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Abstract: This paper describes different E-Senses systems, such as Electronic Nose, Electronic Tongue,
and Electronic Eyes, which were used to build several machine learning models and assess their per-
formance in classifying a variety of Colombian herbal tea brands such as Albahaca, Frutos Verdes, Jaibel,
Toronjil, and Toute. To do this, a set of Colombian herbal tea samples were previously acquired from
the instruments and processed through multivariate data analysis techniques (principal component
analysis and linear discriminant analysis) to feed the support vector machine, K-nearest neighbors,
decision trees, naive Bayes, and random forests algorithms. The results of the E-Senses were validated
using HS-SPME-GC-MS analysis. The best machine learning models from the different classification
methods reached a 100% success rate in classifying the samples. The proposal of this study was to
enhance the classification of Colombian herbal teas using three sensory perception systems. This was
achieved by consolidating the data obtained from the collected samples.

Keywords: herbal teas; electronic nose; electronic tongue; electronic eyes; classification; data
processing; machine learning; data fusion

1. Introduction

Currently, in the food industry, organoleptic profile (appearance, color, texture, flavor,
and taste) is based on the examination of a product through the evaluation of the attributes
perceptible by the five sense organs (sight, touch, smell, taste, and hearing) [1]. As such,
they play an important role in evaluating the food quality, developing new products, and
establishing standards to determine the acceptability of products by consumer perception.
For example, the presence of a bad taste, odor, or color changes due to a lack of efficient
control and monitoring systems in food production, is evidence of food insecurity which
can reveal a problem for both consumption and commercialization of the products [2,3].
However, the analysis based on the sense organs (sensory analysis) is a subjective method
because it depends on the perception of the consumer; for instance, one person may de-
scribe a sample as unpleasant while another may consider the selection acceptable [4,5].
This variation in food perception is based on distinctive food cues, cultural background,
habits, social environment, and emotions [2]. That is why, in order to obtain more ob-
jectivity in sensory analysis, a group of panelists must be trained to acquire a level of
sensory acuity and to provide reproducible results [6,7]. However, sensory evaluation has
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some disadvantages as it is often time-consuming, expensive, inappropriate for timely
measurements, inconsistent, and unpredictable due to various human factors. Further-
more, training sensory panelists can be complicated as protocols and training parameters
should be carefully designed based on a food matrix, and any possible variations between
samples caused by formulation, processing, packaging, and storage conditions of the food
in question should be taken into consideration [8,9].

To overcome the disadvantages of the sensory evaluation method, different analytical
techniques such as mass spectrometry (MS) coupled with liquid chromatography (LC)
or gas chromatography (GC) are also used in the food industry to evaluate food quality.
Likewise, capillary electrophoresis (CE), infrared (IR) spectroscopy, and nuclear magnetic
resonance (NMR) spectroscopy can further help in the analysis by providing precise analyt-
ical information [10–13]. However, these techniques have some drawbacks, such as high
operating costs, the need for pre-treatment of the samples, the requirement of highly trained
personnel, and the insufficiency of online monitoring. Therefore, it is necessary to develop
alternative analytical methods that provide fast and reproducible results, are portable, and
have low operating costs to partially replace traditional methods, thus achieving reliable
and non-destructive measurements of the samples [14,15]. For this reason, a new trend
has emerged to replace human sensory organs with artificial senses such as the Electronic
Nose (eNose), Electronic Tongue (eTongue), and Electronic Eyes (eEyes), which are devices
designed to the perceive smell, taste, and appearance of the samples. Electronic senses
have been used in various industries such as food, cosmetics, and pharmaceuticals, among
others. Among these, the food industry has benefitted the most, where research has focused
on quality control and monitoring of the production process to guarantee food quality, food
safety, evaluation of shelf life, and detection of adulteration, among others [1,16,17].

The eNose is inspired by the sense of smell; it is an instrument that comprises a
series of non-selective chemical sensors that interact with volatile molecules, more specif-
ically volatile organic compounds (VOCS), generating a signal that constitutes a kind of
characteristic odor fingerprint, and with an appropriate pattern recognition system, it is
capable of recognizing simple or complex odors [18,19]. On the other hand, the eTongue
is an electronic device designed to mimic the human tongue. Using non-selective electro-
chemical sensors and pattern recognition methods, the eTongue device can detect specific
chemical substances in liquid samples [20–23]. The eEyes is an electronic device composed
of an array of optical sensors whose spectrum can reveal essential material properties of
the sample in question. It is an electronic device designed to imitate the human visual
perception system and acquires information related to the color spectrum and its associated
wavelengths, which can be used to decode the appearance of a sample, thus providing an
objective evaluation of the material properties of an object [16,17,24].

Herbal tea is a traditional and popular drink consumed worldwide for its health
benefits since it is made from dried leaves, flowers, seeds, fruits, stems, and plant roots [25].
To take advantage of the sensory characteristics of herbal teas, such as aroma, flavor (mint,
fruit, savory, sage, thyme, etc.), and color (black, brown, red, green, etc.), which vary
depending on the components of each one, an artificial sensory analysis is required.

This study proposes to demonstrate the applicability of combining the information
of different E-Senses systems such as eNose, eTongue, and eEyes to classify Colombian
herbal tea brands (Albahaca, Frutos Verdes, Jaibel, Toronjil, and Toute). In the literature, studies
have been reported focused on evaluating the quality of tea, degrees of fermentation,
identification of the origin of green tea, detection of the optimal fermentation time for black
tea, and evaluation of different qualities of green tea, among others, using an eNose [26–37],
eTongue [37–43], and eEyes [44–48], as individual techniques. Therefore, experimental
tests were carried out with the electronic perception systems individually to verify the
performance in classifying herbal teas. Besides, to develop the data analysis through
the information acquired with the E-senses systems, different machine learning methods
were implemented to determine the performance of each one in classifying the herbal tea
categories. Machine learning technology or automatic learning is the process in which
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artificial intelligence (AI) learns using algorithms that convert a dataset into a training
model to analyze several patterns and classify them. During this study, it was possible
to extract information from large volumes of data. For instance, a large amount of data
acquired from an eNose or eTongue were pre-processed previously with pattern recognition
methods (PCA or LDA) for reducing the dataset, and then supervised machine learning
models were used to get the accuracy of each system.

Finally, data fusion was conducted by combining their information and verifying-
performance. Figure 1 illustrates a scheme of traditional methods against the artificial
perception methods, where the latter can support and contribute to the sensory evaluation
of food.
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2. Materials and Methods

Figure 2 illustrates the methodological scheme used to conduct the different tests to
classify the herbal tea samples.
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To conduct the experiments, three different stages were developed to determine the
E-senses’ performance: (1) conditioning of herbal teas samples, (2) E-senses’ calibration and
implementation, and (3) data analysis using pattern recognition methods for the data fusion,
machine learning algorithms for data classification, and GC-MS for COVs identification.

2.1. eNose1

Figure 3 shows the general scheme of the electronic nose system manufactured in the
laboratory of the GISM group at the University of Pamplona, Colombia. This multi-sensory
device comprises a sampling chamber, a measurement chamber containing an array of gas
sensors, and a computer for the acquisition and processing of the signals acquired from
the sensors.
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Table 1 illustrates the gas sensors array that makes up the measurement chamber,
TGS type from the manufacturer Figaro USA. Inc, which were previously selected for
applications in food quality control, are non-selective and can be used to classify different
categories of herbal teas.

Table 1. Gas sensors of eNose1.

Sensor Application Target

TGS 800 Air quality control Contaminated air:
Tobacco, gasoline, etc. Contaminated air: Tobacco, gasoline, etc.

TGS 822 Alcohol vapor detection Alcohol, Toluene, Xilene, etc.
TGS 825 Gas Detection Hydrogen sulfide
TGS 826 Toxic Gas Detection Ammonia
TGS 880 Kitchen control Volatile gas, Water vapor in food
TGS 882 Control Gas Volatile gas
TGS 813 Methane, Propane, Iso-butane Hydrocarbons
TGS 821 Combustible Gas Detection Hydrogen
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Table 1. Cont.

Sensor Application Target

TGS 831, TGS 830 Halocarbon Gas Detection R-22
TGS 842 Domestic gas alarms Methane natural gas
TGS 832 Chlorofluorocarbons R-134a

As can be seen, the type of gas, application, and reference are described. The acquisi-
tion and control software was developed in Matlab version 2020b and provided a graphical
user interface to perform the synchronization functions through a data acquisition (DAQ)
card and a power control board to activate the electronic valves and pump.

The data acquisition was made through a 16-Bit and 250 kS/s USB-6210 reference
multifunction card from National Instruments, used in “single-ended” mode for reading
and recording data in real time. The card was implemented to condition a total of 16 analog
inputs with a sampling rate of approximately 1 sample/second.

Before carrying out the tests with the aromatic herbs, the measurement chamber was
initially purged through the activation of a 12 VDC air pump and the control of solenoid
valve 3 for a period of 20 min, followed by a flow of ambient air applied to the sensor
chamber. To carry out the cleaning process, the behavior of each sensor was monitored
through the baseline, verifying its stability and the value of the resistances (Rs) by reading
the voltage values.

Once the operation of each sensor was confirmed, the process of measuring the herbal
tea samples began through the measurement protocol, where the samples were extracted
from the product package of the herbal tea category and placed into the vessels. The time
used for each measurement was 12 min, of which 7 min were for the recovery or purging
of the sensors and 5 min for the data acquisition.

This module is based on the generation and control of airflow that directs the volatiles
from the concentration (sampling) chamber to the measurement chamber. In addition, the
sampling system is made up of three solenoid valves and an air pump, where all three
solenoid valves are either activated or deactivated for the measurement of the samples and
cleaning of the sensors.

The concentration or sampling chamber is an airtight acrylic container that houses
solid and liquid objects such as fruits, tubers, wines, alcohols, etc. The chamber has an air
inlet and outlet that allows the volatiles to be transferred to the measurement chamber at
the appropriate time. If these inlets are closed by the solenoid valves, the interior of the
chamber is isolated. In this way, after some time, a concentration of volatiles will have been
created that will later be dragged by the airflow to the measurement chamber where the
sensors are located. In addition, this chamber has a lid through which we can introduce
objects. It consists of butterfly-type threads that are screwed around its perimeter to be able
to close it hermetically. The top surface has a septum to extract substances with a syringe
and inject them directly into the sensor chamber. The concentration chamber, developed in
transparent acrylic, has the dimensions 17.7 cm wide × 26.3 cm long × 15.5 cm high, with a
total volume of 7215.4 cm3. The measuring chamber is 8.7 cm long × 8.7 cm wide × 5.3 cm
high for a total volume of 401.157 cm3 and is developed from transparent acrylic material.
As in the concentration chamber, the measurement chamber has an air inlet and outlet
through which a constant air flow circulates, which in the measurement phase transports
the volatiles coming from the concentration chamber. A fiber base plate was conditioned
through the sensors, which were electrically powered with their respective connectors and
indicators. The measurement procedure in the module consists of three main stages: (1) the
concentration phase, (2) the measurement phase, and (3) the rest phase; in each stage, the
airflow through the measurement chamber remains constant. Figure 4 shows a diagram of
the sampling module in which the directions followed by the airflow in each stage can be
clearly observed.
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Figure 4. Measurement diagrams: (A) measurement chamber cleaning phase and (B) measurement
phase with the E-nose system.

When the eNose1 system is in the concentration phase (A), the pump is activated to
take the ambient air from the laboratory since the solenoid valves V1 and V2 are OFF, while
valve V3 is ON, and the volatiles circulates from the measurement chamber to the outside.
The airflow keeps flowing from input to output (outside) without circulating through the
concentration chamber, and the volatiles that are accumulated inside the measurement
chamber are being purged. This is observed in Figure 4A following the red arrows. This
phase lasts about 10 min; meanwhile, the sampling chamber uses this time to collect a high
concentration of volatiles, generating a strong signal to be sent to the sensors. During the
measurement phase (B), the air pump draws the volatiles through a closed circuit from
the concentration chamber to the measurement chamber. During this stage, the outside air
circulates through the sampling chamber with valves V1 and V2 in the ON position, while
V3 is in the OFF position, and the volatiles are transported to the measurement chamber.
The compounds are then expelled to the outside, represented by blue arrows. For this
phase, which lasts 7 min, the sample is acquired since this time interval allows the sensors
to reach a stable value (saturation). When the measurement is finished, the system changes
to the recovery time phase for 5 min. In this stage, the measurement circuit is purged, and
the response of the sensors is restored. At this stage, the air is taken from the laboratory,
where it circulates through the measurement chamber and finally drags the VOCs that may
have been left out of the pneumatic circuit.

Supplementary Figure S1 shows the overlapping signals acquired with the eNose1 to
classify the herbal tea categories.

2.2. eNose2

The eNose2 is a low-cost system composes of an array of eight MQ series gas sensors
(MQ135, MQ2, MQ3, MQ4, MQ5, MQ9, MQ7, and MQ8), along with an Arduino Nano
microcontroller. In a similar way to eNose1, these gas sensors selected to developed the
eNose2 are widely available, and they can detect a broad range of gases as emissions of
herbal tea categories. The Arduino Nano has eight analog-to-digital converters (ADCs),
which is the main reason for using an array of eight sensors. A scheme and picture of the
experimental eNose2 system are shown in Figures 5 and 6, where there are three main
compartments in the system: a 135 mL glass sampling chamber (70 mm diameter), for
placing the samples; a 700 mL PP5 (food-grade polypropylene) measuring chamber holding
two printed circuit boards (PCBs), the bottom one containing two rows of four sensors
each (see Figure 5), while the top one includes the mainboard with an Arduino Nano
microcontroller; and an air fan to generate 0.4 L/min airflow that circulates the sample
gases from the sampling chamber to the measuring chamber (see Figure 6), thus forming a
closed loop.
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It should be clarified that there was not contamination risk in the electronic com-
ponents as the mainboard was coupled outside with a gasket placed on the lid of the
measuring chamber. Consequently, only the sensor array was exposed to the gas emitted
by the sample inside the measuring chamber (see Figure 5). The three eNose2 compart-
ments are connected via a 6 mm outer diameter (4 mm inner diameter) polyvinyl chloride
(PVC) pipe.

The MQ gas sensors are made up of aluminum oxide (Al2O3)-based ceramic and are
coated with tin dioxide (SnO2), which acts as the gas sensing layer forming a ceramic tube
connected to six legs. A nickel-chromium (Ni-Cr) alloy inside the ceramic tube forms the
heater coil, which is connected to two of the legs. The other four legs are made of platinum
wires, thus forming the sensing layer. The electrical resistance changes when the sensors
are exposed to gaseous emissions from a sample. When gas emissions interact with the
sensor, the heat ionizes the gas. Such ionization allows the SnO2 layer to absorb the gas,
thus causing a change in the sensor resistance. The four platinum legs sense this resistance
value, which is then recorded by the microcontroller. The resistance changes according to
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the concentration of the gas that is exposed to the sensor, the higher the gas concentration,
the lower the resistance, and vice-versa. Furthermore, the sensitivity to different gases
depends on the heating element temperature in the sensor.

A difference between the eNose1 and eNose2 systems is that the latter is capable of
modulating the sensor heater signal. The sensor responds to a current being passed through
the lattice, and the voltage across it is read. However, when the heater power supply is a
direct current (DC) voltage source, the MQ gas sensor response is known to be susceptible
to “drift” over a time period ranging between several minutes to days. In Reference [49],
it has been observed that comparisons of absolute sensor readings are of little value over
such time scales. Furthermore, the baseline recovery times can be prolonged upon removal
of the sample, while recovery times can be reduced at higher temperatures [50]. Thermal
modulation has been demonstrated to improve selectivity [51–54]. Thus, in this study, as
well as in References [55,56], we applied a sinusoidal voltage to the MQ sensor heaters of
the eNose2 system.

The MQ gas sensors inside the eNose2 device were burned-in at least 48 h prior to
the start of the experiments, and the supplied heater voltages were sinusoidally varying
ranging from 1.6 to 5 V, cycling over a 128-s period. The Arduino Nano generated the
sinusoid in 256 discrete time steps, which was then fed to a PCF8591 8 bits digital-to-analog
converter (DAC). The resulting signal was then fed to an LM272 operational amplifier (Op-
Amp) configured in unity gain mode for each sensor heater. Since the nominal impedance
of each sensor heater is 32 Ω, the Op-Amps were required to provide up to 160 mA per
sensor. The full operation of the device is thoroughly described in Reference [57].

After each sample was placed in the sampling chamber of the eNose2 device, we
let it run for 5 min (2.34375 sinusoidal cycles) with 5 min of fresh air allowed to flush
through the system between samples. This led to 600 samples per channel. We then
retained two full cycles for further investigation. This was done to get rid of the transients.
Each of the five tea samples was exposed five times in different trials so that 10 sinusoidal
cycles of data were retained for every tea sample, as well as when air was being flushed
through the system between cycles. After applying the sinusoidal sensor heater signal
to the eNose2 system, the gas sensor response signals appeared as distorted waveforms
from the fundamental sinusoidal waveform. When exposed to different Colombian herbal
tea aromas, the sensors presented different cyclical deformed waveforms, and to quantify
this deformation, the results were subjected to a discrete Fourier transform (DFT) analysis.
Figure S2 shows the overlapping signals acquired with the eNose2 system to classify the
herbal tea samples.

After recording the raw herbal tea sensor data, the retained sinusoidal cycles were
subjected to 256-element DFT analysis. The main purpose of a DFT analysis is to obtain a DC
component and pairs of sine and cosine amplitudes for a number of increasing harmonic
frequency components. The DC offset was ignored, but the resulting sine and cosine
coefficient amplitudes and frequencies were kept for further analysis. In Reference [56], this
technique proved to be effective in reducing sensor drift, and thus can improve recovery
times as well as sensitivity and selectivity [57].

2.3. eEyes

To develop an Electronic Eye system, we used three near-infrared (NIR) optical sensors,
developed by Spectral Engines and coupled with different machine learning methods,
which have been called eEyes. In the electromagnetic spectrum (see Figure 7), NIR is a
form of light in the wavelength range of 750–2500 nm, whereas the visible (VIS) region of
light is in the wavelength range of 400–700 nm. The eEyes system used here is composed
of the three Spectral Engines NIRONE sensors, S1.7, S2.0, and S2.5, covering a range of
wavelengths from 1359 nm to 2450 nm. Each sensor comes with its optics and electronics
built into an aluminum enclosure with dimensions W = 25 mm, L = 25 mm, and H = 25 mm
(see Figure 8 for details). Each sensor consumes 1.1 W of peak power and less than 300 mW
of nominal power, and has two tungsten vacuum lamps as its illumination source. The
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optical interface is a micro reflection optics or SMA connector. The weight varies between
31 g with the micro reflection optics and 38 g with the SMA connector. All three sensors
have a signal-to-noise ratio (SNR) equivalent to 31.8–41.8 dB. Specific information on the
sensors is shown in Table 2 below.
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Table 2. Spectral Engines sensor wavelength and SNR differences.

Sensor
Spectral

Wavelength
Range

Spectral
Wavelength
Resolution

Signal-to
Noise Ratio

(SNR)

Measurement
Mode

S1.7 1350–1750 nm 13–17 nm 1500:1 Reflectance

S2.0 1550–1950 nm 15–21 nm 1500:1 Reflectance

S2.5 2000–2450 nm 18–28 nm 1500:1 Reflectance

The NIRONE sensors have an InGaAs photodiode detector which provides great
selectivity and sensitivity. Before the signal gets to the detector, light passes through the
aperture; it is then band-pass filtered and sent to a microelectromechanical system (MEMS)
Fabry–Perot interferometer, which is a fully programmable optical filter. The sensor can be
driven across the whole wavelength range, or it can operate only at selected wavelengths
(See Figure 7).

The wavelength switching time is of the order of 1 ms and has a step size ranging from
a minimum of 0.1 nm and up to 512 total. The supply voltage is 5 V and 3.3 V for UART
and I2C. The optical interface is easy to modify for different reflectance, transflectance, and
transmission measurements.

Figure 8 shows the three NIRONE sensors—S1.7, S2.0, and S2.5—and their associated optics.
Figure 9 shows how the sensors were used to capture the herbal tea samples. The

contents of a tea bag were placed in a plastic container similar to a petri dish, then a
template with an orifice in the middle was placed above the sample, which would then
hold the sensor in place at a fixed distance from the sample. As was mentioned above,
a solid substance analysis based on the use of an array of spectrometer sensors called
eEye, was used here to classify herbal tea samples in a qualitative and quantitative way
from a machine learning and pattern recognition perspective. The NIRONE sensors are
characterized by having high selectivity and sensitivity. The signals from the spectrometer
sensors are transformed into a data matrix, thus requiring a multivariate data analysis for
proper identification and classification.
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Figure S3 illustrates the signals of the different categories of herbal teas acquired by
the eEyes device. Significant differences were observed among all tea samples.
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Twenty-five signals total (five for each brand of herbal tea) were obtained with the
eEyes (See Figure 8). This was achieved for each sensor (S1.7, S2.0, and S2.5), which yielded
75 signals altogether. These were then used in the machine learning data analysis. We
would like to point out that the use of an array of spectrometers as an electronic eye is
relatively new and has been used in applications ranging from textiles, food industry,
pharmaceuticals, and law enforcement, but more specifically, References [59–65] use an
array of NIRONE sensors in applications ranging from sugarcane analysis, drug detection,
and law enforcement, analysis of liver disease, to assess leaf water content, to analyze
protein and fat in milk, and in the detection and quantification of peanut contamination
in garlic powder. On the other hand, Reference [65] proposes a structural optimization
transmission framework for classification of hyperspectral images and LiDAR data, while
Reference [66] proposes a new method for the classification of cross-scene hyperspectral
image data.

2.4. eTongue

The electronic tongue system, called eTongue, is an EmStat 4S potentiostat by PalmSens
and was used in voltammetric mode with different machine learning methods to classify
herbal teas. As shown in Figure 10, the device uses a commercial disposable electrode
that integrates the working electrode (WE), reference electrode (RE), and counter electrode
(CE) into one strip. In addition, the device comes with its own software, PSTrace, that
can perform a wide range of experiments from linear sweep voltammetry to square wave
voltammetry, electrochemical impedance spectroscopy, etc.
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Figure 11 shows a picture of the samples placed in glass jars with water prior to
conducting the experiments with the eTongue device. It should be noted that the liquid
samples were prepared as infusion without increasing the temperature, and five experi-
ments were conducted on each of the five herbal tea varieties. The average among all five
experiments was taken to retain a representative sample. This was repeated five times for
each brand of tea. Thus, 25 samples (5 of each tea brand) were used. In these experiments,
two different screen-printed electrodes (i.e., the AC1-101 with a gold working electrode
and a silver/silver chloride reference electrode and the AC1-102 with a platinum working
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electrode and a silver/silver chloride reference electrode), were applied to detect different
herbal teas categories through electrochemical analysis methods (cyclic voltammetry). Thus
a total of 50 samples were collected (i.e., 25 samples × 2 electrodes). These 50 samples were
then subjected to machine learning data analysis. We should point out that in a separate
study [67], sparse modeling of electronic tongue signals was used to predict the quality
of tea.
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Figure S4 shows the differences in relation to the amplitude of the current signals in
each of the voltammograms acquired with the AC1-101 electrode.

The parameters used in the cyclic voltammetry experiments are described in Table 3.
Here t is the time for equilibrium for which the E begin, or E DC is applied, where E begin
is the potential applied at the beginning of measurement, E Vertex 1 and E Vertex 2 are
the potentials at which the scan directions are reversed, E step is the step potential, Scan
rate is the applied scan rate (the applicable range depends on the value of E step), and
Number of scans is the number of scans to be measured. The selected current range for the
experiments was from 10 nA to 1 mA. The expected duration of each experiment was 8 s,
and 400 data points were recorded. Furthermore, the PS Trace software has the capability to
do analyses based on voltammetric, pulse, amperometric, potentiometric, coulometric, and
other techniques like impedance spectroscopy, galvanostatic impedance spectroscopy, and
mixed-mode analysis. In addition, the software has an editor and a plot area containing
everything post-measurement related, including measurement results and analytical tools.

Table 3. Cyclic voltammetry parameters used in eTongue experiments.

Cyclic Voltammetry Settings

t equilibrium 0 s

E begin −0.5 V

E Vertex 1 −1.0 V

E Vertex 2 1.0 V

E step 0.01 V

Scan rate 1.0 V/s

Number of scans 2

2.5. Data Processing Method

In this section, we discuss the type of machine learning algorithms that were used in
this study for the purpose of classification of Colombian herbal teas. The main structure of
a machine learning-based predictive model is to first build the machine learning model
from trained historical data and then to use the trained model to predict the outcomes of
new data [68].

Classification is a supervised learning method where the class labels in a given data
set are to be predicted [69]. Mathematically speaking, it maps a function (f) from the input
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space (X) to the output space (Y) as categories. In this paper, we are interested in predicting
the classes in a given data set using structured data collected from E-senses instruments.
In the following, we summarize the most common supervised machine learning-based
classification algorithms.

2.5.1. K-Nearest Neighbors (kNN)

kNN is called a “lazy learning” algorithm because it is an “instance-based learning”
approach. The focus of kNN is not to build a general internal model but to use the n-
dimensional training data set to classify new data points on the basis of a similarity measure
such as the Euclidean distance [70]. The classification is based on a simple majority vote
from among the k-nearest neighbors of each data point. kNN is quite robust to noisy data,
and its accuracy depends highly on the overall quality of the data. A known issue with
kNN is finding the optimal number of neighbors to be used. A plot of accuracy (y-axis)
versus the number of neighbors (x-axis) is a known way of finding the optimal number of
neighbors [71]. kNN is commonly used in classification as well as in regression problems.

2.5.2. Support Vector Machine (SVM)

Another technique that has been quite popular for classification, regression, and other
tasks, is the support vector machine [72]. In a higher or infinite-dimensional space, an SVM
classifier constructs hyper-planes having the greatest separation distance from the nearest
training data points of any class. It usually achieves a strong separation, since the higher
the margin, the lower the classifier’s error bounds. It is quite effective in high-dimensional
spaces, and its behavior depends highly on the different mathematical functions called
the kernel functions. Some popular kernel functions used in SVM classifiers are the radial
basis function (RBF), sigmoid, linear, and polynomial [73]. SVM, unfortunately, does not
perform well under very noisy data and when the target classes significantly overlap.

2.5.3. Decision Trees (DT)

Decision tree is a well-known non-parametric supervised machine learning method
and is used for both classification and regression problems. The classification and regression
trees (CART) [69] are a well-known technique used in DT algorithms. DT classifies the
instances by sorting down the tree, starting from the root down to a leaf node. Each node
has a defined attribute; thus, instances are classified by checking the attribute of a node,
starting at the root node and moving down the tree branch, which corresponds to the
attribute value. The most popular criteria for splitting the tree are the “gini” index for the
Gini impurity and “entropy” for the information gain.

2.5.4. Naïve Bayes (NB)

Naïve Bayes is a result of applying Bayes’ rule under the assumption of independence
between pairs of features [72]. It works well in both binary and multi-class classification
problems. The NB classifier tends to be robust, even when used to classify noisy training
data. Other features of NB are that it is simple and easy to implement. It can handle
both discrete and continuous data. It is easily scalable to the number of data points and
predictors. It can be used to make real-time predictions, thus often leading to a robust
prediction model [73]. One major key benefit of NB, compared to other, more sophisticated
approaches, is that it is quick and it only needs a small amount of training data to optimally
estimate the parameters. However, failure to guarantee the strong feature independence
assumption may degrade its performance.

2.5.5. Random Forest (RF)

Random forest is a well-known ensemble classifier used in machine learning and data
science. The RF algorithm uses a set of “parallel ensembles”, thus fitting several decision
tree classifiers in parallel on different sub-sampled data sets, then uses either majority
voting or averages in predicting the outcome or final result. An advantage of RF is that
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it minimizes the over-fitting problem, therefore increasing the prediction accuracy and
control [74]. It has been observed that using multiple decision trees in an RF learning model
is favorably more accurate than a single decision tree-based model [68]. Other variations to
RF include the use of bootstrap aggregation (bagging) and random feature selection. It can
be used in both classification and regression problems.

2.5.6. Linear Discriminant Analysis (LDA)

LDA is a linear classifier based on a decision boundary created by fitting conditional
class densities to the data and then applying Bayes’ rule [73]. It has been known that LDA
is a generalized Fisher’s linear discriminant, due to the fact that it projects the given dataset
onto a lower-dimensional space. As such, it reduces the dimensionality and minimizes
the complexity of the model. A standard assumption in the use of LDA is that each class
follows a Gaussian density and that all classes have the same covariance matrix. LDA
can be thought to be related to the analysis of variance (ANOVA) and regression analysis,
which seek to express a dependent variable as a linear combination of other features
or observations.

2.5.7. PCA (Principal Component Analysis)

The principal component analysis technique is normally applied to study the relation-
ships that occur between a set of correlated variables (that measure common information)
where a set of original variables is transformed into another set of new uncorrelated
variables, which are called principal components (PCs) [75]. These variables are linear
combinations and are built given an order of importance, taking into account the captured
variance. Therefore, it can be a supervised and unsupervised pattern recognition technique,
where the main objective is to reduce the dimensionality of a set of measurements from a
given number of variables. This is possible by projecting the input data onto the directions
of maximum variance using an orthogonal projection of its principal components onto a
dimensional plot. In this study, PCA was mainly used to discriminate the measurements
and obtain the “scores” as an input matrix applied to the machine learning or classification
methods [76].

2.5.8. Machine Learning Metrics

In order to be able to discriminate among the different machine learning models, a
set of metrics are needed to quantify each models performance. In this section, we give
a summary of some of the more common metrics used in machine learning, as described
in Reference [77]. These are given for multi-class classification problems. All metrics are
scalar measures, irrespective of their subscripts.

Given a data set, let n denote the number of samples and G be the number of classes
as shown in Table 4. Furthermore, let ng be the number of samples belonging to the g-th
class and n’

g be the number of samples predicted to be in the g-th class. Let C be the
G× G confusion matrix, where cgk denotes the number of samples belonging to class g and
predicted to be in class k. Similarly, let cgg be the diagonal elements in C, which represent
the number of samples correctly classified. The off-diagonal elements of C indicate the
samples that are incorrectly classified as belonging to class g [68]. Note that, in general,
cgk 6= ckg. Then the total number of samples, n, is given from the sum of all the elements in
the confusion matrix; that is,

n = ∑G
g=1 ∑G

k=1 cgk (1)

Moreover, the number of samples belonging to the g-th class (ng) corresponds to the
sum of the elements of the g-th row

ng = ∑G
k=1 cgk, for g = 1, 2, · · · , G (2)
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Likewise, the number of samples predicted to be in the g-th class (n’
g) corresponds to

the sum of the elements of the g-th column

n’
g = ∑G

k=1 ckg, for g = 1, 2, · · · , G (3)

The sensitivity of the g-th class
(
Sng

)
is a measure of the ability of a classifier to

correctly classify the members of its class. It is calculated as:

Sng =
cgg

ng
, for g = 1, 2, · · · , G (4)

Likewise, the precision of the g-th class
(
Sng

)
is a measure of the ability of a classifier

to avoid a wrong prediction of that class, and is defined as

Prg =
cgg

n’
g

, for g = 1, 2, · · · , G (5)

Finally, the specificity of the g-th class
(
Sng

)
is a measure of the ability of a classifier

to reject samples from other classes, and is calculated as

Spg =
∑G

k=1,k 6=g

(
nk − cgk

)
n− ng

, for g = 1, 2, · · · , G (6)

Accuracy is the classifier’s overall ability to predict a given class, and is calculated as

ACC =
∑G

g=1 cgg

n
(7)

The error rate is the classifier’s overall ability to misclassify a given class, and is
calculated as

ERR = 1−ACC (8)

The following metrics are average measures: PRE = precision, SEN = sensitivity, and
SPE = specificity; they are calculated from:

PRE =
∑G

g=1 Prg

G
(9)

SEN =
∑G

g=1 Sng

G
(10)

SPE =
∑G

g=1 Spg

G
(11)

Finally, the F1 statistic uses the average measures of sensitivity and precision to
calculate the F-score statistic from

F1 =
2(SEN× PRE)
(SEN + PRE)

(12)

In this work, we have used the metrics {ACC, ERR, PRE, SEN, SPE, F1} as measures of
fidelity toward judging the performances of the different models. Note that all metrics are
scalars in the range [0, 1]. Furthermore, the F1 score is calculated as the harmonic mean of
the precision and sensitivity scores.
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Table 4. Confusion matrix for a data set with G classes.

C =

Predicted Class
1 2 . . . G

Experimental
Class

1 c11 c12 . . . c1G n1

2 c21 c22 . . . c2G n2

...
...

...
...

...
...

G cG1 cG2 . . . cGG nG

n′1 n′2 · · · n′G n

2.6. Measurements

A total of 100 measurements were acquired, where 25 measurements were processed
with each sensory system. For this purpose, groups of 5 measures of each of the aromatic
herbs Albahaca, Frutos verdes, Jaibel, Torongil and Toute were formed. In the case of the
eTongue, the samples were prepared in glass jars in equal amounts and added portions of
drinking water. As mentioned above, the tests with the eNoses and the eEyes were carried
out with solid samples which were prepared in small vessels, as found in the original
packaged product.

Table 5 shows all five brands of Colombian teas used in this study, along with the main
ingredients. All tea samples were evaluated using a headspace solid-phase microextraction
coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS) analysis, which
will be discussed in a later section.

Table 5. All five brands of Colombian herbal teas and their main ingredients.

Name Herbal Teas Ingredients Brand

Toronjil
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Table 5. Cont.
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unknown Hindú

Five samples of each of the Colombian herbal teas were placed in vessels as was
mentioned (see Figure 12). Then, five experiments were run on each of the five different
herbal tea samples. We then took an average of the five experiments and kept the average
signal as a representative measure of each sample.
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3. Results

The results obtained by each of the sensory methods are described below.

3.1. eNose1

As mentioned above, 25 samples of the different types of aromatic herbs were analyzed
with the Electronic Nose (eNose1) of the University of Pamplona, where different pre-
processing and data-processing methods were applied to the data set.

Before applying the machine learning algorithms, we plotted the principal component
scores, and the results are shown in Figure 13. The figure illustrates a clear dispersion
of the measurements of Frutos Verdes and Toronjil; likewise, an overlap of the Albahaca
samples with Jaibel is observed. The measurements were previously normalized using
mean-centering.
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Supplementary Figure S5 illustrates the LDA method response used to classify the
herbal teas through the eNose1 system.

3.2. eNose2

Figure 14 shows a PCA score plot for the eNose2 data using the mean-centering
normalization method. Notice how there are five clusters as well, corresponding to each
herbal tea, but there are slight overlaps between the Frutos Verdes, and Jaibel samples.
Likewise, there were overlaps among the Albahaca and Toute samples.
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Figure S6 shows the LDA method response used to classify the herbal teas through
the eNose2 system.

3.3. eTongue

Figure 15 shows the PCA plot for the eTongue system, thus showing five clear clusters
as well. The correct discrimination was obtained from the electrodes AC1_101_R2 and
AC1_102_R2 responses which were averaged previously.
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Figure S7 shows the LDA method response used to classify the herbal teas through
the eTongue system.

3.4. eEyes

Finally, Figure 16 illustrates the PCA score plot for the eEyes instrument. Once again,
the plot shows five clearly marked clusters. In this case, three different sensors, such as
S1.7, S2.0, and S2.5, were used to collect the data, and averages of four measurements were
taken in order to acquire the most possible relevant information about the samples.
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The PCA score plots for all instruments except eNose2 showed five independent
clusters clearly discriminated. Thus, the machine learning algorithms should not have any
difficulty in classifying the herbal teas in question.

Figure S8 illustrates the LDA plot used to classify the herbal teas through the eEyes.

3.5. Machine Learning Results

After applying the machine learning algorithms to the Colombian herbal tea data,
the results are shown in Tables 6–8. The accuracy parameter (ACC) was 100% for all four
instruments; therefore, it is judged to be a good indicator of the quality of the data. kNN
and SVM were tied as far as performance is concerned due to an ACC of 92% for eNose2
and 100% for the rest. The same was observed with NB and LDA, except that the ACC
parameter for eNose2 was 76% and 72%, respectively, and 100% for the rest. The only
algorithm that performed poorly was DT, with ACC in the range [60%, 68%].

Table 6. ACC results of different machine learning algorithms applied to the Colombian herbal tea
data.

Machine Learning Algorithm
Accuracy (ACC) (%)

eNose1 eNose2 eTongue eEyesS

kNN 100 92 100 100

Naïve Bayes (NB) 100 76 100 96

Decision Tree 68 60 60 60

Linear Discriminant Analysis 100 72 100 100

Support Vector Machine 100 92 100 100

Random Forest 100 100 100 100
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Table 7. Performance metric results after applying the different machine learning algorithms to the
Colombian herbal tea data.

Device Metric KNN NB DT LDA SVM RF

eNose1

ACC 1 1 0.6800 1 1 1

ERR 0 0 0.3200 0 0 0

PRE 1 1 0.6795 1 1 1

SEN 1 1 0.6800 1 1 1

SPE 1 1 0.9200 1 1 1

F1 1 1 0.6629 1 1 1

eNose2

ACC 0.9200 0.7600 0.5600 0.7200 0.9200 1

ERR 0.0800 0.2400 0.4400 0.2800 0.0800 0

PRE 0.9429 0.8083 0.6057 0.7583 0.9429 1

SEN 0.9200 0.7600 0.5600 0.7200 0.9200 1

SPE 0.9800 0.9400 0.8900 0.9300 0.9800 1

F1 0.9222 0.7604 0.5680 0.7160 0.9222 1

eTongue

ACC 1 1 0.6000 1 1 1

ERR 0 0 0.4000 0 0 0

PRE 1 1 0.6457 1 1 1

SEN 1 1 0.6000 1 1 1

SPE 1 1 0.9000 1 1 1

F1 1 1 0.6100 1 1 1

eEyesS

ACC 1 0.9600 0.6000 1 1 1

ERR 0 0.0400 0.4000 0 0 0

PRE 1 0.9667 0.6457 1 1 1

SEN 1 0.9600 0.6000 1 1 1

SPE 1 0.9900 0.9000 1 1 1

F1 1 0.9596 0.6100 1 1 1

Table 8. Results obtained using data fusion with different machine learning algorithms to the
Colombian herbal teas data.

No Data Processing Method

Electronic Senses (Data Fusion, 80 Training, 20 Validation)

eTongue AND
eEyes %

eTongue, eEyes
AND eNose1 %

eTongue, eEyes
AND eNose2 %

eTongue, eEyes,
eNose1 AND

eNose2 %

1 kNN 100 100 100 100

2 SVM 100 100 100 100

3 Decision Trees 100 60 60 60

4 Linear Discriminant 100 100 100 100

5 Naive Bayes 100 100 100 100

6 Random Forest 100 100 100 100

Table 7 shows the performance metrics after applying the machine learning algorithms
to the Colombian herbal tea data. One can observe that DT performed poorly in all of
them, as was observed in Table 6. Likewise, as was expected, kNN, NB, LDA, SVM, and RF
performed excellently for eNose1 and eTongue, whereas for eNose2, only RF performed
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perfectly, while kNN and SVM obtained an excellent performance. The eEyes had a perfect
performance under kNN, LDA, SVM, and RF, and an outstanding performance for NB.
This confirms that at least one algorithm performed flawlessly for all the systems. That
algorithm was RF.

3.6. Data Fusion

In order to evaluate the response of the sensory devices, data fusion was carried
out from the information extracted from each one of the sensing devices. Therefore, the
measurements acquired by the devices were used, which were previously normalized
through mean-centering, and then principal component analysis was used to reduce the
dimensionality of the data. Afterwards, all “scores” from each device were merged, where
they were then applied as input to the machine learning algorithms. As shown in Table 8,
different supervised machine learning methods were applied using a random sampling,
which was employed to split the data into training and validation sets in an 80–20%
ratio, respectively, which yielded good performance in the classification of the samples
by merging the data acquired by the devices. It should be clarified that the random split
method can be used with class-balanced datasets, as there is an equal number of samples
in every dataset category.

It is observed that the best response was obtained with the data fusion of the electronic
tongue and the electronic eye, using which all of the cases obtained a 100% success rate in
the classification of the data. Likewise, with the combination of the data from the rest of the
devices, good results were achieved, confirming that in most of the data combinations, it is
possible to obtain excellent percentages of success in the classification of the samples. In ad-
dition, the low contribution of the decision trees method in the classification of the samples
is confirmed. Figures S9–S16 illustrate the PCA and LDA responses used to discriminate
and classify the herbal teas through the four devices using the data fusion method. It
should be noted that this information was used to feed each machine learning algorithm
where in most cases, the results yielded a 100 % success rate in the data classification.

3.7. Analysis of Volatile Organic Compounds in Colombian Teas Using HS-SPME Procedure
and GC-MS

A total of 3.0 g of the commercial teas were transferred to a 20 mL headspace vial
by Restek Corporation (Bellefonte, PA, USA). The vials were sealed using screw thread
caps (18 mm) with microcenter TTFE/silicone headspace septa by Restek Corporation
(Bellefonte, PA, USA). After the same duration of solid phase microextraction (SPME)
analysis, each vial was incubated at 60 ◦C for 5 min, then an SPME fiber coated with 65 µm
divinylbenzene/polydimethylsiloxane (DVB/PDMS) by Restek Corporation was exposed
to the headspace of the sample for 20 min at 60 ◦C.

The volatile organic compounds (VOCs) of different Colombian teas on the coating
fiber were analyzed using gas chromatography coupled to mass spectrometry (GC-MS; GC
7890B, and MS 5977A; Agilent Technologies, Waldbronn, Germany). GC-MS was performed
using the following conditions: Desorption was conducted in the injection port at 250 ◦C for
10 min in splitless mode. An Agilent J&W HP-5MS Ultra Inert column with the dimensions
30 m × 250 µm × 0.25 µm, nonpolar column, (5%-phenyl)-methylpolysiloxane was used to
separate and identifycompounds.

The carrier gas was 99.999 helium at a column flow of 1.0 mL/min. The initial GC
oven temperature program was set to 50 ◦C, held for 5 min, and ramped at 3 ◦C/min to
210 ◦C, held for 3 min, and then programmed to 230 ◦C at 15 ◦C/min. The acquisition
mode was operated full scan (from 35–550 m/z) and the solvent delay time was 3.0 min.
The total run time was 65 min.

Identification of Volatile Compounds

The aroma compounds were identified using the National Institute of Standards and
Technology (NIST 14). The data acquired by GC-MS was deconvoluted using Agilent
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Masshunter Workstation Software (version 7.0, Palo Alto, CA, USA) in order to obtain the
identification of the best hit compounds by comparing the retention time of the spectrum
and the NIST 14 library with a minimum match factor of 80% for all teas mentioned, except
for albahaca using 70%. The integral data of all chromatographic peak areas were exported
for mathematical analysis.

4. Discussion

Headspace solid-phase microextraction (HS-SPME) coupled with GC-MS equipment
was used to evaluate and detect the extracted compounds and identify the major con-
stituents. In the commercial herbal teas, for Toronjil, 2136 peaks; Frutos Verdes, 2788 peaks;
Toute, 2220 peaks; Albahaca, 2292 peaks; and Jaibel, 2209 peaks were detected. GC-MS
chromatographic structuration was used to further assist in the identification procedures of
the compounds. However, the peaks that could be identified with the best match hits corre-
sponded to 161 peaks of Toronjil, 286 peaks of green fruits, 180 peaks of Toute, 473 peaks
of Albahaca, and 187 peaks of Jaibel. Additionally, before considering the use of this high
amount of chemical information provided by the HS-SPME-GC-MS, the assessment of
possible extraction procedures must be evaluated, and to verify the main components, it is
essential to prove them using standards.

On the other hand, the extraction procedure may be incorrectly assumed to be im-
portant chemical markers, providing misleading information. However, as this is just an
exploratory analysis, the objective was only to differentiate the chromatographic profile of
the herbal teas with the possible identification of some compounds. The preliminary, thus
tentative identification of the majority of the constituents of the Colombian herbal teas is
shown in Figure 17.
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Figure 17. Chromatograms of different commercial Colombian herbal teas identified by HS-
SPME–GC-MS highlighting the major constituents. (A) Albahaca: (1) Phenol, 3,4, dimethoxy,
(2) 1,5,5 Trimethyl-6-methylene-cyclohexene, (3) 1,4 Dihydrobenzo[c][1,2,4]triazepin-5-one. (B) Frutos
verdes: (1) D-Limonene; (2) Linalool; (3) Estragole, (C) Jaibel: (1) D-Limonene, (2) Cinnamaldehyde,
(3) Anethole, (D) Toronjil: (1) 5-Hepten-2-one, 6-methyl; (2) 1-Hexanol, 2-ethyl, (3) Linalool,
(4) Anethole, (5) Caryophyllene. (E) Toute: (1) Linalool; (2) Anethole; (3) 2-Propenoic acid, 3-
phenyl, methyl ester.

The authors [78,79] identified compounds such as 6-methyl-5-hepten-2-one, linalool,
and caryophyllene in Melissa officinalis (Toronjil). Caryophyllene has also been identified in
this tea species [80]. Anethole was found in tea as Toronjil, Toute and Jaibel. This compound
is an aromatic compound widely used in the food industry with antioxidant, antibacterial,
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antifungal, anti-inflammatory, and anesthetic proportions [81]. 2-ethyl-1-hexanol was one
of the major constituents in the tzitzilché flower (Gymnopodium floribundum Rolfe) using
HS-SPME and GC-MS [82]. Linalool is also found in teas such as Toronjil, Frutos verdes and
Toute. It is a terpene alcohol found in many plants with a floral aroma [83]. D-limonene was
identified in tea as Frutos Verdes and is considered the dominant contributor to the citrus
aroma [84]. Estragole was also a compound identified in Frutos Verdes tea. However, it is
an alkylating agent that may thus become a carcinogen, considering the toxic effect of its
metabolites [85]. To Albahaca, 1,5,5 Trimethyl-6-methylene-cyclohexene was also identified
in commercial products of Chrysanthemun morifolium Hang-ju in different flowering and
processing stages [86]. The other two major compounds identified in Albahaca would need
to be further investigated, as there are not many reports in the literature. In Jaibel tea,
the major compounds identified were (C)-cinnamaldehyde, D-Limonene, and anethole
found naturally in plants, which had anthelmintic activity evaluated [87]. Teas can have
several health benefits but also have some contraindications, such as estragole in high
concentrations in Frutos Verdes, as shown in GC-MS analysis. Therefore, it is important to
know its composition and be attentive to the recommendations, according to the guidelines
of nutritionists and physicians, to avoid exaggeration with high dosages/consumption and
even intoxication and allergic reactions, among other symptoms.

Major compounds need to be confirmed using standards to compare retention time,
peak area, and the mass-to-charge ratio of characteristic peaks to those identified in the
deconvolution software. However, these exploratory analyses using HS-SPME-GC-MS
showed different VOC profiles between the samples. This could explain the different
clusters found in the PCA and LDA plots presented in the analyses and detected by
E-senses systems.

The use of electronic technologies such as electronic nose, electronic tongue, and
electronic eye are promising tools that have been used in different areas such as the health
sector, pharmaceuticals, environmental contamination, and the food industry, especially to
evaluate food quality control (e.g., maturation to harvest, raw material storage to packaging
and consumption) by evaluating sensory characteristics such as smell, taste, and color.
These systems are characterized by being relatively inexpensive and easy to operate, often
requiring slight or no sample preparation, short analysis times, reproducible, portable,
and can be used in situ. The data acquired from three instrumental techniques include
the possibility of combining the information of the devices, where the final results will
be a multisensory response of a certain food under analysis. However, this multisensory
response is limited in identifying and quantifying specific chemical compounds, as con-
ventional analytical techniques. Moreover, one way to obtain the chemical compounds
for each instrument would be to perform calibration models of the previously identified
species to predict them. Individually, the electronic nose presents disadvantages such as
low sensitivity and specificity, as for the electronic tongue the disadvantages are the pre-
treatment of the samples (especially when the food is solid) and the short life of the sensor
due to the absorption of food compounds; lastly, the electronic eye requires a controlled
environment through constant exposure to light in a dark space to avoid interference from
external sources.

5. Conclusions

This analysis was carried out in order to evaluate the operation and capabilities of
three E-Senses systems and how they perform individually and combined using sensor
fusion, to classify Colombian herbal tea brands.

The two electronic noses were composed of metal oxide gas sensors, where the eNose2
modulated the response of the sensors from a sinusoidal heater signal. Thus, the gas sensors
were placed inside the sensing chamber, while the mainboard sits on the outside part of
the lid, thus not in direct contact with the volatile organic compounds extracted from the
sampling chamber and thereby avoiding contamination of the electronic components.
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On the other hand, both eNose1 and eTongue obtained the best results in the individual
analysis of the data and classification of the herbal teas; likewise, the system composed of
eEyes yielded a good percentage success rate in the classification of the measures.

The machine learning method that obtained the best success rate in the classification
was random forest, since in both cases, individually and by data fusion, it obtained 100% of
data classification. However, the decision trees method did not perform well, confirming
that random forest is a modeling technique much more robust than a single decision tree
because it can generate overfitting, and it was not able to minimize the error due to bias
and error due to variance. They aggregate many decision trees to limit overfitting as well
as error due to bias and therefore yield useful results.

This opens up a wide range of possibilities to improve the classification of categories
owing to the combination of different E-Senses, as it is possible to obtain better information
from the data and response.

Despite the fact that lower performance was obtained in the classification using eNose2,
future experiments must increase the measurement and recovery time in order to obtain
more information from the data set and thus determine the saturation requirement of the
sensor. In Reference [57] a 30 min interval was used for both measuring and purging events
using the eNose2, thus achieving a good classification rate. Likewise, in Reference [58], the
random forest algorithm gave the best performance.

The main justification for using three different devices, was to compare the responses
of each of them and determine which one achieved the best performance in the classification
of herbal teas. At the end, the best results were obtained with the electronic tongue and
electronic eyes using the data fusion method.

E-tongues and E-noses systems have greater potential when integrated with other
measurement systems, such as E-eye with a spectral analysis detector, image analysis, or
chemical systems. Thus, each sense provides different information that could lead more
variables or parameters to be used with data processing algorithms in order to increase the
sensing capacity and accuracy.

With this preliminary study, subsequent studies could be carried out in other applica-
tions, ultimately leading to deciding which would be the best option in the detection and
classification of a certain volatile compound (gaseous, liquid, and solid state).

The HS-SPME-GC-MS provided information on the different VOCs profiles and com-
position of the teas evaluated in this study, corroborating mainly with the results found in
the analyzes of the eNose and eTongue systems.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors11070354/s1, Figure S1: eNose1 response obtained
from measurement # 2 reference TGS 822 gas sensor. Figure S2: eNose2 response obtained from
measurement # 2 through the MQ135 gas sensor. Figure S3: eEyes: Herbal Teas. Measurements
#2, NIRONE Sensor S2.0-REFL/S2.0-SMA. Figure S4: eTongue: Herbal Teas. Measurements #2,
Measurements #2, Carbon electrode AC1 101 R2. Figure S5: LDA plot to classify the herbal teas
through the eNose1 system. Figure S6: LDA plot to classify the herbal teas through the eNose2
system. Figure S7: LDA plot to classify the herbal teas through the eTongue system. Figure S8: LDA
plot to classify the herbal teas through the eEyes system. Figure S9: PCA plot to discriminate the
herbal teas through the eNose1, eTongue and eEyes systems. Figure S10: LDA plot to classify the
herbal teas through the eNose1, eTongue and eEyes systems. Figure S11: PCA plot to discriminate
the herbal teas through the eNose2, eTongue and eEyes systems. Figure S12: LDA plot to classify the
herbal teas through the eNose2, eTongue and eEyes systems. Figure S13: PCA plot to discriminate
the herbal teas through the eTongue and eEyes ystems. Figure S14: LDA plot plot to classify the
herbal teas through the eNose2, eTongue and eEyes systems. Figure S15: PCA plot to discriminate
the herbal teas through the eNose1, eNose2. eTongue and eEyes systems. Figure S16: LDA plot to
classify the herbal teas through the eNose1, eNose2. eTongue and eEyes systems.
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