sub-surface depletion zones with triangular potential profiles develop below both surfaces in a state of complete equilibration which fully depletes the MOX bulk from mobile charge carriers.
- Downscaling of the cross-sectional thickness towards lower values enhances the adsorption of negative ion adsorbates at both surfaces, increasing at the same time the positive donor densities inside the materials to maintain overall charge neutrality. In this way, the sub-surface depletion zones shrink in a self-adaptive manner into MOX sensor sheets with increasingly lower cross-sections.
- The shapes of equilibrated adsorbate-ion and vacancy donor distributions in fully depleted MOX sensor sheets are almost independent of the absolute value of their thermalization temperatures. Fully equilibrated MOX nanostructures should therefore reveal a promising resilience towards sensor drift when sensor operation temperatures are changed and/or methods of non-stationary sensor operation are employed [57,58].
- The process of geometrical downscaling of MOX sensor sheets comes to a natural end when sheet thicknesses on the order of are approached. At that length scale, a 3d volume of would contain only one single, double donor in its bulk and one single oxygen ion adsorbate at each outer surface. With these sub-volumes only containing electrons, on average, the electron granularity level is reached.
- It is proposed that at and around the electron granularity level, the concept of homogeneously dispersed donor charge densities breaks down and that electrical field and electron potential energy profiles can no longer be determined by the conventional Poisson equation approach. At length scales smaller than the electron granularity level, electronic transport processes are likely better described in terms of discrete electron hops rather than by the conventional DSBM approaches.
- The proposal of electron hopping in MOX materials within very small grains at present needs to be treated as a theoretical concept that can potentially explain the disappearance of gas sensitivity in the limit of extremely small grains. In order to establish this effect and its explanation as common consolidated knowledge, more experimental and theoretical work needs to be done in independent laboratories.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gardner, J.W.; Bartlett, P.N. Electronic Noses: Principles and Application; Oxford University Press: Oxford, UK, 1999; ISBN 0-19-855955-0. [Google Scholar]
- Jaeschke, C.; Gonzalez, O.; Padilla, M.; Richardson, K.; Glöckler, J.; Mitrovics, J.; Mizaikoff, B. A Novel Modular System for Breath Analysis Using Temperature Modulated MOX Sensors. Multidiscip. Digit. Publ. Inst. Proc. 2019, 14, 49. [Google Scholar] [CrossRef] [Green Version]
- Danesh, E.; Dudeney, R.; Tsang, J.-H.; Blackman, C.; Covington, J.; Smith, P.; Saffell, J. A Multi-MOx Sensor Approach to Measure Oxidizing and Reducing Gases. Multidiscip. Digit. Publ. Inst. Proc. 2019, 14, 50. [Google Scholar] [CrossRef] [Green Version]
- Shaposhnik, A.; Moskalev, P.; Vasiliev, A. Selective Detection of Hydrogen and Hydrogen Containing Gases with Metal Oxide Gas Sensor Operating in Non-Stationary Thermal Regime. Multidiscip. Digit. Publ. Inst. Proc. 2019, 14, 2. [Google Scholar] [CrossRef] [Green Version]
- Byun, H.G.; Yu, J.B.; Kang, C.Y.; Jang, B.K.; Lee, H.R. Comparative Analysis between Blood Test and Breath Analysis Using Sensors Array for Diabetic Patients. Multidiscip. Digit. Publ. Inst. Proc. 2019, 14, 22. [Google Scholar] [CrossRef] [Green Version]
- Astolfi, M.; Zonta, G.; Landini, N.; Gherardi, S.; Rispoli, G.; Anania, G.; Benedusi, M.; Guidi, V.; Palmonari, C.; Secchiero, P.; et al. Chemoresistive Nanostructured Sensors for Tumor Pre-Screening. Multidiscip. Digit. Publ. Inst. Proc. 2019, 14, 29. [Google Scholar] [CrossRef] [Green Version]
- Abbatangelo, M.; Duina, G.; Comini, E.; Sberveglieri, G. MOX Sensors to Ensure Suitable Parameters of Grated Parmigiano Reggiano Cheese. Multidiscip. Digit. Publ. Inst. Proc. 2019, 14, 38. [Google Scholar] [CrossRef] [Green Version]
- Izawa, K. SnO2-Based Gas Sensor for Detection of Refrigerant Gases. Multidiscip. Digit. Publ. Inst. Proc. 2019, 14, 32. [Google Scholar] [CrossRef] [Green Version]
- Portalo-Calero, F.; Lozano, J.; Meléndez, F.; Arroyo, P.; Suárez, J.I. Identification of Poisonous Mushrooms by Means of a Hand-Held Electronic Nose. Multidiscip. Digit. Publ. Inst. Proc. 2019, 14, 33. [Google Scholar] [CrossRef] [Green Version]
- Landini, N.; Anania, G.; Astolfi, M.; Fabbri, B.; Gaiardo, A.; Gherardi, S.; Giberti, A.; Guidi, V.; Rispoli, G.; Scagliarini, L.; et al. Nanostructured Chemoresistive Sensors for Oncological Screening: Preliminary Study with Single Sensor Approach on Human Blood Samples. Multidiscip. Digit. Publ. Inst. Proc. 2019, 14, 34. [Google Scholar] [CrossRef] [Green Version]
- Zonta, G.; Astolfi, M.; Gaiardo, A.; Gherardi, S.; Giberti, A.; Guidi, V.; Landini, N.; Malagù, C. Semiconductor Gas Sensors to Analyze Fecal Exhalation as a Method for Colorectal Cancer Screening. Multidiscip. Digit. Publ. Inst. Proc. 2019, 14, 35. [Google Scholar] [CrossRef] [Green Version]
- Reidt, U.; Helwig, A.; Müller, G.; Lenic, J.; Grosser, J.; Fetter, V.; Kornienko, A.; Kharin, S.; Novikova, N.; Hummel, T. Detection of Microorganisms with an Electronic Nose for Application under Microgravity Conditions. Gravit. Space Res. 2020, 8, 1–17. [Google Scholar] [CrossRef]
- Reidt, U.; Helwig, A.; Müller, G.; Plobner, L.; Lugmayr, V.; Kharin, S.; Smirnov, Y.; Novikova, N.; Lenic, J.; Fetter, V.; et al. Detection of Microorganisms Onboard the International Space Station Using an Electronic Nose. Gravit. Space Res. 2020, 5, 89–111. [Google Scholar] [CrossRef]
- S3 Project: FP7-NMP-2009-EU-Russia. Available online: https://cordis.europa.eu/projects (accessed on 12 June 2023).
- Müller, G.; Sberveglieri, G. Origin of Baseline Drift in Metal Oxide Gas Sensors: Effects of Bulk Equilibration. Chemosensors 2022, 10, 171. [Google Scholar] [CrossRef]
- Yamazoe, N.N.; Shimanoe, K. Fundamentals of semiconductor gas sensors. In Semiconductor Gas Sensors; Jaaniso, R., Tan, O.K., Eds.; Woodhead Publishing: Cambridge, UK, 2020; pp. 3–34. [Google Scholar] [CrossRef]
- Masuda, Y. Recent advances in SnO2 nanostructure-based gas sensors. Sens. Actuators B Chem. 2022, 364, 131876. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Basic approach to the transducer function of oxide semiconductor gas sensors. Sens. Actuators B Chem. 2011, 160, 1352–1362. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Understanding the fundamental principles of metal oxide-based gas sensors: The example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 2003, 15, R813–R839. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceramics 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Yamazoe, N.; Fuchigami, J.; Kishikawa, M.; Seiyama, N. Interactions of tin oxide surface with O2, H2O and H2. Surf. Sci. 1979, 86, 335–344. [Google Scholar] [CrossRef]
- Morrison, S.R. The Chemical Physics of Surfaces; Plenum Press: New York, NY, USA, 1977. [Google Scholar] [CrossRef]
- Ikohura, A. SnO2-based inflammable gas sensors. Electron. Ceram. 1975, 6, 9–24. [Google Scholar]
- Xu, C.; Tamaki, J.; Miura, N.; Yamazoe, N. Grain size effects on gas sensitivity of porous SnO2 based elements. Sens. Actuators B Chem. 1991, 3, 147–155. [Google Scholar] [CrossRef]
- Ansari, S.G.; Boroodjerdian, P.; Sainkar, S.R.; Karekar, R.N.; Aiyer, R.C.; Kulkarni, S.K. Grain size effects on H2 gas sensitivity of thick-film resistor using SnO2 nanoparticles. Thin Solid Film 1997, 6, 271–295. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, M. Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens. Actuators B Chem. 2002, 87, 105–114. [Google Scholar] [CrossRef]
- Rothschild, A.; Konem, Y. The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 2004, 95, 6374–6380. [Google Scholar] [CrossRef]
- Korotchenkov, G.; Han, S.-D.; Cho, B.K.; Brinzari, V. Grain size effects in sensor response of nanostructured SnO2- and In2O3- based conductometric thin film Gas sensor. Crit. Rev. Solid State Mater. Sci. 2009, 34, 1–17. Available online: https://www.tandfonline.com/doi/full/10.1080/10408430902815725. (accessed on 12 June 2023). [CrossRef]
- Koichi, S.; Masayoshi, Y.; Tetsuya, K.; Yamazoe, N.; Shimanoe, K. Effects of crystallize size and donor density on the sensor response of SnO2 nanoparticles in the state of volume depletion. J. Electrochem. Soc. 2012, 159, J136. [Google Scholar] [CrossRef]
- Jianqiao, L.; Guohua, J.; Zhaoxia, Z.; Faheema-Fairui, M.; Xuesong, L. Numerical description of grain size effects of tin oxide gas sensitive elements and evaluation of depletion layer width. Electron. Mater. Lett. 2015, 11, 457–465. [Google Scholar] [CrossRef]
- Liu, H.; Xu, S.; Li, M.; Shao, G.; Song, H.; Zhang, W.; Wei, W.; He, M.; Gao, L.; Song, H.; et al. Chemiresitive gas sensors employing solution-processed metal oxide quantum dot films. Appl. Phys. Lett. 2014, 105, 766. [Google Scholar]
- Liu, J.; Lv, J.; Shi, J.; Wu, L.; Su, N.; Fu, C.; Zhang, Q. Size effects of tin oxide quantum dot gas sensors: From partial depletion to volume depletion. J. Mater. Res. Technol. 2020, 9, 16399–16409. [Google Scholar] [CrossRef]
- Liu, J.; Lv, J.; Xiong, H.; Wang, Y.; Jin, G.; Zhai, Z.; Fu, C.; Zhang, Q. Size effect and comprehensive mathematical model for gas-sensing mechanism of SnO2 thin film gas sensors. J. Alloy. Metall. Syst. 2022, 898, 16287. [Google Scholar] [CrossRef]
- Zaretskiy, N.P.; Menshikov, L.I.; Vasiliev, A. On the origin of the sensing properties of the nano-dispersed layers of semiconducting metal oxide materials. Sens. Actuators B Chem. 2012, 170, 148–157. [Google Scholar] [CrossRef]
- Zaretskyi, N.; Menshikov, L.; Vasiliev, A. Theory of gas sensitivity of nano-structured MOX layers. Selection rules for gas sensitive materials. Procedia Eng. 2011, 25, 268. [Google Scholar] [CrossRef] [Green Version]
- Zaretski, N.P.; Menshikov, L.I.; Vasiliev, A.A. Theory of gas sensitivity of nanostructured MOX layers: Charge carrier self-exhaustion approach. Sens. Actuators B Chem. 2012, 175, 234–245. [Google Scholar] [CrossRef]
- Kröger, F.A.; Vink, H.J. Relations between the concentrations of imperfections in crystalline solids. In Solid State Physics; Seitz, F., Turnbull, D., Eds.; Academic Press: Cambridge, MA, USA, 1956; Volume 3, pp. 307–435. [Google Scholar] [CrossRef]
- Moseley, P.T.; Tofield, B.C. Solid State Gas Sensors, Adam Hilger, Bristol. 1987. Available online: https://library.wur.nl/WebQuery/titel/505482 (accessed on 12 June 2023).
- Williams, D.; Moseley, P.T.; Norris, J. Techniques and Mechanisms in Gas Sensing, The Adam Hilger Series on Sensors; Institute of Physics Publishing: Bristol, UK, 1991; ISBN 10:0750300744/13:978-0750300742. [Google Scholar]
- Henzler, M.; Göpel, W. Oberflächenphysik des Festkörpers; Springer-Verlag: Berlin/Heidelberg, Germany, 1991; ISBN 3-519-03047-0. [Google Scholar]
- Sze, S.M. Semiconductor Sensors; John Wiley & Sons: Hoboken, NJ, USA, 1994; ISBN 0-471-54609-7. [Google Scholar]
- Sze, S.M. Semiconductor Devices; Physics and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2001; ISBN 10:0-471-33372-7/13:978-0-471-33372-2. [Google Scholar]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Ahlers, S.; Müller, G.; Becker, T.; Doll, T. Factors Influencing the Gas Sensitivity of Metal Oxide Materials. In Encyclopedia of Sensors; Grimes, C.A., Dickey, E.C., Pishko, M.V., Eds.; The Pennsylvania State University: State College, PA, USA, 2005; ISBN 1-58883-056-X. [Google Scholar]
- Comini, E.; Faglia, G.; Sberveglieri, G. Solid State Gas Sensing; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Maier, K.; Helwig, A.; Müller, G.; Hille, P.; Teubert, J.; Eickhoff, M. Competitive adsorption of air constituents as observed on InGaN/GaN nano-optical probes. Sens. Actuators B Chem. 2017, 250, 91–99. [Google Scholar] [CrossRef]
- Maier, K.; Helwig, A.; Müller, G.; Helwig, A.; Müller, G.; Eickhoff, M. Luminescence Probing of Surface Adsorption Processes Using InGaN/GaN Nanowire Heterostructure Arrays. In Semiconductor Gas Sensors; Woodhead Publishing: Cambridge, UK, 2020; pp. 239–270. [Google Scholar] [CrossRef]
- Ahlers, S.; Müller, G.; Doll, T. A rate equation approach to the gas sensitivity of thin film metal oxide materials. Sens. Actuators B Chem. 2005, 107, 587–599. [Google Scholar] [CrossRef]
- Hellmich, W.; Braunmühl, C.B.V.; Müller, G.; Sberveglieri, G.; Berti, M.; Perego, C. The Kinetics of Formation of Gas-Sensitive RGTO-SnO2 Films. Thin Solid Films 1995, 263, 231–237. [Google Scholar] [CrossRef]
- Makeeva, E.A.; Rumyantseva, M.N.; Gaskov, A.M. Kinetics of Interaction of Thick Nanocrystalline SnO2 Films with Oxygen. Inorg. Mater. 2004, 40, 161–165. [Google Scholar] [CrossRef]
- Kamp, B.; Merkle, R.; Lauck, R.; Maier, J. Chemical diffusion of oxygen in tin dioxide: Effects of dopants and oxygen partial pressure. J. Solid State Chem. 2005, 178, 3027–3039. [Google Scholar] [CrossRef]
- Liu, J.; Gao, Y.; Wu, X.; Jin, G.; Zhai, Z.; Liu, H. Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics. Sensors 2017, 17, 1852. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.S.; Na, H.G.; Kim, H.W.; Kulish, V.; Wu, P. Promotion of acceptor formation in SnO2 by e-beam bombardment and impacts to sensor fabrication. Sci. Rep. 2015, 5, 10723. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, Q.; Wang, J.; Wang, R.; Shao, G.; Chen, G.; He, S.; Wang, W.; Bu, R.; Wang, H.X. High Breakdown Electric Field Diamond Schottky Barrier Diode with SnO2 Field Plate. IEEE Trans. Electron. Devices 2022, 69, 6917–6921. [Google Scholar] [CrossRef]
- Geistlinger, H. Electron theory of thin-film gas sensors. Sens. Actuators B Chem. 1993, 17, 47–60. [Google Scholar] [CrossRef]
- Geistlinger, H. Chemisorption effects on the thin-film conductivity. Surf. Sci. 1992, 277, 429–477. [Google Scholar] [CrossRef]
- Cavicchi, R.E.; Semancik, S.; Walton, R.M.; Panchapakesan, B.; DeVoe, D.L.; Aquino-Class, M.I.; Allen, J.D.; Suehle, J.S. Microhotplate gas sensor arrays. In Chemical Microsensors and Applications II; SPIE: Bellingham, WA, USA, 1999; Volume 3857, pp. 38–49. [Google Scholar] [CrossRef]
- Schütze, A.; Sauerwald, T. Dynamic operation of semiconductor sensors. In Semiconductor Gas Sensors, 2nd ed.; Jaaniso, R., Tan, O.K., Eds.; Woodhead Publishing: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Mott, N.F. Conduction in non-crystalline materials: III. Localized states in a pseudogap and near extremities of conduction and valence bands. Philos. Mag. 1969, 19, 835–852. [Google Scholar] [CrossRef]
- Hill, R.M. Variable-range hopping. Phys. Status Solidi A 1976, 34, 601–613. [Google Scholar] [CrossRef]
- Apsley, N.; Hughes, H.P. Temperature-and field-dependence of hopping conduction in disordered systems. Philos. Mag. 1974, 30, 963–972. [Google Scholar] [CrossRef]
- Rosenbaum, R. Crossover from Mott to Efros-Shklovskii variable-range-hopping conductivity in InxOy films. Phys. Rev. B 1991, 44, 3599–3603. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, C.; Wehrenberg, B.L.; Guyot-Sionnest, P. Variable Range Hopping Conduction in Semiconductor Nanocrystal Solids. Phys. Rev. Lett. 2004, 92, 216802. [Google Scholar] [CrossRef] [Green Version]
- Benton, B.T.; Greenberg, B.L.; Aydil, E.; Kortshagen, U.R.; Campbell, S.A. Variable range hopping conduction in ZnO nanocrystal thin films. Nanotechnology 2018, 29, 415202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, G.; Sberveglieri, G. Self-Adaptation of Oxygen Adsorption and Sub-Surface Junction Formation in Thin Nanometric Sheets of Metal Oxides. Chemosensors 2023, 11, 352. https://doi.org/10.3390/chemosensors11060352
Müller G, Sberveglieri G. Self-Adaptation of Oxygen Adsorption and Sub-Surface Junction Formation in Thin Nanometric Sheets of Metal Oxides. Chemosensors. 2023; 11(6):352. https://doi.org/10.3390/chemosensors11060352
Chicago/Turabian StyleMüller, Gerhard, and Giorgio Sberveglieri. 2023. "Self-Adaptation of Oxygen Adsorption and Sub-Surface Junction Formation in Thin Nanometric Sheets of Metal Oxides" Chemosensors 11, no. 6: 352. https://doi.org/10.3390/chemosensors11060352
APA StyleMüller, G., & Sberveglieri, G. (2023). Self-Adaptation of Oxygen Adsorption and Sub-Surface Junction Formation in Thin Nanometric Sheets of Metal Oxides. Chemosensors, 11(6), 352. https://doi.org/10.3390/chemosensors11060352