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Abstract: In the present work, a study was carried out with the aim of enhancing the performance of
electrochemical biosensors based on Co3O4:Fe2O3 heterojunctions. Specifically, the redox behavior of
screen–printed carbon electrodes (SPCEs) modified with Co3O4:Fe2O3 (0.5 wt%:x wt%) nanocom-
posites, where x ranged from 0.1 to 0.5 wt%, was examined in detail. The hybrid nanocomposites
were synthesized using the sol-gel auto-combustion method. Several characterization methods were
performed to investigate the morphology, microstructure, and surface area of the pure Co3O4, pure
Fe2O3, and the synthesized Co3O4:Fe2O3 nanocomposites. Using cyclic voltammetry (CV) tests,
the electrochemical behavior of the modified electrodes toward the dopamine (DA) molecules was
investigated. The modified Co3O4:Fe2O3, (0.5 wt%, x = 0.4 wt%)/SPCE resulted in a sensor with the
best electrochemical performance toward DA. A high linear relationship between DA concentrations
and the faradic current variation (ipa (µA) = 0.0736 + 0.1031 CDA (µA) and R2 = 0.99) was found
in the range of 10–100 µM. The sensitivity value was computed to be 0.604 µA µM−1cm−2 and the
limit of detection (LOD) 0.24 µM. Based on the characterization and electrochemical results, it can be
suggested that the formation of Co3O4:Fe2O3 heterostructures provides a large specific surface area,
an increased number of electroactive sites at the metal oxide interface and a p–n heterojunction, thus
ensuring a remarkable enhancement in the electrochemical response towards DA.

Keywords: metal oxide; nanocomposites; dopamine electrochemical detection; biosensors

1. Introduction

Dopamine (DA) is a neurotransmitter secreted directly by the brain, capable of activat-
ing cellular response. It is also related to spreading pleasure and the habit of drugs. Low
levels of DA are responsible for the onset of diseases such as Parkinson’s disease. Accu-
mulation can also lead to numerous diseases, such as cardiovascular disease, Alzheimer’s
disease, and cancer [1–4]. Thus, it is fundamental to detect DA precisely and efficiently.
Numerous approaches have been established to identify this biomolecule, including photo-
luminescence, spectrophotometry, electrochemical sensors, and chemoluminescence [5].
Electrochemical sensors appeal to our consideration because of their high sensitivity, low
cost, and time-saving features [6].

There are various enzyme-based electrochemical sensors in the literature for the
determination of DA [7] and its precursors, such as tyrosine [8] and phenylalanine [9], but
all of them show difficulties in use, due to the presence of the enzymes themselves. For this
reason, alternative materials for the development of these sensors are much studied.
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In recent times, screen-printed carbon electrode (SPCE) electrochemical sensors have
been largely used in different fields such as in medicine, the environment and so on [10,11].
The SPCE based on heterostructures and nano-heterojunction derivatives that are based
on metal oxides (MOs) has received great interest. Furthermore, the use of screen-printed
carbon electrodes (SPCEs) as transducer substrates for electrochemical sensors represent
a key point in today’s technology since these devices are well known to be cheap and
suitable for low-cost mass production. In addition, these electrodes can be easily modified
by suitable electrocatalysts, which greatly enhances the sensing capability of SPCEs utilized
for the detection of different analytes. Further, they fit easily when applied to the point-of-
care field, being portable and completely operated by the patients themselves.

The use of metal oxides for sensing was restricted for many decades to detect gaseous
species [12]. However, in the last decades, their application in electrochemical sensors
for developing enzyme-free devices has grown in an accelerated manner [13]. Indeed,
nowadays, they play a prominent role for the development of novel sensors, exhibiting
better properties due to their high conductivity, fast charge mobility, and large specific area,
along with strong mechanical and thermal characteristics. Further, these nanostructures
can provide enhanced electrocatalytic properties towards many biomolecules of interests.

Composites based on metal oxides, such as cobalt oxide (Co3O4), and iron oxide
(Fe2O3), are gaining a lot of attention for sensing applications. Pristine cobalt and iron
oxide, prepared by the thermal stirring method, have superior conductivity due to better
preservation of material structures [14,15]. Further, Co3O4:Fe2O3 nanocomposites may
exhibit good electrochemical performances [16]. For example, these nanocomposites are
among the most attractive materials owing to their unique peroxidase-like activity [17].
Many methods are used to prepare Co3O4:Fe2O3 nanocomposites, including the hydrother-
mal reaction method, ultrasonic chemical method, micro-emulsion method, co-precipitation
method, iron salt high-temperature pyrolysis method, and so on [18,19]. Among these,
sol-gel is the most conventional method [20].

In this paper, we synthesized pure Co3O4 and Fe2O3 nanoparticles by the co-precipitation
method and then, by using the sol-gel auto-combustion method, obtained the Co3O4:Fe2O3
nanocomposites, varying the Co3O4 and Fe2O3 nanoparticle ratio. The structural, morpho-
logical, and optical properties of cobalt oxide-loaded iron oxide were studied. Nanocom-
posites with different Co3O4:Fe2O3 ratios (0.5 wt%: x = 0.1, 0.2, 0.3, 0.4, 0.5 wt%) were
employed for the detection of DA using cyclic voltammetry as an electrochemical technique.
Even if DA detection is, as above mentioned, of outmost importance in clinical medicine,
here, our main objective was to study the electrochemical performances of the developed
sensors based on Co3O4:Fe2O3 heterojunctions towards dopamine, chosen as a model
compound. To our best knowledge, there is no work reporting this composite formulation
in electrochemical sensors.

The electrochemical tests of a screen-printed electrode modified with Co3O4:Fe2O3
nanocomposites demonstrate that they could efficiently detect dopamine better than the
bare SPCE and modified Co3O4/SPCE and Fe2O3/SPCE. The results obtained from the
tests conducted, indicated Co3O4:Fe2O3 (0.1 wt%:0.4 wt%) as the best nanocomposite
heterostructure for DA electroanalytical determination.

2. Materials and Methods
2.1. Materials

Cobalt oxide nanoparticles (Co3O4), and hematite iron oxide nanoparticles (Fe2O3),
were prepared by using pure grade nitrates (99.99%) supplied by Sigma Aldrich Italy.

2.2. Synthesis of Co3O4:Fe2O3 Nanocomposites

Co3O4:Fe2O3 nanocomposites with different Co3O4 and Fe2O3 ratios (0.5 wt%:
x = (0.1, 0.2, 0.3, 0.4 and 0.5 wt%)) were synthesized by using a two-step procedure. First,
the pure Co3O4 and Fe2O3 materials were prepared by the precipitation method. Co3O4
was dissolved in hydrochloric acid (HCl) and continuously stirred at room temperature
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until the solution became transparent and uniform. Then, various quantities of hematite
(from 0.001 to 0.005 mol) were dissolved in 5 M citric acid (HOC(CO2H) (CH2CO2H)2)
solution and stirred at room temperature till the solution became transparent and uniform.
Subsequently, Co3O4 and Fe2O3 solutions were mixed and placed on a heating plate at
a temperature of ~350 ◦C. The materials were fully burned, obtaining five samples with
different Fe2O3/Co3O4 molar ratios. Finally, the powdered samples were annealed in a
glass furnace for 2 h at 400 ◦C. The five samples were identified as

x = Fe2O3/y = Co3O4,

where x and y indicate the molar composition of two components (i.e., 0.2Fe2O3/1Co3O4,
0.4Fe2O3/1Co3O4, 0.6Fe2O3/1Co3O4, 0.8Fe2O3/1Co3O4, 1Fe2O3/1Co3O4). The Fe2O3
molar % was calculated as:

Fe2O3 (molar %) = [(mol Fe2O3/(mol Fe2O3 + mol Co3O4)) × 100].

2.3. Characterization Methods

X-ray powder diffraction (XRD) analysis was performed using a D2 Phaser Bruker
diffractometer operating at 30 kV in the range 10–90◦ (2-θ), at a scanning rate of 0.02◦ s−1.
Scanning electron microscopy (SEM) images were acquired by Zeiss 1540XB FE SEM
(Zeiss, Germany) instrument operating at 10 kV. The B.E.T. surface area and porosity of
samples were evaluated by nitrogen adsorption and desorption isotherm carried out at
77 K by a Quantachrome ASiQwin instrument (Anton Paar Companies, Graz, Austria). The
samples were dried at 100 ◦C and degassed for 2 h, before starting the analysis. Fourier
transform infrared spectroscopy (FT-IR) spectra were collected by a Perkin Elmer Spectrum
100 spectrometer equipped with a universal ATR sampling. Raman spectra were collected
with an XploRA Plus microspectrometer (Horiba, Kyoto, Japan) equipped with a diode
laser emitting at 638 nm. The measurements were performed at room temperature using a
100×microscope objective (Olympus M-Plan, NA = 0.90, WD = 210 µm), both for excitation
and collection of the scattered signal, which was dispersed by 1200 grating onto a CCD
detector (Syncerity, Horiba).

2.4. Electrode Fabrication

Commercial screen-printed carbon electrodes (SPCEs) were purchased from Dropsens,
Spain. The basic sensing electrodes used (DRP-100, named SPCE) were composed of a
4 mm diameter carbon working electrode, a silver pseudo-reference electrode, and a carbon
auxiliary electrode. The electrodes were then modified with pure Co3O4, pure Fe2O3, and
Co3O4:Fe2O3 composites. The appropriate modification amount was 50µL which was
determined by the study of different amounts (30 µL, 50 µL, 70 µL, 100 µL). Then, the
Co3O4:Fe2O3 nanocomposite material was sonicated in water (1 mg/1µL) and ultrapure
water successively for 15 min. Then, typically, 30 and 50 µL of Co3O4:Fe2O3 nanocomposite
(1 mg/1µL) were dropped on the SPCE surface and dried at room temperature overnight,
as shown in Figure 1.

2.5. Electrochemical Tests

Electrochemical analyses were conducted with a DropSens µStat 400 potentiostat,
using Dropview 8400 software for data processing. Electrical impedance spectroscopy
(EIS) analyses were performed using a potentiostat Galvanostat by Metrohom autolab. The
electrochemical tests for dopamine were performed in 10 mL of 0.01 M phosphate buffer
solution (PBS, pH = 7.4) containing 0.0076 g (5 mM) of DA. The CV tests were performed
in the potential range [−0.2 V to −0.8 V] at 0.05 V/s scan rate on unmodified and modified
SPCEs in PBS solution containing DA at different concentrations ranging from 0 to 100 µM.
Five different samples from the same batch and two pure samples were analyzed using the
same procedure.
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the determination of DA.

3. Results and Discussion
3.1. Structural and Morphological Characterization

In Figure 2, an example of the characterizations carried out by XRD, SEM and EDX
is presented, which revealed the typical structure and morphology of the synthesized
Fe2O3:Co3O4 nanocomposites.
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XRD analysis showed the diffraction peaks of cubic Co3O4 and tetragonal Fe2O3, with
space groups Fd3m and P, respectively, confirming that in the synthesized product cobalt
oxide and iron oxide single-phase nanoparticles were present. SEM images showed that
all the samples were composed of nanoparticles with an irregular shape. EDX spectra
confirmed the presence of Co, Fe, and O in all the composite samples.

Additional characterization studies were also performed. First, BET surface area and
porosity of the samples were evaluated by nitrogen adsorption and desorption isotherms
at 77 K. A summary of the structural properties of the samples derived by N2 adsorption-
desorption isotherms, such as BET surface area, pore volume, and radius, are reported
in Table 1. The data obtained provided evidence that the BET surface area was enhanced
by increasing the amount of Fe2O3, reaching a maximum value for the nanocomposites
with 0.2% of Fe2O3. It is noteworthy that the other structural parameters (i.e., pore volume
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and pore radius) also changed with respect to the values associated with the pure oxides,
reflecting the high interaction between them.

Table 1. Surface area, pore volume and pore radius for the pure Fe2O3, Co3O4 nanoparticles, and
Fe2O3/Co3O4 nanocomposites.

Samples Surface Area m2/g Pore Volume cc/g Pore Radius
Å

Co3O4 59.63 0.141 17.165
X1: 0.1% 70.20 0.157 19.567
X2: 0.2% 91.66 0.186 16.529
X3: 0.3% 74.64 0.180 17.113
X4: 0.4% 73.85 0.128 16.493
X5: 0.5% 84.37 0.165 16.485

Fe2O3 53.90 0.102 17.304

ATR-FTIR spectra of pure Co3O4, Fe2O3, and Co3O4–Fe2O3 nanocomposites recorded
in the wavenumber range from 500 to 4000 cm−1 are presented in Figure 3. The absorption
peaks at 3485 cm−1, 2929 cm−1, and 2858 cm−1 were attributed to the –OH stretching, which
agrees with the literature data [21–23]. The absorption peaks at 469 cm−1 and 654 cm−1

corresponding to the Fe-O stretch confirmed the successful synthesis of Co3O4–Fe2O3
nanocomposites, respectively.
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A Raman characterization (see Figure 4) was also performed. For the pure Fe2O3,
four main Raman peaks were observed, in agreement with the other literature [24,25]. The
Raman mode located at 218 cm−1 was identified for the A1g mode while the vibrational Ra-
man peaks related to Eg’ modes were observed at 288 cm−1, 401 cm−1 and 602 cm−1 [14,26].
According to Nagaraj et al., [25], Eg is due to the Fe–O stretching involving two iron
and oxygen atoms. For pure Co3O4, we observed five major Raman modes. The three
F2g modes were located at 193 cm−1, 516 cm−1, and 613 cm−1 (F2

g1, F2
g2, F2

g3, respec-
tively) [24]. The peak at 474 cm−1 was assigned to the E2g mode, while the one located at
682 cm−1 was assigned to A1g [24,27,28]. Regarding the Co3O4:Fe2O3, by analogy with the
work of Choya et al. [28], the influence of Fe2O3 in the Co3O4 lattice was analyzed based
on the shift of the A1g Raman mode observed at 682 cm−1 in the Co3O4 spectrum, which
was considered as reference. According to this prior work, the redshift of the A1g signal
indicated spinel distortion [29]. In the composite samples, the full width at half maximum
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(FWHM) of the A1g Raman mode was also found to change in respect to pure Co3O4, i.e., it
increased as the amount of Fe2O3 in the nanocomposite ratio grew (Figure 4b).
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Figure 4. (a) Raman spectra of pure Fe2O3 (purple line), pure Co3O4 (black line), and Fe2O3:Co3O4

nanocomposites at different wt% ratio on SPCE using 16.6 mW power; (b) FWHM of A1g Raman
peak vs. the percentage of Fe in the nanocomposite.

The highest value of FWHM was obtained for Co3O4:Fe2O3 (0.5 wt%:0.4 wt%) which
may have been due to a higher cobalt spinel distortion [29]. Moreover, a shift towards
lower energies was observed for the F2

g2 and E2g Raman modes while increasing the Fe2O3,
which agreed with other works [24,27] and may be due to the effective interaction between
the components of the Co3O4:Fe2O3 nanocomposite. Table 2 presents the vibrational Raman
modes obtained in this work, compared with the literature, and their assignments.

Table 2. Raman vibrational modes.

Material Raman Mode Position Ref

Fe2O3
A1g 218 cm−1

[24–26]
Eg′ 288 cm−1, 401 cm−1 and 602 cm−1
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Table 2. Cont.

Material Raman Mode Position Ref

Co3O4

F2
g1 193 cm−1

[24]F2
g2 516 cm−1

F2
g3 613 cm−1

E2g 474 cm−1
[24,27,28]

A1g 682 cm−1

Co3O4:Fe2O3

A1g
*** [24,27,29]F2

g2
Eg′

*** Raman peak positions when varying the ratio of Co3O4:Fe2O3. composites. A detailed explanation of their
attribution is reported in the text.

3.2. Electrochemical Characterization of Modified SPCE

Cyclic voltametric (CV) and electrochemical impedance spectroscopy (EIS) tests
were performed in 10 mM ferrocyanide solution (K3Fe(CN)6) for all modified electrodes.
Figure 5a shows the Nyquist plot (i.e., plotting imaginary impedance (−Z′′) versus real
impedance (Z′)) of the modified and unmodified electrodes in 10 mM ferrocyanide solution
in PBS solution.

Using the fitting function by the Nova software, the equivalent circuit (Figure 5b) and
the Randles parameters were determined and are reported in Table 3. Based on this EIS
analysis, it is noteworthy that increasing the amount of Fe2O3 in the nanocomposite leads
to a decrease in the circle radius, related to the charge transfer resistance RCT, indicating
the fast kinetic features of the composite-modified electrodes [30]. The conductivity feature
is identified with the Randles parameter Rs. Modified electrodes display an increase in Rs
value with respect to bare SPCEs, likely because of the greater distance of the solution from
the electrode surface.
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*** Raman peak positions when varying the ratio of Co3O4:Fe2O3. composites. A detailed explanation 
of their attribution is reported in the text. 

3.2. Electrochemical Characterization of Modified SPCE 
Cyclic voltametric (CV) and electrochemical impedance spectroscopy (EIS) tests were 

performed in 10 mM ferrocyanide solution (K3Fe(CN)6) for all modified electrodes. Figure 
5a shows the Nyquist plot (i.e., plotting imaginary impedance (−Z″) versus real impedance 
(Z′)) of the modified and unmodified electrodes in 10 mM ferrocyanide solution in PBS 
solution. 

 
Figure 5. Cont.
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Figure 5. (a) Nyquist plot of modified SPCE electrodes. (b) Equivalent circuit. (c) CV tests on the
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Table 3. Randles parameters of the modified electrodes.

Sensor
Randles Parameters

RCT (Ω) Rs(Ω)

Bare/SPCE 5022 46
Co3O4/SPCE 1923 109.4

Co3O4:Fe2O3 (0.5 wt%:0.1 wt%)/SPCE 2926 89.3
Co3O4:Fe2O3 (0.5 wt%:0.2 wt%)/SPCE 2080 111
Co3O4:Fe2O3 (0.5 wt%:0.3 wt%)/SPCE 2050 108.9
Co3O4:Fe2O3 (0.5 wt%:0.4 wt%)/SPCE 1801 115.3
Co3O4:Fe2O3 (0.5 wt%:0.5 wt%)/SPCE 1750 114.5

Fe2O3/SPCE 1423 103.9

Figure 5c reports the CV analysis carried out in 10 mM [Fe(CN)6]3−/4− solution, in
the −0.3–0.7 V potential range. It was noted that the addition of Fe2O3 improved the
electrochemical characteristics (e.g., the oxidation/reduction peaks of Fe(CN)6]3−/4− were
narrower) of the bare SPCE and Co3O4–modified electrode.

Then, one more test was performed to select the best electrode for the detection of DA.
First, we performed an optimization test to find the appropriate amount of the modifier to
drop cast on the modified electrode (30, 50, 70 and 100 µL). The CV test was performed in a
phosphate buffer solution (PBS, pH = 7.4, C = 0.01 M) containing 50 µM of DA. On all the
modified SPCE electrodes, the anodic peak of DA was obtained at about 0.1 V. The highest
oxidation peak current was obtained when modifying the working electrode with 50 µL.
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When evaluating the response to 50 µM of dopamine, the best electrochemical perfor-
mance was displayed by the Co3O4:Fe2O3(0.5 wt%:0.4 wt%) nanocomposite-based SPCE
(see Figures 6 and S1).
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Figure 6. Histogram of the response of the response to 50 µM of DA by the different Fe2O3 nanocomposites.

From these findings, the current decreased due to the variation in wt% of Fe2O3 from
0.1 to 0.3, and the potential increased due to the increase in the mass transport between the
electrolyte and the electrode surface. Surprisingly, the current increased again to reach a
higher value than that obtained with x = 0.1%, then decreased to a similar current value
compared to Fe2O3 wt. 0.2%.

To discover if the electrochemical behavior of DA on Co3O4:Fe2O3 (0.5 wt%:0.4 wt%)/
SPCE is diffusion or adsorption controlled, the variation of scan rate versus anodic peak
was plotted, see Figure 7a. Indeed, by increasing the scan rate from 0.02 to 0.4 V/s, a slight
shift in the potential was noted, indicating that the mass transport had decreased. Figure 7b
illustrates a linear variation of the scan rate root versus the anodic current with R2 = 0.99
for both bare/SPCE and Co3O4:Fe2O3 (0.5 wt%:0.4 wt%)/SPCE. These findings show that
the redox reaction was diffusion controlled for the prior electrode, see Figure 7b.
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According to previous work, we determined the active surface area (A) through the
Randles-Sevcik equation [30]:

Ipa = 2.69× 105 AD1/2n3/2ν1/2C,

where C is the concentration in mol cm−3, n is the number of electrons, ν is the scan rate,
and D is the diffusion coefficient of the electrolyte [Fe(CN)6]3/4− expressed in cm2/s equal
to 7.6 × 10−6 cm2 s−1. The anodic peak current (Ipa) is expressed in µA. From this equation,
the active surface area of Co3O4:Fe2O3 was found to be 1.45 × 10−2 cm−2, that is, almost
20 times greater compared to that of bare/SPCE.

3.3. Electroanalytical Dopamine Determination

Herein, we first tested the electroanalytical performance of two modified electrodes
(Fe2O3/SPCE and Co3O4/SPCE) for the determination of DA compared with the bare SPCE
electrode. The CV tests were performed in PBS solution containing different concentrations
of DA ranging from 0 to 100 µM at [−0.2–0.8 V] potential range and 0.05 V/s scan rate.
The results of this test are shown in the following Figure 8a–c. According to the results,
the Co3O4/SPCE sensor displays the poorest electroanalytical behavior toward the redox
reaction of dopamine while bare and Fe2O3/SPCE electrodes depict similar performance.

We also carried out a CV test under the same conditions on the Co3O4:Fe2O3
(0.5 wt%:0.4 wt%)/SPCE for the determination of DA at different concentrations, see
Figure 8d. Compared to the bare and pure modified SPCE electrodes, Co3O4:Fe2O3
(0.5 wt%:0.4 wt%)/SPCE showed better electroanalytical performance where the DA Faradic
current exhibited an increase of ~2-fold. Figure 8c presents the calibration curves of the
modified and unmodified SPCEs electrodes where the peak current varied linearly with DA
concentration. The regression equations of bare/SPCE, Fe2O3/SPCE, Co3O4/SPCE and
Co3O4:Fe2O3 (0.5 wt%:0.4 wt%)/SPC are ipa (µA) = 0.047 + 0.103 CDA (µA), ipa (µA) = 0.048
+ 0.099 CDA (µA), ipa (µA) = 0.016 + 0.119 CDA (µA), and ipa (µA) = 0.0736 + 0.1031 CDA
(µA), respectively. The sensitivity (S) of this electrode was computed from the calibration
curve, and the limit of detection (LOD) was determined by equation

LOD = 3.3 SD/σ,

where SD is the standard deviation and σ is the slope determined from the calibration
curve, that were found to be 0.604 µA µM−1cm−2 and 0.24 µM, respectively.

Based on the microstructural and electrochemical results obtained, we just report
below a brief discussion of the electrochemical sensing mechanism of Co3O4–Fe2O3 het-
erojunctions. Figure 9 show the relationship between the FWHM value obtained by the
above reported Raman measurements for the different Co3O4:Fe2O3 heterostructures and
the response (defined by the current peak) to dopamine. This finding suggests that cobalt
spinel distortion introduced by Fe2O3 is a key factor in enhancing the electrochemical
characteristics for dopamine detection.

The distortion caused a change in the structural parameters of the composite het-
erostructures compared to the single metal oxides. Specifically, an increase in surface area
was noted (see Table 1), leading to an enhancement in the number of more active sites. In
any case, based on the other characterizations carried out, it cannot be excluded that other
factors contributed to the enhanced response of the Co3O4:Fe2O3 heterostructures towards
the target analyte. The superior sensing performances of the composites in comparison
to the corresponding single phase metal oxides may indeed be due to the build-up of
potential barriers at the p–n interface. The same finding was reported in other research. For
example, because of the introduction of the p–n junction interface and the high catalytic
activity of ZnO NPs, Liang and collaborators found that the sensitivity to DA was enhanced
significantly [31]. Co3O4–Fe2O3 p–n heterojunctions have attracted much attention for
improving gas-sensing performance [32,33] and for their excellent electrocatalytic activity
for OER in alkaline solution [34], but no work has been reported about their use in electro-
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chemical sensors. So, more detailed work is necessary to obtain the information that would
be helpful in formulating a reliable hypothesis for the sensing mechanism. Nevertheless,
considering the higher electron transfer or lower charge transfer resistance (see value of
RCT in Table 3) of the nanocomposite samples and, thus, the higher electrochemical activity,
it can be assumed that p–n junctions play a decisive role in the sensing mechanism.
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Summarizing, the results obtained may be due to all these factors: (i) the increase
in surface area which also improves the DA approach to the electrode surface; (ii) the
formation of numerous and more active sites at the Co3O4:Fe2O3 interface; (iii) the im-
proved electrical properties due to p–n junctions. Hence, a plausible sensing mechanism
for dopamine detection implies that the target analyte adsorbs easily and in higher quantity
on the Co3O4:Fe2O3 heterostructure hybrid nanoparticles. Better interaction between the
heterostructured electrocatalyst and DA leads to better oxidation and sensitive detection.
This step also helps to activate the hydroxyl group of DA towards electro-oxidation, thus,
resulting in an improved electron transfer with the electrode. Overall, the formation of
the Co3O4:Fe2O3 heterostructure reduces the impedance and increases the availability of
electrons which is the crucial step for electrochemical sensing.

A comparison of the analytical parameters for the detection of DA on our modified
electrode with previous sensors reported in the literature is presented in Table 4, below.
Based on these reference papers, the performances of the proposed modified electrode are
good, also considering the simple materials used and its easy and cost-effective preparation.

Table 4. Comparison of the analytical parameters of our modified electrode and previous sensors
reported in the literature for the detection of DA.

Sensor Analyte LOD (µM) Sensitivity Analytical
Technique Ref.

WS2 NSs-CNFs DA 0.01 5.36 µM−1cm−2 DPV [35]
α-Fe2O3 NPs/CC DA 0.074–113 0.020 µM−1cm−2 CV [36]
Fe3O4/GO/PG DA 0.01 5.96 µM−1cm−2 DPV [37]

Urchin-WO3/SPCE DA 0.25 55.9 µA/µM−1cm−2 DPV [38]
Fe3O4/rGO/GCE DA 0.12 2.733 µA/µM−1 DPV [39]

SPCE−Fe3O4/SPEEK DA 7.1 0.005 µA/µM SWV/CV [40]
Co3O4/NiCo2O4 DA 0.24 − CV [41]
RS AuNPs/SPCE DA 0.2 550.4 µA/µM−1cm−2 LSV [42]

Co3O4:Fe2O3/SPCE DA 0.241 0.604 µA/µM−1cm−2 CV This work

3.4. Interference Tests

In addition to the good electrochemical response toward DA determination observed
with Co3O4:Fe2O3 (0.5 wt%:0.4 wt%)/SPCE, we checked the response to analytes other than
DA in 0.01 M PBS solution and at a scan rate of 0.05 V/s. The chosen analytes were uric acid
(UA), folic acid (FA), and L-tyrosine. As depicted in Figure 10a, the tyrosine (Tyr) oxidation
peak can be clearly observed on the modified electrode at ~0.6 V. The DA faradic current
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remained constant when increasing L-Tyr concentration from 20 to 200µM. In Figure 10b,
after widening the potential applied up to 1.1 V, we also observed the oxidation peak at
~0.8 V, due to the redox Fe2+/Fe3+ process [43] and FA (~1.0 V) added as another analyte.
As shown, also after the addition of all these analytes, the peak current related to dopamine
remained well stable.
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Figure 10. Selectivity test of Co3O4:Fe2O3 (0.5 wt%:0.4 wt%)/SPCE in PBS containing 100 µM of
DA and (a) L-Tyrosine at different concentrations ranging from 0 to 100 µM, (b) 200 µM of UA and
200 µM of FA.

The above tests are helpful, anyway, when trying to develop a practical sensor for
dopamine detection. These future studies are planned with the primary objective of
optimizing the performance for dopamine detection in order to develop a practical sensor.

4. Conclusions

In this paper, we modified SPCEs using different Co3O4:Fe2O3 heterojunctions
and tested them toward the determination of DA. Through this study, the forma-
tion of Co3O4:Fe2O3 (0.5 wt%:0.4 wt%) resulted in a nanocomposite with the best per-
formance in the determination of DA. Using this modified SPCE, an increment in the
faradic current towards DA was observed when compared to unmodified and other
modified Co3O4:Fe2O3/SPCEs with a sensitivity and limit of detection (LOD) equal to
0.604 µA µM−1cm−2 and 0.24 µM, respectively. This modified electrode showed further
good selectivity toward L-Tyr, UA, and riboflavin. These results were attributed to the
formation of Co3O4:Fe2O3 heterostructures, as confirmed by XRD, Raman, and FTIR char-
acterization analysis. The enhanced-sensing mechanism was also discussed, which could
be explained by the synergistic effects induced by the larger specific surface area and
consequently an enhanced adsorption of DA compared to the single metal oxides. The p–n
junction formed also played a key role in enhancing the electrochemical response to DA.
Due to the above-reported promising results, we plan future studies with the objective of
optimizing the performance of dopamine detection and try to develop a sensor for practical
application in clinical medicine.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/chemosensors11070379/s1, Figure S1: CV curves of the response to 50 µM
of DA by the different Fe2O3 nanocomposites.
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