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Abstract: Electrochemical DNA sensors for DNA damage detection based on electroactive poly-
mer poly(proflavine) (PPFL) that was synthesized at screen-printed carbon electrodes (SPCEs) from
phosphate buffer (PB) and two natural deep eutectic solvents (NADESs) consisting of citric or
malonic acids, D-glucose, and a certain amount of water (NADES1 and NADES2) were devel-
oped. Poly(proflavine) coatings obtained from the presented media (PPFLPB, PPFLNADES1, and
PPFLNADES2) were electrochemically polymerized via the multiple cycling of the potential or poten-
tiostatic accumulation and used for the discrimination of thermal and oxidative DNA damage. The
electrochemical characteristics of the poly(proflavine) coatings and their morphology were assessed
using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron
microscopy (SEM). The working conditions for calf thymus DNA implementation and DNA damage
detection were estimated for all types of poly(proflavine) coatings. The voltammetric approach made
it possible to distinguish native and chemically oxidized DNA while the impedimetric approach
allowed for the successful recognition of native, thermally denatured, and chemically oxidized DNA
through changes in the charge transfer resistance. The influence of different concentrations of conven-
tional antioxidants and pharmaceutical preparations on oxidative DNA damage was characterized.

Keywords: proflavine; natural deep eutectic solvent; electropolymerization; electrochemical DNA
sensor; voltammetry; electrochemical impedance spectroscopy; DNA damage detection

1. Introduction

An emerging tool in DNA damage detection is the use of electrochemical biosensors
due to their low cost, ease of manufacturing, fast response, excellent reproducibility, and
sensitivity [1]. Damage to double-stranded DNA (dsDNA) structures can be caused by
different factors, i.e., chemical oxidative damage from drugs [2], nucleases, or reactive
oxygen species (ROS) [3]; ionizing radiation [4]; ultrasound [5]; temperature [6]; or electric
field action [7]. During oxidative stress, the processes caused by high levels of different
ROS cellular antioxidant systems cannot be fully neutralized. As a result, ROS cause harm
to proteins, lipids, nucleic acids, and cell structures. These disruptions can strongly affect
the cell state up to cell death [8]. Generally, oxidative DNA damage can be the cause
of mutations, premature aging, and the initiation of serious diseases such as different
forms of cancer, diabetes, neurological disorders [9], asthma, atherosclerosis [8], and even
Alzheimer’s disease [10]. Therefore, the development of precise sensors for DNA damage
detection is a pressing challenge.
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Electrochemical DNA sensors can be used for complementary chain hybridization de-
tection [11], intercalator determination [12], and DNA damage registration [13]. Often, DNA
sensors contain electropolymerized monomers that constitute the layer responsible for redox
signal generation and a DNA layer as a biorecognizing element. Differently charged polymers
(positive) and DNA molecules (negative) ensure the electrostatic immobilization of the biore-
ceptor. Various conductive (polyaniline, polypyrrol, poly(3,4-ethylenedioxythiophene)) and
electroactive (polyphenothiazines, polyazines, polyphenoxazines, polyacridines) polymers
can be used in DNA sensor assembly [14]. Proflavine acridine dye with two primary amino
groups is of interest, among other substances (Figure 1).
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Proflavine can intercalate dsDNA and is often used as an electrochemical indicator
to investigate hybridization events by means of electrochemical impedance spectroscopy
(EIS) or voltammetry measurements [15,16]. Dye electropolymerization leads to the forma-
tion of an electroactive polymer coating that can be used in electrochemical sensors and
biosensors [17].

However, there are some disadvantages of electropolymerization that should be over-
come to broaden the application of electrochemical biosensors in medicine, food safety, and
ecology. Organic monomers have low solubility in aqueous media and could reduce the
efficiency of electropolymerization. To solve this problem, natural deep eutectic solvents
(NADESs) can be used. NADESs are formed from hydrogen bond acceptor (HBA) and
hydrogen bond donor (HBD) molecules; their combination results in a decrease in the
mixture’s melting point compared to that of the initial components. NADES components,
e.g., sugars, organic acids, amino acids, polyols, urea, and choline chloride, widely occur
in cells [18]. Organic molecules (rutin, paclitaxel, ginkgolide B) and even macromolecules
(DNA, albumin, starch) show much better solubility in NADESs compared with water [19].
The electropolymerization from NADESs can be used to obtain polymeric layers with
diverse morphologies and promising electrochemical characteristics [20]. The majority of
NADES media previously used for electropolymerization are based on choline chloride as a
conventional HBA. Mixtures of other perspective components such as organic acids, amino
acids, polyols, and sugars have been used as media for prosperous metal nanoparticle syn-
thesis [21] and in numerous extraction applications in food analysis [22] and medicine [23].
However, there have only been a few cases of their use as electropolymerization media for
DNA sensor development [24–26].

In this work, we describe the determination of DNA thermal and oxidative damage
with a DNA sensor based on poly(proflavine) electropolymerized from natural deep eutectic
solvents containing citric or malonic acids, glucose, and water. Impedimetric DNA sensors
were developed, allowing us to distinguish native, thermally denatured, or chemically
oxidized DNA by changes in the charge transfer resistance. The antioxidative effect of
three different antioxidants—ascorbic acid, quercetin, and hydroquinone—were evaluated.
It was shown that they can exert either a pro-oxidative or an antioxidative influence on
oxidative mixtures depending on their concentration.

2. Materials and Methods
2.1. Reagents

3,6-diaminoacridine hydrochloride (proflavine) (dye content 95%) and DNA from
calf thymus were purchased from Sigma-Aldrich (Saint Louis, MO, USA). D-glucose
was obtained from Fischer Chemical (Loughborough, UK), citric acid monohydrate was
from Tatchimproduct (Kazan, Russia), and malonic acid was from Acros Organics (Geel,
Belgium). Other reagents were used without additional purification due to their being
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of analytical grade. Millipore Q deionized water was used for all working solutions.
Voltammetric and impedimetric investigations were carried out in 0.025 M phosphate
buffer (PB), pH 7.0, which contained 0.1 M KCl. The pH value range changed from 2.0 to
9.0 in the pH dependence experiments.

2.2. Apparatus

The potentiostat–galvanostat AUTOLAB PGSTAT 302N (Metrohm Autolab b.v., Utrecht,
The Netherlands), with an FRA2 module, was used to conduct voltammetric and EIS
investigations. A three-electrode system was designed as a screen-printed carbon elec-
trode (SPCE). A DEC 248 printer (DEK, London, UK) was utilized for SPCE printing on
Lomond PE DS Laser Film (thickness 125 µm, Lomond Trading Ltd., Douglas, Isle of Man).
Conductive tracks were created using PSP-2 silver paste (Delta-Paste, Moscow, Russia)
and carbon/graphite paste C2030519P4 (Gwent group, Pontypool, UK). Dielectric paste
D2140114D5 (Gwent group, Pontypool, UK) was applied for printing an insulating layer.
The SPCEs were treated at 80 ◦C until full solidification. The dimensions of the three-
electrode system were 11 × 27 mm and the working electrode area was equal to 3.8 mm2. A
Ag/AgCl pseudo-reference electrode was a part of screen-printed system and all potentials
were given versus this one. The boxed connector (DropSens, S.L., Asturias Llanera, Spain)
provided the SPCEs contact with the potentiostat. The PPFL layers were characterized
using cyclic voltammetry (CV) and EIS approaches.

The EIS measurement parameters were established as follows: potential frequency
from 100 kHz to 0.04 Hz; amplitude of the applied sine potential—5 mV. The half-sum of
the peak potentials for 0.01 M [Fe(CN)6]3−/4−redox probe in 0.025 M PB was accepted as
the equilibrium potential. Nyquist diagrams were recorded using the conventional Randles
equivalent circuit Rs(C[RW]), where Rs is the resistance of the solution, R is the charge
transfer resistance, C is the capacity, and W is the Warburg impedance. The impedance
parameters were further calculated from the Nyquist diagram fitting corresponding to
the Rs(R1C1)(R2C2) equivalent circuit using NOVA 1.11.2 software (Metrohm Autolab b.v.,
Utrecht, The Netherlands).

Metrohm DropSens DRP-110 SPCEs (DropSens, S.L., Asturias Llanera, Spain) were
used as a substrate for modifying coatings to obtain scanning electron microscopy (SEM)
images with the help of a Merlin™ high-resolution field-emission scanning electron micro-
scope (Carl Zeiss AG, Oberkochen, Germany) and ZeissSmartSEM software (V05.06).

ImageJ 1.54g free software was used for polymer particle size assessment based on the
SEM images.

Statistical data treatment was performed using OriginPro 8.1 software (OriginLab
Corp., Northampton, MA, USA).

2.3. Proflavine Electropolymerization and DNA Sensor Assembling

NADES1 was prepared by mixing 0.21 g of citric acid monohydrate and 0.18 g of
D-glucose with 90 µL of deionized Millipore Q® water (Simplicity® water purification
system, Merck-Millipore, Mosheim, France). The molar ratio of NADES1 was equal to 1:1:6
for citric acid, D-glucose, and water, respectively. NADES1 containing 0.085 M proflavine
was prepared by adding 6.6 mg of proflavine to the NADES1 components listed above.

NADES2 was prepared as a mixture of 0.1 g malonic acid and 0.18 g D-glucose with
the addition of 108 µL of deionized Millipore Q® water. The molar ratio of NADES2
corresponded to 1:1:6 for malonic acid/D-glucose/water. NADES2 containing 0.085 M
proflavine was prepared by adding 6.6 mg of proflavine to the NADES2 components
listed above.

All components of NADES1 and NADES2 were homogenized by vortexing for 1 min,
followed by sonication for 30 min. The ultrasound-assisted approach was successfully used
as a fast and safe method for the synthesis of NADES1 [24] and reline [27] deep eutectic
solvents in previous work carried out by our group.
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After the synthesis, 100 µL of the NADES1 or NADES2 containing 0.085 M proflavine
was drop-casted onto the three-electrode system to obtain full coverage of the electrodes’
surface. Three variants of electropolymerization were used to obtain the polymer layers:
potentiodynamic, potentiostatic, and mixed modes. In potentiodynamic mode, the potential
was cycled 20 times between −1.2 and 1.2 V at a scan rate of 0.1 V/s. In potentiostatic
mode, a potential of 1.2 V was applied for 300 s. In mixed mode, a potential of 1.2 V was
applied for 300 s followed by 20 cycles between −1.2 and 1.2 V at a scan rate 0.1 V/s. The
appropriate coatings are denoted below as PPFLNADES1 and PPFLNADES2.

As a reference, PPFLPB was also obtained from the 0.5 mM proflavine solution in
0.025 M PB. A lower proflavine concentration in aqueous solution was associated with
worse solubility in water against NADESs. SPCE was covered with 100 µL of proflavine
solution and the potential of the electrode was cycled 20 times between −0.6 and 1.2 V at a
scan rate of 0.1 V/s. The resulting layer was denoted as PPFLPB.

After the electropolymerization, the electrodes were washed with deionized water and
dried in air at ambient temperature. Before the DNA immobilization, the electrochemical
stabilization of the polymer layers was carried out to remove all unbound components of
the coverings. There were several approaches that were tested for the best stabilization
effect: stabilization in open circuit mode (100 µL of working PB buffer drop-casted onto the
SPCE, 30 min), multiple scanning in 100 µL of working PB buffer with or without changing
the solution after each cycle (10 cycles between −0.6 and 0.6 V, 0.1 V/s), and polarization at
anodic potential followed by multiple scanning (1 V, 300 s, and then 10 cycles between −0.6
and 0.6 V, 0.1 V/s). Different stabilization approaches were chosen as optimal methods for
each electropolymerization medium used: stabilization in open circuit mode for PPFLPB,
multiple scanning in one drop of working PB buffer for PPFLNADES1, and multiple scanning
in one drop of working PB buffer with previous polarization for PPFLNADES2.

To immobilize DNA from calf thymus, a 2 µL aliquot of 1 mg/mL DNA solution
in deionized water was dried or incubated at the working electrode surface from 10 to
40 min under Eppendorf tube. DNA samples were either native or thermally denatured
or chemically oxidized. The DNA stock solution was heated at 95 ◦C for half an hour
and then sharply cooled in ice crumbs for 5 min to perform thermal denaturation. The
oxidative mixture consisted of 0.9 mL of 4 mM CuSO4 and 1.3 µL of 30% H2O2 and was
used for oxidative DNA damage after 1 h of treatment. To remove cupric ions from the
resulting layer, 4 mM ethylenediaminetetraacetic acid disodium salt (EDTA) solution was
used. Another variant of DNA oxidation was performed by its treatment with Fenton
reagent consisting of 0.4 mM EDTA, 2 M NaOH, 0.1 mM FeSO4, 0.4 mM ascorbic acid, and
0.9 mM H2O2.

2.4. Antioxidative Effect Assessment and Real-Sample Analysis

To evaluate the antioxidative effects of commonly used antioxidants—ascorbic acid,
quercetin, and hydroquinone—standard solutions (1 mM–0.1 µM) were added to the
oxidative mixture based on CuSO4 and H2O2 within its interaction with DNA. Furthermore,
the antioxidative effects of pharmaceutical preparations containing ascorbic acid (sachet
and tablets with glucose) were investigated. All pharmaceutical preparations were bought
at local pharmacies.

3. Results
3.1. Electropolymerization of Proflavine and Estimation of Poly(proflavine)
Electrochemical Characteristics

The multiple scanning of the potential in 0.5 mM proflavine solution in 0.025 M
PB, pH 7.0, highlighted characteristic changes in the redox peaks on voltammograms
(Figure 2a). At the first scan, the irreversible oxidation wave at about +0.75 V was detected,
corresponding to the cation radical formation. The sufficiently low potential of cation
radical formation could be attributed to the presence of two primary amino groups in the
dye molecule [28]. This peak decreased with the scan number, indicating the involvement
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of the cation radicals into the chain growth processes. The potential shift of the redox peaks
on the voltammograms was attributed to the accumulation of oligomeric and polymeric
products on the SPCE surface, leading to minor electron transfer hindrance due to an
increase in the layer thickness. The pair of redox peaks at +0.15 and −0.27 V was attributed
to the poly(proflavine) layer formation on the SPCE surface. The increase in these peaks
proved the successful deposition of the polymer. The peak positions on the potential axis
differ slightly from those formed on the GCE surface shown in Ref. [17].
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Figure 2. Multiple cyclic voltammograms recorded on the SPCE in (a) 0.025 M PB, pH 7.0, containing
0.5 mM proflavine or 0.085 M proflavine in (b) NADES1 and (c) NADES2; 0.1 V/s. Arrows indicate
changes with increased number of cycles.

Multiple cycling voltammograms recorded for NADES1 containing 0.085 M proflavine
are presented in Figure 2b. The redox peaks of the polymeric form in the viscous NADES1
were less resolved and shifted to the anodic area (+0.6 and +0.15 V), which indicated that
electron transfer was hampered. Cation radical formation signals appeared at potentials of
approximately 1.1 V and consequently reduced with the scan number. The decay of the
signal from the first to the second scan could be attributed to the filling of the sensor surface
with the deposited electropolymerization product and the transfer from the bare to the
modified surface. From the second to the twentieth cycle, the currents grew because of the
deposition of the conductive product, which acts as a mediator system and promotes redox
processes. As the NADES2 viscosity was less than that of NADES1 and the diffusion of
the monomer was less hindered, the peaks on voltammogram 2c (at +0.6, +0.1, and +1.1 V)
were much higher and better resolved. The appearance and behavior of the polymer peaks
and cation radical signals in NADES2 were similar to those in NADES1.

Together with the potentiodynamic mode of electropolymerization in NADES1 and
NADES2, potentiostatic and mixed modes were tested (Figure S1). In the case of 0.085 M
proflavine in NADES1 solution, the use of the mixed mode led to the better expressive-
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ness of the redox peaks that could be attributed to the greater accumulation of polymeric
product onto the SPCE surface during the two polymerization steps (potentiostatic + po-
tentiodynamic). The accumulation of the electroactive polymer resulted in larger potential
differences between the poly(proflavine) redox peaks. The current drop in the potentiostatic
mode for the 0.085 M proflavine in NADES2 (Figure S1c) was less rapid than in NADES1
(Figure S1a).

The SPCE modified with PPFLPB, PPFLNADES1, and PPFLNADES2 demonstrated a
pair of peaks on the cyclic voltammogram (Figure S2) when transferred to the working
buffer with no monomer. The potentiostatic mode was chosen for PPFLNADES1 as it had
demonstrated higher redox current values and good signal reproducibility. For PPFLNADES2,
in spite of higher currents in the mixed regime, potentiodynamic electropolymerization
was preferred as it showed better signal reproducibility.

Three types of polymeric layer signal stabilization were used in this investigation (see
Section 2.3). The stability of the redox signals was assessed for six electrodes modified
using the same set of reagents. All three stabilization approaches gave the same average
redox signal for PPFLPB, but better signal reproducibility was obtained after stabilization
in the open circuit mode. For PPFLNADES1, multiple cycling led to an increase in redox
currents during stabilization, which required the additional treatment of polymer coating.
Changing the working buffer solution after each scan resulted in the partial degradation
of the coating and the poor reproducibility of the redox signal; hence, multiple scanning
with no working buffer change was chosen as the optimal stabilization technique. This
technique was also preferable for the PPFLNADES2 coating.

The slope of the bilogarithmic dependence of the peak current (Ip) on the scan rate (ν)
for PPFLPB indicated the mixed diffusion–adsorption control of the polymer conversion
(d(logIpa)/d(logν) = 0.769 ± 0.012 and d(logIpc)/d(logν) = 0.857 ± 0.008, respectively). The
use of natural deep eutectic solvents instead of aqueous solutions resulted in a higher
contribution of adsorption in the limiting step of the redox conversion. The slopes were
equal to d(logIpa)/d(logν) = 0.900 ± 0.005 and d(logIpc)/d(logν) = 0.893 ± 0.004 and
d(logIpa)/d(logν) = 0.881 ± 0.006 and d(logIpc)/d(logν) = 0.887 ± 0.005 for PPFLNADES1
and PPFLNADES2, respectively. Typical voltammograms of SPCEs covered with PPFLPB,
PPFLNADES1, and PPFLNADES2 are shown in Figure S3.

The pH dependences for the obtained poly(proflavine) coatings were also compared
and the relevant electrochemical characteristics were calculated. Typical voltammograms
for PPFLPB, PPFLNADES1, and PPFLNADES2 in 0.025 M PB in pH ranging from 2.0 to 9.0 are
presented in Figure S4. The oxidation peak current of PPFLPB decreased in pH ranging
from 2.0 to 5.0, stabilized in weakly acidic areas, and increased from neutral to alkaline
media. The reduction peak current of PPFLPB increased with the pH across the entire range
studied (Figure 3a) whereas its value for PPFLNADES1 was stable in strongly acid media and
demonstrated an increase with the transfer from weakly acidic to alkaline solutions. On
the contrary, PPFLNADES1 showed a reduction in the oxidation peak current in pH ranging
from 2.0 to 5.0 and then remaining unchanged up to pH 9.0 (Figure 3b). The oxidation peak
current of PPFLNADES2 changed irregularly in pH, ranging from 2.0 to 6.0 with a slight
decrease up to pH 9.0. The reduction peak current of PPFLNADES2 decreased in strongly
acidic and alkaline solutions, with the maximum observed at pH ranging from 5.0 to 7.0
(Figure 3c).

The half-sum of the peak potentials on the voltammograms was used as an estimate of
the equilibrium potential Em. The appropriate slopes of the linear range (2–9) of the Em-pH
dependencies for all poly(proflavine) coatings are presented in Table 1.
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covered with (a) PPFLPB, (b) PPFLNADES1, and (c) PPFLNADES2 at pH values of 2.0–9.0 (average ± S.D.
for eight individual sensors).

Table 1. Slopes of the linear part of the Em-pH dependency for the PPFLPB, PPFLNADES1, and
PPFLNADES2 coatings.

Coating Slope dEm/dpH, V/pH

PPFLPB −0.064 ± 0.002
PPFLNADES1 −0.068 ± 0.001
PPFLNADES2 −0.057 ± 0.001

The closest value to the theoretical Nernstian slope value was achieved with the
PPFLNADES2 layer, corresponding to the transfer of an equal number of electrons and pro-
tons in the electrode reaction. The small deviation from the Nernstian slope detected for two
other coatings could be attributed to the non-equilibrium state of the polymeric coatings.

3.2. Scanning Electron Microscopy and Particle Size Evaluation

SEM was used to estimate the morphology of the poly(proflavine) coatings synthe-
sized from different media. In the absence of polymer, the bare SPCE showed carbon
nanoparticles with a well-defined structure, with an average size of 35 ± 5 nm (Figure 4a).
As can be seen from Figure 4, electropolymerization in phosphate buffer and NADESs
was carried out on carbon nanoparticles, and different efficiencies were observed. After
proflavine electropolymerization from phosphate buffer, PPFLPB exhibited a microgran-
ular layer consisting of microspheres with an average size of approximately 57 ± 9 nm
(Figure 4b). In contrast to this, the coatings obtained from the natural deep eutectic solvents
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demonstrated a uniform layer consisting of smaller polymer granules with average sizes of
46 ± 8 nm and 42 ± 4 nm for PPFLNADES1 and PPFLNADES2, respectively (Figure 4c,d).
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Figure 4. SEM images of (a) bare SPCE and SPCE covered with (b) PPFLPB, (c) PPFLNADES1, and
(d) PPFLNADES2.

SEM data were also used for the assessment of the poly(proflavine) particle size
distribution (Figure 5).

This information is crucial for sensor development as the distribution of particles
strictly affects the reproducibility and electrochemical behavior of the modifying layer.
Approaches based on SEM or TEM image processing for particle size evaluation have been
widely used in the literature [29]. This method is rather accurate and reliable as it relies
on the absolute length values. There are several commercial image-processing software
products (National Instruments—Vision Builder, Image Pro, EPIX-XCAP) suitable for the
investigation of particle morphology and area or length calculations. In our work, we used
the free open-source software ImageJ 1.54g to carry out SEM image analysis. The obtained
histograms describe the dependence between the size of the particles and their number.
The particles were close to the normal Gaussian distribution with the maximum value at
the length approximately corresponding to the calculated average size of the particles. This
type of distribution proved the relative uniformity of the polymer layers.
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3.3. DNA Implementation in Surface Layers

To include the DNA molecules into the modifying electropolymerized layer, several
methods are available, including adding the aliquot of DNA solution or an exact quantity
of DNA powder/fibers to the electropolymerization media [30] or using the drop-cast
approach based on placing the DNA solution onto the electrode surface, followed by
drying or incubation [17]. In addition, the covalent binding of the DNA molecule to the
components of the modifying layer is also possible [31]. The drop-cast approach is easier
and usually leads to satisfactory results. DNA immobilization should provide the target
analyte access to the DNA, and a DNA sensor response with an adequate lifetime and good
reproducibility is desired [32]. The physical adsorption of negatively charged DNA on
the positively charged electroactive polymers is driven by electrostatic forces. Therefore,
DNA implementation into the modifying layer should lead to changes in voltammograms
or Nyquist diagrams. Moreover, DNA damage caused by high temperatures or chemical
oxidants will lead to further changes in the electrochemical parameters.

The dsDNA from calf thymus was physically adsorbed onto the PPFLPB, PPFLNADES1,
and PPFLNADES2 coatings. Here, a 2 µL aliquot of 1 mg/mL DNA solution was drop-casted
onto the SPCE surface and either dried or incubated under the Eppendorf tube for 10–40 min
at ambient temperature. As DNA molecules are large and non-conductive, their successful
implementation leads to a decrease in the current (Figure 6). The changes in the currents
were more evident for the oxidation currents. In general, the DNA implementation effect
was independent of the DNA immobilization protocol for the PPFLPB and PPFLNADES1
coatings. For these sensors, 10 min of immobilization was chosen as the optimal procedure.
For PPFLNADES2, maximal changes were detected after incubation for 20 min. For the
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further experiments with PPFLNADES2/DNA, incubation for 20 min was chosen as the
optimal DNA immobilization procedure.
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Figure 6. Relative changes in peak oxidation (black) and reduction (gray) currents after DNA
immobilization on (a) PPFLPB, (b) PPFLNADES1, and (c) PPFLNADES2. DNA immobilization protocol:
1—drying; 2–5—incubation in DNA solution for 10, 20, 30, and 40 min, respectively. Specifications:
cyclic voltammetry, 0.025 M PB; pH 7.0; from −0.6 to 0.6 V, 0.1 V/s.

3.4. Voltammetric Detection of Oxidative DNA Damage

DNA structure damage can be caused by chemical oxidation with ROS and exogenous
genotoxic chemicals [33]. ROS are a group of reactive and unstable reduced oxygen
derivatives including hydrogen peroxide (H2O2), superoxide anion (O2

−), hypochlorous
acid (HClO), singlet oxygen (1O2), and hydroxyl radical (·OH) [34]. Normally, ROS are the
byproducts of different cellular processes. In cancer cells, ROS levels are higher due to an
imbalance between oxidant and antioxidant species. High levels of ROS can cause damage
to different biomolecules and cell structures, even up to apoptosis. Different concentrations
of ROS in cancer cells lead to various disease forecasting. At low levels, ROS play the role
of intracellular second messengers. Moderate levels of ROS increase cancer metabolism
and activate cancer cell growth, migration, and drug resistance. Moreover, high levels of
ROS can lead to cell death because of DNA damage [35,36].

In this work, DNA damage was achieved either through thermal denaturation at 95 ◦C
followed by sharp cooling in ice or via chemical oxidation in a Cu2+/H2O2 mixture caused
by the generation of hydroxyl radicals (1) [37] or in the well-known Fenton reagent [38].

2Cu2+ + H2O2 → 2Cu+ + O2 + 2H+

Cu+ + H2O2 → Cu2+ + OH− + ·OH
(1)
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In further experiments, native, thermally damaged, or chemically damaged DNA
(2 µL, 1 mg/mL) was immobilized over the PPFL polymer coating. Thermal denaturation
or chemical oxidation causes damage to the native DNA structure and results in changes
in the electroactive polymer currents detected. All of the coatings studied were able to
distinguish between the native and chemically oxidized DNA, but there was no sensitivity
to the thermally denatured sample (Figure 7).
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Figure 7. Relative changes in peak oxidation (black) and reduction (gray) currents for (a) PPFLPB,
(b) PPFLNADES1, and (c) PPFLNADES2. Layer contents: 1—with no DNA, 2—native DNA,
3—thermally denatured DNA, and 4—chemically oxidized (Cu2+/H2O2) DNA.

The coatings obtained from the NADES media demonstrated similar profiles of
changes after DNA damage. The changes in currents, registered after the chemical oxi-
dation of the DNA, were more obvious for the PPFLNADES1 and PPFLNADES2 layers than
for PPFLPB.

The use of Fenton reagent for DNA oxidation, applied over the DNA layer or in a
mixture with DNA solution in volume ratio of 1:9, led to significant changes in the poly-
meric coating structure. The redox peaks of the PPFL polymer coatings mostly disappeared
after treatment with the Fenton reagent, which can be attributed to the polymer layer’s
degradation in a highly alkaline solution.

3.5. Electrochemical Impedance Detection of DNA Damage

EIS can provide a wide range of opportunities for the investigation of modifying layers,
their assembly, and their interaction with different targets. Changes in modifying layer
permeability and charge distribution resulted in the alteration of electrochemical impedance
parameters. Since the voltammetry measurements could not discriminate between the
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native and thermally denatured DNA, EIS measurements were used for this purpose. A
literature analysis confirmed that EIS measurements can be used for the reliable detection
of DNA double-helix damage [39,40]. The EIS measurements in this study were carried out
in the presence of an equimolar mixture of 0.01 M [Fe(CN)6]3− and [Fe(CN)6]4− ions as a
redox probe (the equivalent circuit is presented in Figure 8). The Nyquist diagram based
on this equivalent scheme demonstrates two semicircles corresponding to the limiting step
of electron transfer on the two interfaces. First, the outer interface is situated between
the electrolyte solution and the modifying layer (R1 and C1 parameters), and second,
the inner interface is positioned between the inner part of the modifying layer and the
electrode support (R2 and C2 parameters). Rs corresponds to the electrolyte resistance.
The EIS potentials for all types of coatings investigated were calculated and are presented
in Table S1. In addition to the different forms of DNA, two control experiments were
conducted. Firstly, polystyrene sulfonate (PSS) was immobilized as polyanion instead
of DNA molecules to evaluate whether the changes in the impedance parameters were
associated with charge distribution only or with the nature of the DNA phosphate backbone.
Secondly, deionized water was drop-casted onto the electrode working surface instead of
DNA solution to exclude any washing or disaggregation effects.
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Figure 8. Equivalent circuit Rs(R1C1)(R2C2) for the evaluation of EIS parameters.

Typical Nyquist diagrams for SPCEs modified with PPFLPB, PPFLNADES1, and PPFLNADES2
after immobilization of native DNA, thermally denatured DNA, and DNA chemically oxidized
using a Cu2+/H2O2 mixture are shown in Figure S5. The respective changes in the charge
transfer resistance of the outer interface of the modified electrodes (R1) are presented in Figure 9.

The EIS measurements for PPFLPB demonstrated the higher charge transfer resistance
of the modifying layer compared to PPFLNADES1 and PPFLNADES2, which could have
been due to the formation of a compact polymer layer. The immobilization of large
negatively charged and non-conducting DNA molecules increased the R1 owing to the
further hindrance of the layer permeability for the redox probe and its electrostatic repulsion
(Figure 9a). Thermal and oxidative damage led to a further increase in charge transfer
resistance owing to the formation of flat compact layers. The polymer surface was covered
with a thick layer of single-stranded denatured or oxidized DNA tightly accumulated
on the positively charged surface. The discrimination between thermally damaged and
chemically oxidized DNA for SPCE/PPFLPB could not be made in EIS mode.

Proflavine electropolymerization from NADES1 and NADES2 media led to a signifi-
cant decrease in the charge transfer resistance of the poly(proflavine) layer compared to
aqueous media. This finding was in good agreement with the SEM data showing the forma-
tion of a microgranular polymer layer. When immobilized on the PPFLNADES1 layer with a
rather small particle size, native DNA can cause the partial constriction of the positively
charged polymer with the formation of agglomerates. This means that the modifying layer
had better permeability for the redox probe and the charge transfer resistance was reduced.
Thermal denaturation was attended by structural conversions of the biopolymer, such as
double helix breakage and the separation of two complementary strands. It was assumed
that thermal denaturation resulted in voluminous globule formation in the presented con-
ditions since denaturation led to a decrease in the charge transfer resistance. The globules
were positioned in a less compact manner than the double helix, and better permeability
for [Fe(CN)6]3−/4− was detected. Chemical oxidation partially disrupted the bonds in the
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DNA molecule and it became more flexible and covered the polymer layer more sufficiently.
As a result, the charge transfer resistance increased (Figure 9b).
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Figure 9. Dependence of charge transfer resistance R1 on modified layer content:
1—bare SPCE, 2—SPCE/PPFL, 3—SPCE/PPFL/native DNA, 4—SPCE/PPFL/denatured DNA,
5—SPCE/PPFL/oxidized DNA, 6—SPCE/PPFL/PSS, and 7—SPCE/PPFL/H2O; (a) PPFLPB,
(b) PPFLNADES1, (c) PPFLNADES2; 0.025 M PB, pH 7.0, in the presence of 0.01 M [Fe(CN)6]3−/4−.
Average ± S.D. for ten individual sensors.

The charge transfer resistance changes for the sensors based on PPFLNADES2 after
native, thermally denatured, and chemically oxidized DNA immobilization were similar to
those for PPFLNADES1, but less pronounced (Figure 9c).

The constant phase element C1 sharply decreased from 1 mF for bare SPCE to 2–8 µF
for PPFLPB-based sensors, 80–130 µF for PPFLNADES1-based sensors, and 330–460 µF for
PPFLNADES2-based sensors, and changed irregularly.

PSS implementation led to changes similar to those observed in DNA immobilization.
This means that the observed changes can be associated with charge control rather than with
the nature of the DNA. The signal observed after incubation in deionized water coincided
with the signal of the polymer, indicating the absence of any polymer degradation during
the measurement.

Thus, in EIS mode, the PPFLNADES1- and PPFLNADES2-based sensors were more sensi-
tive to DNA structural changes after molecule damage and could distinguish all types of
DNA used. Since these changes were more significant for the PPFLNADES1 coating, it was
chosen for the antioxidant effect evaluation.

3.6. Sensor-to-Sensor Repeatability, Stability, and Selectivity Assessment

DNA damage detection capability is basically determined by a sensor’s metrological
characteristics. The sensors developed in this study were disposable and used only once.
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The signal measurement’s precision was calculated for six individual impedimetric sensors
prepared from the set of equal reagents. The sensor-to-sensor charge transfer resistance
repeatability slightly differed for the PPFLPB-, PPFLNADES1-, and PPFLNADES2-based DNA
sensors. The repeatability values were equal to 15.4%, 14.2%, and 12.3% (the standard
deviation of the signal) for the SPCE/PPFLPB/native DNA, SPCE/PPFLPB/denatured
DNA, and SPCE/PPFLPB/oxidized DNA, respectively. The sensors based on polymers
deposited from NADES media exhibited a lower deviation of the signal through the
measurement. For the SPCE/PPFLNADES1/native DNA, SPCE/PPFLNADES1/denatured
DNA, and SPCE/PPFLNADES1/oxidized DNA, the repeatability values were equal to
9.8%, 8.4%, and 10.7%, respectively. The smallest deviation values were detected for the
SPCE/PPFLNADES2/native DNA, SPCE/PPFLNADES2/denatured DNA, and
SPCE/PPFLNADES2/oxidized DNA as 5.0%, 6.9%, and 8.1%, respectively. In general, the
sensor signal was stable and no notable drifts in the signals were detected during the week
after the sensor preparation when stored in a refrigerator at 4 ◦C. The selectivity was not
applicable in this case because we registered the mechanism of action through the damage
results and we could not predict the nature of the oxidant used.

3.7. Evaluation of Antioxidant Influence and Real-Sample Analysis

Antioxidant species have the ability to inhibit oxidation reactions, including those
caused by ROS.

There are different mechanisms of antioxidant actions: they can create physical barriers
preventing ROS generation or ROS’s access to important biological sites; form certain types
of chemical traps and catalytic systems; and cause the inactivation of metal ions, thus
preventing the generation of ROS or destroying them. Antioxidants are obtained from plant-
based foods, and this plays an important role in maintaining human health. [41]. The most
important antioxidants are vitamins C and E, carotenoids, flavonoids, cinnamates, tannins,
glucosinolates, and phytosterols [42]. At appropriate levels, antioxidants help neutralize the
dangerous effects of ROS and other oxidants in the human organism. However, at extremely
high levels, antioxidants can cause the opposite effect—pro-oxidant action, triggering a
cascade of oxidative reactions. Most of the mentioned antioxidants can demonstrate pro-
oxidant features: for example, ascorbic acid, which is widely used in vitamin supplements
and biological additives [43]. For this reason, it was extremely important to investigate the
antioxidative and pro-oxidative ranges of certain conventional antioxidants—ascorbic acid,
quercetin, and hydroquinone.

All of the compounds (in the concentration range of 0.1 µM to 1 mM) were added
to the Cu2+/H2O2 oxidative mixture before its interaction with DNA. After 1 h of DNA
oxidation, 2 µL of DNA solution was incubated onto the SPCE/PPFLNADES1 surface for
10 min and then treated with 4 mM EDTA solution to exclude cupric ions. The EIS potentials
determined for these experiments are presented in Table S2.

The injection of 1 mM ascorbic acid, quercetin, or hydroquinone to the oxidative
mixture resulted in an increase in the charge transfer resistance above the level of DNA
oxidized in the absence of the antioxidants. This can be attributed to the boosting of
peroxide oxidation due to the pro-oxidant influence of these species. Further reducing the
concentration of ascorbic acid and quercetin from 0.1 mM to 1 µM and hydroquinone to
10 µM demonstrated the decay of the charge transfer resistance close to the values of native
DNA and reflected the manifestation of the antioxidative effect. Low concentrations of
antioxidants (0.1 µM of ascorbic acid and quercetin, 0.1 µM–1 µM of hydroquinone) could
not provide effective protection from the oxidative damage caused by hydroxyl radicals
(Figure 10).

Two pharmaceutical preparations of ascorbic acid were also assessed for their antiox-
idative effects (Table 2). Sachets and tablets were used for a 1 µM solution of ascorbic acid.
Both preparations contained additives and stabilizers, namely, aromatizer and sugar in
sachet form and glucose, potato starch, or calcium stearate in tablet form. No significant
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influence of the stabilizer was detected. The recoveries were close to 100% for ascorbic acid:
103 ± 6% for the sachets and 110 ± 10% for the tablets.
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Average ± S.D. values are shown for ten individual sensors.

Table 2. Charge transfer resistance, R1 (1.13 kΩ in 1 µM standard solution of ascorbic acid), and
recovery measured in 1 µM solutions of pharmaceutical preparations. Average ± S.D. values are
shown for six individual sensors.

Real Sample R1, kΩ Recovery, %

Ascorbic acid in sachets 1.16 ± 0.06 103 ± 6
Ascorbic acid in tablets 1.24 ± 0.11 110 ± 10

Thus, when consumed in appropriate concentrations, antioxidants can provide protec-
tive effects against DNA damage caused by ROS.

4. Discussion

There are different ways to assemble the modifying layers and signal registration for
DNA sensors used in DNA damage detection.

Ensafi et al. used a pencil graphite electrode (PGE) modified with the dispersion
of MWNTs in chitosan and dsDNA for impedimetric and voltammetric DNA damage
detection [40]. Though carbon nanomaterials are commonly used for electrode modification,
time-consuming pretreatment stages such as MWNT oxidation in nitric acid, washing,
drying, and dispersing are needed. The sensor developed in their study could detect
oxidative DNA damage caused by dopamine in the presence of Cu (II) and/or Fe (III) ions.
The antioxidative effects of glutathione and ascorbic acid were also detected. GCE covered
with Au nanoparticles, MWNTs, Nafion, and dsDNA was used for the investigation of
Cu (II)-induced oxidative damage in the presence of dissolved oxygen [44]. A wide range
of natural and synthetic antioxidants and herbal tea extracts were examined in order to
evaluate the influence on guanine, adenine, and cytosine signals. However, the sensor
assembly procedure was time-consuming and included several stages. In Ref. [45], a GCE
was covered with electropolymerized poly(AzureA) deposited from buffer saturated with
chloroform and DNA from fish sperm. EIS provided thermal and oxidative DNA damage
detection with this sensor, but the exploitation of organic solvents was not environmentally
friendly. The permissible limit for chloroform in drinking water is approximately 0.06 mg/L,
so there is a risk of contamination. Berghian-Grosan [46] compared voltammetric and
Fourier-transform infrared spectroscopy (FT-IR) approaches for ssDNA damage induced
by H2O2. A Pt electrode was modified with graphene–metal nanoparticles (Gr–Au-x
and Gr–Pt-x) and ssDNA. Sun et al. covered GCE with nitrogen-doped graphene (N-G)
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and chitosan composite and dsDNA using the drop-casting method [47] and the DNA
damage was modeled using Fenton’s reagent treatment. In the last two cases mentioned,
biosensor assembly was quite sophisticated and time-consuming due to nanocomposite
synthesis. The antioxidant activity of L-ascorbic acid, composite yogurt, and plain yogurt
was compared. Wu [48] prepared a mixture of dopamine and graphene oxide in PB and
carried out the multiple scanning of the potential on GCE, leading to the development
of a polydopamine–graphene oxide composite film on the electrode surface. Salmon
sperm DNA was drop-casted onto this nanocomposite layer. Square-wave voltammetry
allowed for the determination of DNA damage caused by Fenton’s reagent. In addition,
the antioxidative activity of three trademarks of red vine was evaluated. Sun and Wu
used Ru(NH3)6

3+ probe solution to detect the changes in the current before and after
DNA damage, increasing the analysis cost. Morais presented a simple method of sensor
development based on adenine-rich oligonucleotide adsorbed on a carbon-paste electrode
(CPE) [49]. The change in the adenine oxidation signal after DNA damage was used
for the evaluation of the total antioxidant capacity values of twelve commercial coffee
samples. Though the electrode development procedure was quite simple, CPE and other
conventional electrodes (Pt, GCE, PGE) arenot convenient for mass screening procedures.

The sensor presented in this study has a number of distinct advantages compared to
similar sensors used for DNA damage detection. Biosensor assembly using the drop-casting
method is simple and based on electrostatic interactions. The use of SPCE enabled negligible
amounts of solutions to be used; furthermore, the components of electropolymerization
media are biocompatible and biodegradable. The developed sensors are disposable, low-
cost, and in good agreement with “point-of-care” concept. Besides thermal and oxidative
DNA damage detection, these sensors can be used to assess antioxidant effectiveness
through EIS measurements. Moreover, miniaturization, fast fabrication, and easy scaling
for mass production can be made possible by switching from conventional electrodes
to SPCEs.

5. Conclusions

The results presented in this work demonstrate the high sensitivity of polymer coat-
ings obtained from natural deep eutectic solvents introduced into DNA sensors for the
detection of thermal and oxidative damage to DNA from calf thymus. Though citric-acid-
based NADESs have already been used to obtain electroactive polymers for DNA sensor
development, malonic-acid-based NADESs were used for the first time in this study. Both
of these solvents enabled the synthesis of compact and uniform layers of a microgranular
structure with good conduction properties. Working protocols of DNA sensor assembly
were proposed with a minimal number of experimental stages and the simple pre-treatment
of the electrodes and samples. SPCE application reduced the cell volume to 100 µL. More-
over, this small volume led to a significant reduction in waste as all NADES components
were biodegradable and environmentally friendly. NADESs are promising media for many
applications in analytical chemistry due to their good adherence to “green chemistry” prin-
ciples. Their synthesis is not associated with toxic compound formation, as can be in case of
ionic liquids. In addition, these solvents are biodegradable, low-cost, non-flammable, and
have low vapor pressure and volatility. NADES components are present in live cells and
play the role of the third liquid phase, thus providing an alternative to water and lipids.
To date, the use of NADESs for the electropolymerization of different organic monomers
constitutes less than 5% of their total use in electrochemistry [50]. Using NADES media
allows electropolymerized coatings to be produced with morphologies and electrochemical
properties that differ from those obtained from aqueous solutions. Such coatings can
be successfully used in electrochemical sensors and biosensor assemblies with enhanced
analytical and operational characteristics. The development of DNA sensors based on
disposable SPCEs makes these devices advantageous for use in “point-of-care” concepts
to accelerate diagnostics and the selection of appropriate treatment. EIS measurements
often demonstrate higher sensitivity since they are less influenced by other electroactive



Chemosensors 2024, 12, 215 17 of 19

substances. The changes in charge transfer resistance after electropolymerization are in
good agreement with the SEM results. The various morphologies and sizes of the polymer
particles obtained from aqueous media and NADESs significantly affected the resulting
sensitivity of the DNA sensor to DNA damage. The pro-oxidative effects that occur at high
levels of ascorbic acid, quercetin, and hydroquinone consumption should encourage pa-
tients to avoid uncontrolled vitamin intake without medical prescriptions. An appropriate
dosage of species with antioxidant features can help reduce oxidative stress and the risk of
diseases. The sensors proposed in this study for DNA damage detection can be used in
medicine, environmental, and food control applications.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/chemosensors12100215/s1: Figure S1. Chronoamperograms of
potentiostatic electropolymerization of 0.085 M proflavine in (a) NADES1 and (c) NADES2, 1.2 V,
300 s; multiple cyclic voltammograms (20 cycles, from −1.2 to 1.2 V, 0.1 V/s) recorded after the
potentiostatic step in 0.085 M proflavine in (b) NADES1 and (d) NADES2. Arrows indicate changes
with increased number of cycles; Figure S2. Single cycle recorded in 0.025 M PB, pH 7.0, scan rate
0.1 V/s, on SPCE covered with (a) PPFLPB, (b) PPFLNADES1, and (c) PPFLNADES2 after the stabilization
step; black—potentiodynamic electropolymerization, red—potentiostatic electropolymerization, and
blue—mixed mode of electropolymerization; Figure S3. Cyclic voltammograms recorded in 0.025 M
PB, pH 7.0, on SPCE covered with (a) PPFLPB, (b) PPFLNADES1, and (c) PPFLNADES2 at scan rates of
0.01, 0.04, 0.07, 0.1, 0.2, 0.3, 0.4, and 0.5 V/s; Figure S4. Cyclic voltammograms recorded in 0.025 M
PB on SPCE covered with (a) PPFLPB, (b) PPFLNADES1, and (c) PPFLNADES2 at pH values of 2.0–9.0
and scan rate of 0.1 V/s; Figure S5. Nyquist diagrams recorded for 1—bare SPCE, 2—SPCE/PPFL,
3—SPCE/PPFL/native DNA, 4—SPCE/PPFL/denatured DNA, 5—SPCE/PPFL/oxidized DNA,
6—SPCE/PPFL/PSS, and 7—SPCE/PPFL/H2O; (a) PPFLPB, (b) PPFLNADES1, and (c) PPFLNADES2;
0.025 M PB, pH 7.0, in presence of 0.01 M [Fe(CN)6]3−/4−; Table S1. EIS potentials vs. Ag/AgCl
for PPFL-based sensors; Table S2. EIS potentials vs. Ag/AgCl for PPFLNADES1-based sensors in
antioxidative effect investigation.
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