
Citation: Pavićević, A.; Veles, M.;
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Abstract: Benezediols are widely used in different areas of industry, thus identification and quantifica-
tion of benzenediols is of utmost importance due to their toxicity and high environmental abundance.
In this work, benzenediol isomers (pyrocatechol, resorcinol, and hydroquinone) were investigated
by using the Bray–Liebhafsky (BL) oscillatory reaction. All three isomers exhibit different behavior
in the BL reaction, which renders the BL system applicable as a chemosensor. The period between
the fifth and sixth oscillation, the amplitude of the sixth oscillation and in the case of hydroquinone,
the emergence of a new oscillation in the BL reaction were selected as the parameters used for the
identification and quantification of these isomers. Furthermore, electron paramagnetic resonance
spectroscopy and DFT calculations were performed in order to provide insights into the mechanism
of benzenediols reactions with the BL system.

Keywords: oscillatory reactions; Bray–Liebhafsky reaction; benzenediols; chemical sensors; radical
scavenging

1. Introduction

The Bray–Liebhafsky (BL) reaction is the decomposition of hydrogen peroxide into water
and oxygen in the presence of iodate and hydrogen ions [1,2]. This seemingly simple reaction
comprises a complex homogenous catalytic oscillatory process involving numerous iodine
intermediates such as I2, I–, I•, I2O, IO2•, HOI, HIO2, HO•, and HOO• [3–11]. Although the
Bray–Liebhafsky oscillatory reaction has been known for more than 100 years and there are a
large number of papers [12–15] devoted to its mechanism, the overall mechanism is still not
clarified. It is further complicated by the fact that the system is sensitive to light [9], pressure
and stirring [16,17], microwaves [18,19], oxygen [20,21], temperature [22,23], concentrations
of reactants [22–24], as well as the addition of different analytes [25–31]. Thanks to the great
sensitivity of oscillating reactions to the addition of different analytes, chemical oscillators
have become very popular for the analytic determination of “reactive” analytes, and thus
their use has been expanded to many areas such as environmental, pharmacy, food science,
etc. This paper aims to examine the effect of the three benzenediol isomers (pyrocatechol,
resorcinol and hydroquinone) on the BL reaction. All three isomers of benzenediol are
colorless to white granular solids at room temperature and pressure, but upon exposure to
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oxygen, they may darken [32]. The chemical formula of all three isomers is C6H6O2, and
their chemical structures are given in Supplementary Materials Figure S1 [33].

Pyrocatechol (1,2-benzenediol or o-benzenediol), resorcinol (1,3-benzenediol or m-
benzenediol), and hydroquinone (1,4-benzenediol or p-benzenediol) are used widely as
industrial solvents [34] and are found in the effluents of industries such as textile, paper
and pulp, steel, petrochemical, petroleum refinery, rubber, dye, plastic, pharmaceutical,
cosmetic, etc. (Figure S1) [35,36]. Pyrocatechol is used to produce food additive agents,
hair dyes, and antioxidants [37]. Resorcinol is usually employed to produce medicines,
adhesives, dyes, plastics, synthetic fibers, cosmetics, and various other compounds [38–40].
Hydroquinone has a variety of uses principally associated with its action as a reducing
agent, especially in photographic developers and for the production of polymerization
inhibitors and rubber and food antioxidants [33]. The quantification of benzenediols
is very important because of their presence in environmental samples as highly toxic
pollutants [33].

In our previous work [41], we investigated the effect of pyrocatechol on the Bray–Liebhafsky
oscillatory reaction. In that study, it has been shown that the oscillatory BL reaction could
be used to quantify pyrocatechol. It should be highlighted that experimental conditions
were unfavorable because of the reaction duration (more than 5 h). Such BL experimental
conditions are highly unsuitable for further analytical applications. However, more favor-
able experimental conditions were found for the basic BL oscillogram in this paper. Namely,
we significantly reduced the induction period, and the frequency of oscillations increased
drastically, so it was much easier to monitor the influence of the analyte on the characteristic
parameters of the BL reaction. Furthermore, this is the first report of the oscillatory BL
system application for the identification and quantification of the other two benzenediol
isomers—resorcinol and hydroquinone. The BL reaction is an affordable chemical system,
comprised of inexpensive, common chemicals as reactants. Moreover, its experimental
setup is simple and accessible to every laboratory.

2. Materials and Methods
2.1. Bray–Liebhafsky Reaction Experimental Setup

Experiments were performed in a closed, well-stirred (stirring rate was 900 rpm for
each experiment) double-walled glass electrochemical cell, which was thermostated at all
times at 62.0 ± 0.2 ◦C. The reaction volume was 25 mL. The vessel was protected from the
influence of light by tin foil. All of the chemicals used were of p.a. grade (Merck, Darmstadt),
and the solutions were prepared in deionized 18 MΩ MiliQ water. Concentrations of
the stock solutions used for the BL reaction were the following: [KIO3]o = 0.1636 M,
[H2SO4]o = 0.1091 M, and [H2O2]o = 3.83 M. For all of the experiments, 11 mL of KIO3
stock solutions was transferred to the reaction vessel, and subsequently 11 mL of H2SO4
was added and the BL reaction was initiated by the addition of 3 mL of H2O2. The time
evolution of BL reaction was monitored from the moment of H2O2 addition until the end
of the 10th oscillation, by employing Pt electrode as a working electrode and Ag/AgCl as a
reference electrode.

In order to monitor the effect of the three benzenediol isomers (pyrocatechol, resorcinol
and hydroquinone) on the BL reaction, five stock solutions of different concentrations were
prepared for each of these three compounds. A small volume (100 µL aliquot) of these
stock solutions was added to the BL reaction mixture after the fifth oscillation, which
was arbitrarily chosen. Each experiment was performed in triplicate, and the measured
parameters were averaged.

2.2. EPR Spectroscopy Measurements of Hydroxyl Radical Scavenging by Benzenediols

In order to assess the ability of pyrocatechol, resorcinol, and hydroquinone to scavenge
the hydroxyl radical (HO•), electron paramagnetic resonance spectroscopy (EPR) coupled
with the spin trapping method was used. All of the chemicals were of p. a. grade.
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First, spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO; Fo-
cus Biomolecules) was purified according to the previously described procedure [42].
Hydroxyl radicals were generated by the Fenton reaction, carried out by adding H2O2
(Merck, Darmstadt) solution to the sample already containing FeSO4 (Merck, Darmstadt),
freshly prepared by dissolution in deaerated water, and DEPMPO, in the case of the ref-
erence sample, which did not contain analyte. Samples containing benzenediol isomers
were prepared according to the same procedure, with the emphasis that these compounds
were added to the reaction mixture before H2O2. Concentrations of FeSO4 and H2O2 were
0.17 mM and 1.43 mM in all samples, respectively, while on the other hand, three different
concentrations of benzenediols were used to assess their antiradical activity—450 mM,
50 mM, and 5 mM. Samples were withdrawn into thin, gas-permeable, capillary Teflon
tubes (Zeus Industries Inc.) and placed into the Bruker SHQE resonator. EPR spectra of
each sample were acquired two minutes after initiating the Fenton reaction by adding H2O2,
on a Bruker Elexsys II E540 X-band EPR spectrometer. The EPR parameters were as follows:
microwave frequency 9.85 GHz, central field 3510 G, sweep width 200 G, modulation
frequency 100 kHz, modulation amplitude 2 G, and conversion time 29.30 ms.

2.3. Computational Methods

All results were obtained from calculations using the density functional theory (DFT)
approach. Full geometry optimizations and subsequent frequency calculations were per-
formed using the B3LYP-D3 functional [43] as implemented in the Gaussian 09, Revision
D.01 [44]. The 6-311++G(d,p) basis set for carbon, oxygen, and hydrogen atoms and def2-
TZVPD for the iodine atom were utilized [45]. All calculations refer to water solution at
p = 101325 Pa and T = 335.15 K, in agreement with experimental conditions. To mimic
the water solution, the SMD continuum solvation model was used [46]. Restricted and
unrestricted calculations were applied for the closed-shell and open-shell structures, re-
spectively. The nature of the reactive species was confirmed by analyzing the results of the
subsequent frequency calculations in the harmonic approximation: only real frequencies
for equilibrium geometries and exactly one imaginary frequency for transition states (TSs)
were obtained.

As in our previously published paper [41], two types of reactions between the three
benzenediol isomers (PhOH) and intermediates, HO•, HOO•, I•, IO•, IO2•, I2O, HIO, and,
HIO2, were examined:

Free radical reactions including

PhOH + R• → PhO• + RH (1)

and redox reactions including

PhOH + I2O → Quin + HI + HIO (2)

PhOH + I2O → Quin + I2 + H2O (3)

PhOH + HIO → Quin + HI + H2O (4)

PhOH + HIO2 → Quin + HIO + H2O (5)

PhOH + HIO2 → Quin + HI + H2O2 (6)

where Quin denotes ortho, meta, and para quinone in the case of pyrocatechol (Cat),
resorcinol (Res), and hydroquinone (Hq), respectively. The thermochemical viability of the
reactions (1)–(6) was investigated in terms of the reaction Gibbs free energies (∆Gr) reaction.
The exergonic (∆Gr) free radical reactions were subjected to further kinetic calculations.
The Eckart method [47], also known as the zero-tunneling method (ZCT-0), was applied
to obtain the reaction rate constants. This method uses the Eckart function for generating
the ground-state potential energy function based on information on the stationary points
(reactants, transition state, and products) along MERP. To perform the Eckart method
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calculations, TheRate program [48] was utilized. This program has been successfully
applied for the calculation and reproduction of the experimentally obtained reaction rate
constants of bimolecular reactions [49–51].

3. Results
3.1. The Effect of Benzenediol Isomers on Bray–Liebhafsky Reaction

Potentiometry was used to follow the dynamics of the BL reaction, thereby detecting
the activity of all the redox-active species present in the reaction mixture. The dependence
of the recorded potential on time for the BL reaction (oscillogram) without any added
compounds is depicted in Figure 1. Additionally, all of the measured parameters used
to analyze the influence of the benzenediol isomers on the BL reaction are marked in
Figure 1. From the presented oscillogram, it can be observed that under the described
experimental conditions, the BL reaction passes through an induction period (τind) of
approx. 13 min, after which the system exhibits oscillatory behavior. The BL reaction
dynamics was followed until the end of 10 oscillations (τend), which lasted approx. 40 min.
The mean values of the parameters—τind, τend, period between the fifth and sixth oscillation,
τ5–6, and amplitude of the sixth oscillation, A6—obtained for the three experiments, carried
out without the addition of any analyte, are summarized in Table 1.
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Figure 1. Dependence of Pt electrode potential on time (oscillogram) of the Bray–Liebhafsky
reaction without any analyte added. Concentrations of the reactants were [KIO3]o = 0.1636 M,
[H2SO4]o = 0.1091 M, and [H2O2]o = 3.83 M. The reaction was carried out at 62 ◦C under constant
stirring at 900 rpm. Oscillogram properties marked represent induction period (τind), periods be-
tween consecutive oscillations (τ1–2, τ2–3, τ3–4, . . ., τ9–10), duration of oscillogram defined as the end of
10th oscillation (τend), and amplitude of 6th oscillation (A6).

Table 1. Mean values of induction period (τind), oscillogram duration (τend), period between fifth and
sixth oscillation (τ5–6), and amplitude of sixth oscillation (A6) obtained for Bray–Liebhafsky reaction
without benzenediol isomers.

τind (s) τend (s) τ5–6 (s) A6 (mV)

Mean value of BL reaction parameter 820 ± 40 2200 ± 400 140 ± 30 51 ± 9

In order to study the effect of benzenediol isomers on BL reaction dynamics, varying
concentrations of pyrocatechol, resorcinol, and hydroquinone were added to the reaction
mixture immediately after the end of the fifth oscillation. The concentration of these
three compounds in the BL system ranged between 60 µM and 2 mM. BL oscillograms
recorded for each of the three benzenediol isomers are shown in Figures 2–4.

From the data presented in Figures 2–4, it can be clearly observed that in certain
concentration ranges, pyrocatechol and resorcinol caused a sudden drop of potential im-
mediately after the addition of these compounds, while, on the other hand, hydroquinone
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induced the appearance of a new oscillation promptly after this compound was introduced
to the BL system. Moreover, by measuring and analyzing some of the oscillogram charac-
teristic parameters, it can be noticed that the addition of benzenediol isomers has the most
pronounced effect on the amplitude of the sixth oscillation, A6, the period between the fifth
and sixth oscillation, τ5–6, and consequently on the entire duration of the oscillogram, τend.
The effect of benzenediols addition on τ5–6 is depicted in Figure 5.

Chemosensors 2024, 12, x FOR PEER REVIEW 5 of 19 
 

 

In order to study the effect of benzenediol isomers on BL reaction dynamics, varying 
concentrations of pyrocatechol, resorcinol, and hydroquinone were added to the reaction 
mixture immediately after the end of the fifth oscillation. The concentration of these three 
compounds in the BL system ranged between 60 µM and 2 mM. BL oscillograms rec-
orded for each of the three benzenediol isomers are shown in Figures 2–4. 

 
Figure 2. Oscillograms obtained for BL reaction upon addition of different concentrations of py-
rocatechol after the completion of the fifth oscillation. Concentrations of pyrocatechol in BL system 
were as follows: (a) 0 µM; (b) 320 µM; (c) 400 µM; (d) 520 µM; (e) 640 µM and (f) 960 µM. Concen-
trations of other reactants were [KIO3]o = 0.1636 M, [H2SO4]o = 0.1091 M, and [H2O2]o = 3.83 M. The 
reaction was carried out at 62 °C under constant stirring at 900 rpm. 

Figure 2. Oscillograms obtained for BL reaction upon addition of different concentrations of pyrocat-
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as follows: (a) 0 µM; (b) 320 µM; (c) 400 µM; (d) 520 µM; (e) 640 µM and (f) 960 µM. Concentrations
of other reactants were [KIO3]o = 0.1636 M, [H2SO4]o = 0.1091 M, and [H2O2]o = 3.83 M. The reaction
was carried out at 62 ◦C under constant stirring at 900 rpm.

The dependence of τ5–6 on the concentration of pyrocatechol and resorcinol displays
a linear behavior in the entire selected concentration range. However, τ5–6 seems to be
more sensitive to the presence of resorcinol, as the corresponding slope of the linear plot
is much higher for this compound, as compared to pyrocatechol: (1500 ± 100) s/mM vs.
(410 ± 30) s/mM. These findings may indicate the higher reactivity of resorcinol with
some BL intermediates that are produced during the reaction, or with the starting reactants,
which is further corroborated by EPR experiments and DFT simulations. On the other hand,
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hydroquinone, within the experimental error limits, does not exhibit a significant effect
on τ5-6, which is supported by the fact that the value of τ5–6 for the highest hydroquinone
concentration does not differ markedly from the τ5–6 mean value obtained for the BL
reaction without the analyte.
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By performing the least square linear fitting of data points shown in Figure 5, the
intersections and slopes were calculated for all three isomers in Origin 9 software. These
curves were statistically processed to determine the Limit of Detection (LOD) and Limit of
Quantification (LOQ). LOD and LOQ are terms used to describe the lowest concentration of
a sample that can be detected and reliably measured by an analytical procedure, respectively.
The LOD and LOQ were calculated from a linear fit of τ5–6 vs. concentration, according
to [52]:

LOD = 3.3·σ
k

(7)

LOQ = 10·σ
k

(8)
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where σ is standard deviation of τ5–6 and is calculated using the difference between mea-
sured τ5–6 and the predicted values obtained from the linear regression fit. The parameter
k is a slope of the linear fit. The results are presented in Table 2.

Table 2. LOD and LOQ calculated for all three benzenediol isomers based on the dependence of τ5-6

vs. concentration.

Benzenediol Isomer LOD (mM) LOQ (mM)

Pyrocatechol 0.16 0.49
Resorcinol 0.14 0.41
Hydroquinone 1.6 4.8
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As observed from the LOD and LOQ values, the minimal concentration that could be
detected by the BL method is obtained for resorcinol.

The impact of the benzenediols on the amplitude of the sixth oscillation, A6, was,
however, different for each of the three compounds (Figure 6). Pyrocatechol and resorcinol,
on the one hand, induced observable changes in the values of the A6 parameter with
the increase of their concentrations, while hydroquinone, on the other hand, had no
significant impact on A6. While data collected for pyrocatechol showed a linear trend,
fitted by equation A6 = 16 mV/mM·cpyrocatechol + 52 mV (where cpyrocatechol represents the
concentration of the pyrocatechol in the BL system), increasing the resorcinol concentration
caused the exponential decay of A6, which could be fitted by the following equation:
A6 = 35 mV·e−(c

resorcinol
/0.16 mM) + 13 mV.

Even though hydroquinone did not exert any significant changes on either of the
two measured parameters, the appearance of the new peak immediately after the addition
of this compound to the BL reaction represents not only a qualitative feature, which can be
used to distinguish this benzenediol isomer from the other two, but also the amplitude of
this peak shows a strong dependence on the hydroquinone concentration (Figure 7). A very
good fit of this dataset was obtained by using the exponential function given by the follow-



Chemosensors 2024, 12, 211 9 of 18

ing expression: Ai = −90 mV·e−(C
hydroquinone

/0.5 mM) + 57 mV, where Ai is the amplitude
of the induced peak, and Chydroquinone represents the concentration of hydroquinone in the
BL system.
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3.2. Hydroxyl Radical Scavenging by Benzenediols—EPR Measurements

The EPR spectra of the DEPMPO/•OH spin adduct collected for the samples con-
taining 5 mM benzenediols only two minutes after the initiation of the Fenton reaction,
as well as for the reference sample containing no analyte, are shown in Figure 8a. For all
three isomers, a significant decrease of the typical DEPMPO/•OH spin adduct EPR signal
can be observed, indicating that all three compounds are able to scavenge HO• radicals
to varying degrees. As expected, the extent of the DEPMPO/•OH signal decay depends
strongly on the concentration of benzenediols in the Fenton reaction, which can be clearly
observed in Figure 8b. At a very high concentration (450 mM), all of the three compounds
exhibit excellent HO• scavenging activity. On the other hand, by observing the ratio of
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signal amplitudes acquired for the two lower benzenediol concentrations, more specifically
at 5 mM, it is possible to discern with high accuracy which of these compounds prevalently
reacts with HO• radicals. From the data shown in both Figure 8a,b, it may be unambigu-
ously deduced that the HO• radical scavenging activity decreases in the following order:
resorcinol > hydroquinone > pyrocatechol.
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Figure 8. (a) EPR spectra of DEPMPO/•OH spin adduct in the absence (top spectrum) and presence
of the three benzenediol isomers at 5 mM concentration. (b) Decrease of DEPMPO/•OH spin adduct
signal in the presence of the three benzenediol isomers at three different concentrations (5, 50, and
450 mM). The amplitude of the second peak (marked with * in panel (a)) was used for the calculation
of signal loss.

3.3. Computational Results

Due to the possibility of bond rotation around the C-O bond, resorcinol exhibits
three distinct conformations of hydroxyl groups in relation to the phenyl ring, namely
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syn-syn, anti-anti, and syn-anti (Figure S2). Similarly, hydroquinone displays cis and trans
conformations (Figure S2). The stability differences among the resorcinol conformers
are negligible (<1.0 kJ mol−1), and only 0.4 kJ mol−1 for the cis/trans conformers of
hydroquinone. As a result, all possible conformers, including syn-syn, anti-anti, and syn-
anti for resorcinol, as well as cis and trans for hydroquinone, were subjected to both
thermodynamic and kinetic analyses. The reaction Gibbs free energies (∆Gr) for reactions
(1)–(6) were calculated, and the results are presented in Table 3.

Table 3. Gibbs energies ∆Gr (kJ mol−1) of the reactions (1)–(6).

Compounds HO•
(1)

HOO•
(1)

I•
(1)

IO•
(1)

IO2•
(1)

I2O
(2)

I2O
(3)

HIO
(4)

HIO2
(5)

HIO2
(6)

Cat −174.7 −35.6 −4.5 −75.5 −17.7 −35.9 −181.3 −36.8 −144.2 60.9
syn-syn Res −151.2 −12.1 19.0 −52.0 5.8 113.2 −32.2 112.3 4.9 210.0
syn-anti Res −151.5 −12.4 18.7 −52.3 5.5 112.8 −32.5 111.9 4.5 209.7
anti-anti Res −152.1 −13.0 18.1 −52.9 5.0 113.3 −32.0 112.4 5.1 210.2
cis-Hq −172.7 −33.6 −2.5 −73.5 −15.6 −56.0 −201.3 −56.9 −164.3 40.8
trans-Hq −173.4 −34.3 −3.1 −74.2 −16.3 −56.7 −202.0 −57.6 −165.0 40.2

The mechanisms of oscillatory reactions by organic compounds are not well under-
stood, and some of the intermediate products have only been recently identified, making it
difficult to study [53]. It is believed that the redox reactions involved in these mechanisms
are particularly complex. However, recent reports have shown that oxidation reactions
between organic compounds and free radical intermediates occur through a hydrogen
atom transfer mechanism (HAT) [54,55]. For this reason, the HAT mechanisms for all
thermodynamically favorable reactions involving free radicals considered in this study
were further studied kinetically. Most transition states (TSs) for the HAT reactions were
successfully obtained, except for the HAT reaction of hydroquinone with the HO• radical,
for which all attempts to locate TSs were unsuccessful. It was therefore reasonable to
assume that this reaction is barrierless. To confirm this assumption, the HO• radical was
placed near the corresponding H atom and allowed to approach the reactive center until
product formation. The dependence of the total energy on the corresponding HO•–H
distance as a scan coordinate was analyzed. Based on the monotonous decrease in total
energy with decreasing HO•–H distance, it was concluded that this reaction is indeed
barrierless and, therefore, diffusion-controlled, with a corresponding reaction rate constant
of 1.91 × 10 9 M−1 s−1. The successfully obtained TSs for the reactions of pyrocatechol
and resorcinol with the HO• radical as well as the representative total energy profile for
the HO• radical for the HAT reaction with hydroquinone are depicted in Figure 9. The
optimized geometries for all the other successfully obtained TSs are provided in the Sup-
plementary Material (Figures S3–S6). The calculated activation free energies (∆G‡

a ) and
reaction rate constants (kZCT_0) are presented in Table 4.

Table 4. Activation energies (∆G‡
a ) (kJ mol−1) and rate constants (kZCT_0) (M−1 s−1) for exergonic

free radical reaction pathways.

Free Radicals HO• HOO• I• IO• IO2•
Pyrocatechol

∆G‡
a 16.3 49.6 53.63 19.0 44.2

kZCT_0 5.52 × 107 3.93 × 106 1.87 × 105 3.89 × 107 1.70 × 106

syn-syn Resorcinol
∆G‡

a 25.4 68.0 / 25.2 55.7
kZCT_0 3.33 × 108 1.55 × 105 / 1.65 × 107 1.38 × 105
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Table 4. Cont.

Free Radicals HO• HOO• I• IO• IO2•
syn-anti Resorcinol

∆G‡
a 25.8 63.1 / 20.8 53.7

kZCT_0 3.73 × 108 1.06 × 105 / 2.32 × 107 4.99 × 105

anti-anti Resorcinol
∆G‡

a 23.2 63.2 / 22.7 57.5
kZCT_0 8.54 × 108 0.80 × 105 / 1.69 × 107 0.75 × 105

cis-Hydroquinone
∆G‡

a ≈0.0 49.4 97.91 22.3 39.2
kZCT_0 ≈1.9 × 109 4.16 × 106 1.04 × 10−2 2.49 × 107 3.25 × 106

trans-Hydroquinone
∆G‡

a ≈0.0 49.3 100.12 21.1 38.7
kZCT_0 ≈1.9 × 109 5.46 × 106 5.92 × 10−3 3.13 × 107 3.57 × 106
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4. Discussion

In the present work, it has been shown that all three benzenediol isomers exhibit
different behaviors in the Bray–Liebhafsky reaction. Namely, out of all the observed
parameters, the period between the fifth and sixth oscillation of the BL reaction shows
a linear response to increasing concentrations of pyrocatechol and resorcinol. Also, the
amplitude of the sixth peak showed strong dependence on the concentration of these two
isomers. In the case of pyrocatechol, this dependence was linear, while for resorcinol, it
was an exponential decay. Neither of these BL parameters was significantly affected by
the presence of hydroquinone, but hydroquinone solely induced the emergence of a new
peak immediately after addition to the BL reaction mixture, whose amplitude showed an
exponential dependence on hydroquinone concentration. Based on the observed results, it
may be suggested that thanks to the sensitivity of the BL reaction to these three isomers, BL
reaction may be employed as a chemosensor for these three compounds. To the best of the
authors’ knowledge, this is the first report where the BL reaction was used and optimized
as a system for distinguishing between isomers of any compound. In general, among
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well-known oscillatory reactions, so far, the Briggs–Rauscher reaction has been frequently
used for the detection and quantification of various compounds as well as distinguishment
between isomers of the same compound [56–63].

All three isomers of benzenediol have previously been investigated in Briggs–Rauscher [63]
and Orban–Epstein oscillatory reactions [64]. According to the work of Cervellati et al. [63],
whereby the effects of pyrocatechol and resorcinol on the inhibitory period of the
Briggs–Rauscher reaction were studied, pyrocatechol and resorcinol showed the opposite
trends compared to the results presented in this study. Namely, the slope of the linear
dependence between the inhibitory period and the concentration of these two benzenedi-
ols was one order of magnitude higher for pyrocatechol in the Briggs–Rauscher reaction.
Furthermore, the Briggs–Rauscher reaction was shown to be sensitive to very low concen-
trations of benzenediols in the range of several µM [63]. However, the drawback of such
high sensitivity of the inhibitory period to micromolar concentrations is the longer duration
of the experiments, since the inhibitory time for these two compounds was in the range
of 1000–3500 s, whereas the inhibitory time in the present study, τ5–6, was up to 1200 s,
making the presented experiment setup less time consuming and more efficient. On the
other hand, in the Orban–Epstein oscillatory reaction [64], the obtained slopes (inhibitory
time vs. benzenediol concentration) for pyrocatechol (estimated from the tabulated data)
and resorcinol were 256 and 132 s mM−1, respectively. The slopes presented in this study
are an order of magnitude higher for these two compounds. Furthermore, the concentration
range used in Orban–Epstein reaction was approx. 2–7 mM, while the range employed
with Bray–Liebhafsky reaction was less than 1 mM. According to the sensitivity (deter-
mined by the slope of inhibitory time vs. concentration dependence), the Bray–Liebhafsky
reaction assumes the intermediate position in the following sequence: Briggs–Rauscher >
Bray–Liebhafsky > Orban–Epstein. It should be stressed that in these three systems, higher
sensitivity corresponds to a narrow and lower concentration range. However, it is com-
plicated to compare the responses of chemical oscillatory systems due to their convoluted
mechanisms and different phase spaces in which oscillatory dynamics occur.

Even though the sensitivity of τ5–6 and A6 to the presence of hydroquinone in the BL
reaction was negligible, it displayed a unique feature that so far has not been reported in
the other two reactions [63,64]. Namely, a new oscillation emerged immediately after the
addition of hydroquinone, making it qualitatively easily distinguishable from the other
two benzenediols. Moreover, the amplitude of this new oscillation, Ai, depends on the
concentration of hydroquinone, thereby enabling the quantification of hydroquinone.

The different behavior of these three isomers in the BL system is a consequence of the
differing reactivity with the numerous chemical species present in the BL, among which
presumably are non-radical and radical intermediates. The measured signals shown in
Figures 1–4 are exceptionally complex since they arise from all of the oxidizing and reducing
species present in the BL system and those produced in reactions between each benzenediol
and the BL-generated species. For this reason, the reactivity of benzenediols was assessed
using the Fenton reaction as an HO• chemical generator and the EPR spin trapping method.
According to these measurements, resorcinol exhibits the highest HO• scavenging activity,
while pyrocatechol shows the lowest reactivity towards HO• radicals in the Fenton reaction.
In the interpretation of these results, one has to consider also the complexity of the Fenton
reaction [65] as well as the specificities of the spin trapping method, such as the reactivity
of the spin trap, stability of the spin adduct, and in general, the redox behavior of the spin
trap/spin adduct.

Hence, the computational considerations of the thermodynamic and kinetic properties of
benzenediol isomers in reactions with non-radical and radical intermediates were undertaken.

The thermodynamic properties of the three benzenediol isomers will be discussed
first. In a previous publication, we determined the reactivity of pyrocatechol towards the
investigated intermediates, HO•, HOO•, I•, IO•, IO2•, I2O, and HIO, by calculating the
enthalpies of reactions (1)–(6) using the B3LYP-D3 and M06-2X methods as well as reaction
energies using the coupled cluster CCSD and CCSD(T) methods [41]. All four theoretical
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models showed consistent trends, with the reactivity order being as follows: HO•≈ I2O
>HIO2 > IO• >> HOO• ≥ IO2. In this paper, we considered the reaction Gibbs free energies
to determine the reactivity of the three benzenediol isomers towards selected intermediates
(Table 3). The order of reactivity is the same as previously observed when considering
reaction energies, with the addition of a slightly exergonic reaction with I•. Thus, we also
included the reaction with I• in further kinetic studies. In the case of all three conformers of
resorcinol, reactions with HO•, HOO•, IO•, and I2O (reaction 3) were found to be thermo-
dynamically favorable, with the reactivity order as follows: HO• >> IO•>I2O≈HOO•. The
∆Gr values were comparable between the three resorcinol forms. Hydroquinone was reactive
towards the same intermediates as pyrocatechol; however, the reactivity order is different:
I2O>>HO• ≈ HIO2 > IO• ≈ HIO >> HOO• ≈ IO2• > I•. A comparison between the reaction
energies for all intermediates in the case of pyrocatechol and hydroquinone indicated that
pyrocatechol was more reactive towards radical intermediates, whereas hydroquinone was
more reactive towards non-radical ones.

The subsequent kinetic study of thermodynamically favorable reactions revealed the
following. For pyrocatechol, the reaction with the thermodynamically least favorable I•
radical remained the least favorable, with a rate constant of 1.87 × 105 M−1 s−1. The order
of reactivity for pyrocatechol was as follows: HO• > IO• > HOO• > IO2• > I•. In the case of
resorcinol, the IO2• radical was also included in the kinetic study due to the reaction being
only slightly endergonic (~5 kJ mol−1). The order of reactivity for the syn-syn and anti-anti
isomers was HO• > IO• > HOO• ≈ IO2•, while for the syn-anti isomer, the reaction with
IO2• was approximately 4.5 times faster than the reaction with HOO•. Notably, the reaction
of resorcinol with HO• was faster than that of pyrocatechol. The barrierless formation of
paraquinone and H2O in the reaction of hydroquinone with the HO• radical demonstrated
that this reaction was diffusion-controlled, with a corresponding reaction rate constant of
1.91 × 109 M−1 s−1 (Figure 9). As with pyrocatechol, the thermodynamically least favorable
intermediate, I•, was characterized by a very high activation energy (≈100 kJ mol−1) and
very slow reaction rate constant in the case of both hydroquinone forms. The rate constants
for trans-hydroquinone were higher than those for the cis form, making trans-hydroquinone
the more reactive form. The order of reactivity for both forms was the same: HO• > IO• >
HOO• > IO2• > I•. As with resorcinol, the reaction of hydroquinone with HO• was faster
than that of pyrocatechol.

Lastly, we compared the results of DFT simulations and EPR experiments for the
HO• radical. The EPR experiments showed the following order of reactivity: resorcinol
> hydroquinone > pyrocatechol. Similarly, in the DFT study, pyrocatechol showed the
weakest reactivity towards this radical. However, a small discrepancy was observed in the
case of resorcinol and hydroquinone. The reaction of hydroquinone was barrierless and
was assigned the rate constant of 1.91 × 109 M−1 s−1. For resorcinol, the rate constants
for the syn-syn, syn-anti, and anti-anti conformations were 3.33 × 108, 3.73 × 108, and
8.54 × 108 M−1 s−1, respectively. Considering all three forms of resorcinol, both resorcinol
and hydroquinone exhibited similar reactivity towards the HO• radical, with hydroquinone
being slightly more reactive according to DFT calculations. As previously discussed, the
discrepancy between the results obtained by EPR spectrometry and DFT kinetic calculations
for hydroquinone and resorcinol may arise from the complexity of the Fenton reaction
used herein to generate HO• radicals [65] as well as the redox behavior of spin trap or
spin adduct.

5. Conclusions

All three benzenediol isomers (pyrocatechol, resorcinol, and hydroquinone) exhibit
different behavior in the oscillatory Bray–Liebhafsky (BL) reaction. Based on the ob-
served results, the BL reaction shows great potential to be applied as a chemosensor
for these three compounds. The period between the fifth and sixth oscillation, ampli-
tude of the sixth oscillation and in the case of hydroquinone, an emergence of a new
oscillation in the BL reaction, are the selected parameters used for the identification and
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quantification of these benzenediol isomers. The obtained results in the oscillatory BL reac-
tion were compared to the other two oscillatory reactions used to examine benezenediol
isomers—Briggs–Rauscher and Orban–Epstein. According to the sensitivity, the Bray–
Liebhafsky reaction assumes the intermediate position among these three reactions. How-
ever, the BL reaction is unique in its ability to clearly distinguish hydroquinone from the
other two isomers. Furthermore, electron paramagnetic resonance spectroscopy and DFT
calculations were performed in order to provide insights into the mechanism of benzenediol
reactions with the BL system.
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hydroquinone molecule; Figure S3: Optimized geometries of transition states for the HAT reaction
pathways of pyrocatechol, resorcinol, and hydroquinone with the HOO• radical. All distances are
reported in Å. Carbon atoms are depicted in gray, oxygen atoms in red, and hydrogen atoms in
white color; Figure S4: Optimized geometries of transition states for the HAT reaction pathways of
pyrocatechol and hydroquinone with the I• radical. All distances are reported in Å. Carbon atoms
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Figure S5: Optimized geometries of transition states for the HAT reaction pathways of pyrocatechol,
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50. Tošović, J.; Marković, S. Antioxidative Activity of Chlorogenic Acid Relative to Trolox in Aqueous Solution—DFT Study. Food

Chem. 2019, 278, 469–475. [CrossRef]
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