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Abstract: Methanol, commonly used to cut costs in the production of counterfeit alcohol, is extremely
harmful to human health, potentially leading to severe outcomes, including death. In this study, an
electronic nose system was designed using 11 inexpensive gas sensors to detect the proportion of
methanol in an alcohol mixture. A total of 168 odor samples were taken and analyzed from eight
types of ethanol–methanol mixtures prepared at different concentrations. Only 4 features out of 264
were selected using the feature selection method based on feature importance. These four features
were extracted from the data of MQ-3, MQ-4, and MQ-137 sensors, and the classification process
was carried out using the data of these sensors. A Voting Classifier, an ensemble model, was used
with Linear Discriminant Analysis, Support Vector Machines, and Extra Trees algorithms. The Voting
Classifier achieved 85.88% classification accuracy before and 81.85% after feature selection. With
its cost effectiveness, fast processing time, and practicality, the recommended system shows great
potential for detecting methanol, which threatens human health in counterfeit drink production.

Keywords: feature selection optimization; electronic nose; methanol detection; voting classifier; extra
trees classifier

1. Introduction

Ethanol is a compound commonly used in alcoholic beverages and widely used as
an industrial solvent, fuel, and antiseptic [1]. However, undesirable contaminants such as
methanol can lead to serious health risks [2–4]. Methanol is sometimes used by mixing
it with ethanol due to its low cost, but this is extremely dangerous [5]. Methanol can be
metabolized into formaldehyde and formic acid in the human body, causing toxic effects
that can result in blindness, organ failure, and even death [6]. It is stated that the harm of
methanol to the human body starts from 10 mL (milliliter) levels and that this dose can
cause blindness. However, when the dose increases to 30–240 mL, it can be fatal, depending
on the person’s body weight, metabolism, and other factors [7].

Consumption of counterfeit alcohol around the world poses a severe problem for pub-
lic health, and many people die every year for this reason. It is known that the production
and, therefore, consumption of fake alcohol is common, especially in low- and middle-
income countries. According to the World Health Organization (WHO), approximately
2.6 million people worldwide die every year from causes related to alcohol use. Some of
these deaths are caused by the consumption of fake alcohol [8].

Determination of the presence of methanol in ethanol is of critical importance for
public health and safety. For this reason, reliable and sensitive analysis methods have been
developed to ensure the purity of products containing ethanol. Different determination
methods include gas chromatography (GC) [9], high-performance liquid chromatography
(HPLC) [10], and techniques such as Fourier transform infrared spectroscopy (FTIR) and
RAMAN Spectroscopy [11,12]. These methods are very effective in detecting the presence
of low concentrations of methanol in ethanol. In recent years, electronic nose (e-nose)
technology has emerged as an innovative tool in chemical analysis. The e-nose consists
of an array of sensors that mimic the odor-detecting ability of the human nose. These
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sensors are sensitive to different chemical compounds and can identify the characteristic
odor profiles of these compounds. E-nose systems can detect the composition of gases
by detecting volatile organic compounds (VOCs) and thus can also detect the presence of
methanol in ethanol.

The determination of methanol using e-nose technology has many advantages com-
pared to traditional methods. These advantages include its rapid analysis time, low cost,
portability, and non-invasive nature. Additionally, e-noses are highly resilient to changes
in environmental conditions. These features make e-nose technology ideal for field applica-
tions and routine quality control analyses.

In a study on methanol detection using an e-nose, researchers reported detecting
methanol in whiskey at concentrations of 1%, 5%, 10%, and 20% using three Metal Oxide
Semiconductor (MOS) technology gas sensors they developed. These sensors were made
from pure tin oxide (SnO2), 0.5% carbon nanotube (CNT)-SnO2, and 1% CNT-SnO2 mixtures.
In this study, it was stated that the gas phase of the whiskey samples with different
concentrations of methanol placed in the olfactory section of the e-nose was transported
to the sensor room with a clean air pump and was classified with high classification
performance. However, no information was provided on how many samples or how
much data were taken, how many classes were classified, or what percentage accuracy
was provided. It was stated that it was classified with high classification performance
with the (PCA) algorithm [13]. Another study reported that carbon nanotube–titanium
dioxide hybrid nanostructures can contribute to classification algorithms in detecting
volatile organic compounds (VOCs) [14]. In a similar study on this subject, researchers
conducted gas detection experiments of water (H2O), methanol (MeOH), and ethanol
(EtOH) with two different graphene field effect transistor (GFET) sensors they produced
(Pristine GFET and ALD-RuO2 GFET). Their study classified MeOH gases at 10–20–30%
concentrations and EtOH gases at 10–20–30% concentrations under 0–20–40–60% humidity
conditions using these sensors and a Multilayer Perceptron (MLP) classifier from an artificial
neural network. In the study, which did not provide details about the data set, it was
stated that three different gas types (water, ethanol, and methanol) were separated from
each other with 96.2% accuracy with a Pristine GFET sensor and with 100% accuracy
with the ALD-RuO2-GFET sensor. However, no performance information was provided
regarding the classification of gases at different concentrations. Although it was stated
in the study that each sensor conductivity recording period lasted 10 min and 10 data
points were taken by recording 1 data point per minute, it was not stated how much
data was used in the classification study [15]. However, in another study on this subject,
researchers investigated the recognition of excess methanol in alcoholic beverages by gas
chromatography and MOS sensors. The research team used four MOS gas sensors based
on SnO2, Pd-loaded SnO2, WO3, and Ru-loaded WO3, which they specially designed
in the laboratory environment and produced with a screen-printing technique. They
classified the liquor samples containing 0–10% methanol into two classes and the liquor
samples containing 0–10–20–30–40–50% methanol into six classes. In the study, the odor of
methanolic beverage samples was not directly detected by the sensors. The smell recording
experiment was conducted as follows: 50 µL of the drink sample taken with a pipette tip
was placed in a 20 mL headspace sample bottle, where the sample changed from a liquid
to gaseous state by being transferred to the sensor chamber by a pump with a flow rate
of approximately 300 mL per minute. Data were recorded every second while the sensors
were heated and cooled in 30-s cycles between 200 ◦C and 400 ◦C for 20 min. In the first
classification, 576 samples from two species were taken (480 training, 96 validation) and
classified with 94% accuracy. In the second classification, 216 samples from six species were
taken (180 training, 36 validation) and classified with 92% accuracy [16].

In previous e-nose studies, the performance of sensors has generally been evaluated
by critical metrics such as detection limit, response and recovery times, and stability. For
example, one study reported a response time of approximately 20 s for ethanol. However,
the recovery time was longer, lasting more than a minute [17]. That study highlights
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that sensors exhibit short response times, especially for ethanol. Furthermore, the study
evaluated sensor stability with long-term tests, indicating that ethanol detection sensitivity
remained at 95% for 21 days. The performance ranges of the sensors in this study also align
with the findings in such literature, with both response times and stability consistent with
the effective operation of the e-nose system.

Studies have shown that electronic nose systems exhibit high sensitivity to volatile
organic compounds (VOCs) such as methanol and that sensors can distinguish between
methanol and some other compounds [18]. While these sensors are generally reliable,
potential cross-sensitivities between methanol and other substances, like ethanol, may
occur. To address this, advanced classification algorithms were applied to ensure accurate
differentiation between the compounds. In this study, the classification of eight different
ratios of ethanol–methanol mixtures in the home environment with an e-nose obtained
with sensors sold at very affordable prices on the market was investigated. The alcohol
mixtures prepared in this study were classified by placing them directly in liquid form in a
glass into the odor chamber of the e-nose without any processing.

2. Materials and Methods
2.1. Electronic Nose System and Data Recording Procedures

The e-nose used in the study was designed for this study at a very low cost and is also
presented as a particularly cost-effective solution to increase access to this technology and
encourage wider audiences. The sensor block of the e-nose is designed with MQ brand
sensors that can be purchased at very low prices. The sensors used in the sensor block
and the types of gas they detect are given in Table 1. To electrically read the changes that
the sensors show in the density of the relevant gas, it is necessary to establish a separate
measurement circuit for each sensor. All sensors were purchased and used with their kits
to alleviate this burden.

Table 1. Used gas sensors in the sensor block.

Sensor No. Sensor Name Target Gas

1 MQ-2 Methane, butane, LPG, and smoke

2 MQ-3 Alcohol, ethanol, and smoke

3 MQ-4 Methane and CNG gas

4 MQ-5 Natural gas and LPG

5 MQ-6 LPG and butane gas

6 MQ-7 Carbon monoxide

7 MQ-8 Hydrogen gas

8 MQ-9 Carbon monoxide and flammable gases

9 MQ-131 Ozone

10 MQ-135 Carbon monoxide, ammonia, benzene,
alcohol, and smoke (for air quality)

11 MQ-137 Ammonia

For ease of use, the sensor kits are arranged on a perforated circuit board, and after
this block was placed in the odor chamber, the relevant connections were taken out of the
box through a narrow air-tight hole with a PCI-E Riser Cable. The voltages of the sensors
were supplied from a GW Instek brand power supply, and the analog data outputs of the
sensors were connected to the analog inputs of two Arduino Uno microcontroller cards.
Analog/digital converted sensor data were transferred to a computer via USB cables and
saved there. The recording program was prepared in Lab-View (2016). In this software,
10 data points per second are taken and recorded from each sensor. The odor recording
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time is 40 s, and a data matrix of size 11 × 401 is generated after each odor recording. An
image of the sensor block and the prepared e-nose system is shown in Figure 1.
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In preliminary experiments, it was observed that MOS sensors provide a fast and
stable response within 40 s of exposure time. Also, in the literature, it is seen that this type
of sensor is used with optimal response times in the range of 30–60 s [16]. To more clearly
represent the acquisition of data, a graph of the values obtained from the MQ-137 sensor in
the odor recording of a sample is given in Figure 2 below. The graph shows 400 voltage
values taken in 40 s. Since the MQ-137 gas sensor detected ammonia gas, the graph shows
the change in ammonia gas over 40 s.

Figure 2. Output values of the MQ-137 sensor during a 40 s recording.

During each test, 100 mL of an alcohol mixture in a large-diameter glass beaker was
placed in the same spot of the odor chamber where the sensor block was located. The
lid of the odor chamber was closed, and each test was performed in the same windless
and constant temperature environment. The gases resulting from the evaporation of the
mixtures for 40 s reached the sensors passively without the use of any pump or fan. All
tests were performed in this way under homogeneous and consistent conditions. In this
way, it was ensured that each odor record was taken with the same standards.
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2.2. Sample Preparation Process

In this study, eight different ratios of ethanol–methanol mixtures were prepared.
These mixtures were prepared at the Hitit University Faculty of Engineering Chemical
Engineering Laboratories. The ratios of ethanol–methanol mixtures are listed in Table 2.

Table 2. Concentrations of ethanol–methanol mixtures.

No. Sample Name Concentration Ratios (%)

1 Ethanol 0 methanol–100 ethanol

2 MeOH 10–EtOH 90 10 methanol–90 ethanol

3 MeOH 20–EtOH 80 20 methanol–80 ethanol

4 MeOH 30–EtOH 70 30 methanol–70 ethanol

5 MeOH 40–EtOH 60 40 methanol–60 ethanol

6 MeOH 50–EtOH 50 50 methanol–50 ethanol

7 MeOH 60–EtOH 40 60 methanol–40 ethanol

8 Methanol 100 methanol–0 ethanol

The values given in Table 2 represent the rates. As stated in Section 1, since the amount
of methanol that threatens human health starts from 10 mL, the mixtures were placed in the
scent chamber of the e-nose in 100 mL glasses. Thus, the amount of methanol in mixture
number 2, which contained methanol with the lowest ratio, was set at the limit level of
methanol that begins to threaten human health.

Twenty-one odors were recorded from each of the samples. As a result, 21 × 11 × 401
data points were taken from each sample, and a 3-dimensional data matrix with 168 × 11 × 401
data points in total was obtained.

2.3. Feature Extraction and Feature Selection Method

Feature extraction is one of the most critical steps in a machine learning process.
Features are extracted from raw data, which are generally complex, high-dimensional,
and contain much information. A single data set is obtained and then expressed with
as many values as the extracted feature. Here, obtaining meaningful and informative
representations (features) of the data directly affects the model’s performance. The data
are often high-dimensional, but not all of the data contribute to the learning capacity of
the model. By using more compelling features in the decision mechanism of the model,
higher success, less computational cost, and shorter processing time can be achieved.
Additionally, obtaining meaningful information from high-dimensional data increases the
model’s generalizability and prevents overlearning.

Since a tree-based algorithm was used in this study, as explained below, a wealthy
feature set was extracted from the raw sensor data in the hope that it would be helpful.
By extracting the data’s statistical, time, and frequency domain properties, attributes that
reflect all the dynamics of the data set were obtained. The extracted features are mean,
standard deviation, total, median, minimum, maximum, first quartile (Q1), third quartile
(Q3), variance, RMS, skewness, kurtosis, fifth moment, energy, range, harmonic mean,
geometric mean, mean absolute deviation, coefficient of variation, zero crossing rate,
interquartile range (IQR), signal-to-noise ratio (SNR), log variance, Holder mean values
and their formulas are given below, respectively:

Here, n is the total number of elements in the data set, µ is the arithmetic mean of the
data set, σ is the standard deviation, ∈ is a tiny constant added to prevent 0 in logarithm
operations, and p is the force used in the Holder mean formula.
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Mean µ = 1
n

n
∑

i=1
xi (1)

Standard Deviation σ =

√
1
n

n
∑

i=1
(xi − µ)2 (2)

Sum Sum =
n
∑

i=1
xi (3)

Median
x̃ = x( n+1

2 ) If n is odd
(4)

x̃ =
x( n

2 )+x
( n+1

2 )

2
If n is even

Min Min = min(x1, x2, . . . , xn) (5)
Max Max = max(x1, x2, . . . , xn) (6)

Q1—First Quartile Q1 = x( n+1
4 )

when the data set is
sorted x1, x2, . . ., xn

(7)

Q3—Third Quartile Q3 = x
( 3(n+1)

4 )

when the data set is
sorted x1, x2, . . ., xn

(8)

Variance [19] Var(X) = 1
n

n
∑

i=1
(xi − µ)2 (9)

RMS (Root Mean Square) [20] RMS =

√
1
n

n
∑

i=1
x2

i
(10)

Skewness [19] Skewness =
1
n

n
∑

i=1

(
xi − µ

σ

)3
(11)

Kurtosis [21] Kurtosis =
1
n

n
∑

i=1

(
xi − µ

σ

)4
− 3 (12)

5. Moment (Fifth Moment) [22] M5 = 1
n

n
∑

i=1
(xi − µ)5 (13)

Energy [23] Energy =
n
∑

i=1
x2

i
(14)

Range Range = max(x)− min(x) (15)
Harmonic Mean [24] HarmonicMean =

n

∑n
i=1

1
xi

(16)

Geometric Mean [25] GeometricMean =

(
n
∏
i=1

xi

)1/n
(17)

Mean Absolute Deviation [26] MAD = 1
n

n
∑

i=1
|xi − µ| (18)

Coefficient of Variation [27] CV = σ
µ (19)

Zero Crossing Rate [28] ZCR = 1
n−1

n
∑

i=1
1[xi ·xi+1<0]

(20)

Interquartile Range (IQR) [28] IQR = Q3 − Q1 (21)
Signal-to-Noise Ratio [29] SNR =

µ
σ (22)

Log Variance [30] LogVariance = log(Var(X)+ ∈) (23)

Holder Mean [31] HolderMean =

(
1
n

n
∑

i=1
xp

i

)1/p
(24)

When more features are provided to classification algorithms, the ability of the tree-type
classification algorithm to make accurate predictions generally increases because every new piece
of information makes the differences between data points more apparent. However, using too
many features may not always be the most efficient approach because each additional feature
increases the processing load and cost, negatively affecting the model’s performance. Therefore,
optimizing the use of the least possible amount of input information and features is necessary
without reducing the classification performance too much. This approach creates more efficient
and faster models free from unnecessary data, thus reducing processing time and cost [32].

The features used are carefully selected from both statistical and signal-processing
metrics to reflect different aspects of the signal. For example, features such as zero crossing
rate, the signal-to-noise ratio, and kurtosis are quite successful in capturing the dynamic
structure and distribution of the signal. In particular, these features, which represent the
signal’s amplitude, spread, and shape properties, provide a comprehensive treatment of
the data from different perspectives.
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Feature selection is a critical step in optimizing the performance of machine learning models
and reducing processing costs. Methods such as Recursive Feature Elimination (RFE) generally
identify the most compelling features in data sets and purify the model from unnecessary
information [33]. This study used a feature selection method based on feature importance. By
calculating the usage rates of the features used by the classifiers in the classification algorithm,
the features used at a rate above the reference value were selected, the classification model was
re-trained using these features, and the classes of the test data were determined [34]. This way,
unnecessary or low-contributing features were eliminated, and the model was rebuilt with less
input information. Thus, while the model’s performance was maintained, its efficiency was
increased, the classification process was completed in a shorter time and with less processing
load, and both the cost and processing time were significantly reduced.

2.4. Classification Process

Features extracted from the data were classified using Linear Discriminant Analysis (LDA),
Support Vector Machine (SVM), Extra Trees classification algorithms frequently used in classifi-
cation problems, and the Voting Classifier algorithm created by combining these classifiers.

The LDA classification algorithm is a supervised learning algorithm used in classifi-
cation problems. It is a classifier that minimizes the intra-class variance among the data
and maximizes the separation between classes. LDA tries to separate classes by drawing a
linear line and defining the boundaries for each class using the mean and covariance of the
data set in classification. Therefore, it is effective on low-dimensional data [35].

Support Vector Machines (SVM) is a robust machine learning algorithm frequently
used in classification problems. SVM finds the most appropriate separation plane that
allows the best separation of data into classes by trying to maximize the most compre-
hensive distance (margin) between two classes. Although it is effectively used in linearly
separable data, it can also be used in non-linear data by transforming it into linear form
in a high-dimensional space using appropriate kernel functions. SVM classifier, which
performs better in small data sets, minimizes overfitting by trying to find the widest margin
and separating the data with a general model [36,37].

The Extra Trees “Extremely Randomized Trees” classification algorithm is a derivative
of the Random Forest algorithm and is an ensemble learning algorithm based on decision
trees. This classifier creates a decision tree consisting of many random samples in the data
set, and the node splits of each tree are randomly selected cut points. This way, the diversity
between trees increases, and the risk of overfitting decreases. It performs exceptionally
well on high-dimensional datasets because it can use the information it receives from every
tree. However, since it uses many trees, it may require higher computational costs and is
less accurate but faster than Random Forest [38].

Ensemble learning methods improve overall performance by taking advantage of
the predictive ability of more than one model. Voting Classifier, one of the ensemble
learning methods, also makes its classification by combining the prediction decisions of
different machine learning algorithms. This model collects each algorithm’s predictions
and makes its final classification using the majority or weighted vote method [39]. Voting
Classifier is an advantageous method, especially for balancing the weaknesses of different
model types, and is often preferred to increase the overall accuracy rate. This method
aims to achieve better prediction performance by combining the advantages of different
classification algorithms [40]. This study used a Voting Classifier that makes decisions with
the majority of votes from LDA, SVM, and Extra Trees Classifiers.

Classifier classification accuracy (CA), sensitivity (SE), and specificity (SF) metrics were
used to evaluate the performance of the classifiers. Here, CA is calculated as the ratio of cor-
rectly classified samples to all. SE and SF are calculated separately for each class, followed by
their average. These metrics’ mathematical expressions are given in Equations (25)–(29) [41].

CA =
CCT
TT

(25)
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SEj =
TPj

TPj + FNj
(26)

SE = SEavg =
1
8

8

∑
j=1

SEj (27)

SFj =
TNj

TNj + FPj
(28)

SF = SFavg =
1
8

8

∑
j=1

SFj (29)

Here, SEj stands for the sensitivity of the jth class. TPj refers to the number of correctly
classified samples of the jth class, and FNj refers to the number of false-negative classified
samples of the jth class. SFj refers to the specificity of the jth class, TNj refers to the number
of correctly classified negative samples of the jth class, and FPj refers to the number of
false-positive classified samples belonging to the jth class.

In the classification study, 60% of the data set is divided into training data, 20% is
validation data, and 20% is test data. The classification process consists of training the
classifier with the training data, optimizing the model settings with the validation data, and
then classifying the test data. The classification performance is evaluated according to the
performance metrics mentioned above. Since a result obtained as an outcome of good or bad
matching of the training–validation–test data sets will not fully reflect reality, the classification
process was carried out 100 times with randomly selected data sets. The performances of
these classifications were averaged and presented with standard deviation values. Figure 3
shows the classification flow chart with selected features and all features. The data analysis
for this study was conducted using the Python programming language (version 3.8).
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3. Results

The classification results are given in two different parts, without feature selection and
with feature selection.

3.1. Classification Without Feature Selection

In this study, the odors of eight different ratios of the ethanol–methanol mixtures
shown in Table 2 were recorded for 40 s. A data set of [168 × 11 × 401] size was obtained
after recording 21 odors taken from each of the eight samples with the 11-sensor e-nose. A
total of 264 features were obtained from this data set by removing the 24 features described
in the feature extraction section. These features are classified using the classification
algorithms given in Section 2.4. The mean and standard deviation results of CA, SE, and
SF values obtained from the classification results performed on 100 different training–
validation–test data sets with four different classification algorithms are given in Table 3.

Table 3. Classification results without feature selection.

Classifier CA SE SF

Ensemble Voting Classifier 0.8588 ± 0.0506 0.8588 ± 0.0509 0.9798 ± 0.0073

Extra Trees Classifier 0.8206 ± 0.0555 0.8213 ± 0.0571 0.9744 ± 0.0080

SVM Classifier 0.8059 ± 0.0629 0.8060 ± 0.0610 0.9722 ± 0.0090

LDA Classifier 0.3539 ± 0.0798 0.3579 ± 0.0828 0.9080 ± 0.0114

Table 3 shows that the Voting Classifier gives the most successful classification perfor-
mance. The average confusion matrix of 100 classifications of this model as a percentage is
presented in Table 4.

Table 4. Confusion matrix of voting classifier without feature selection.

Accuracy: 85.88%
MeOH-EtOH%

Predicted

0–100% 10–90% 20–80% 30–70% 40–60% 50–50% 60–40% 100–0%

R
ea

l

0–100% 97.66 0.00 0.00 0.78 0.00 0.00 0.00 1.56

10–90% 0.00 78.62 10.69 8.39 0.76 0.00 0.76 0.00

20–80% 0.00 12.90 74.18 5.65 1.60 0.00 5.65 0.00

30–70% 0.00 7.87 5.51 86.61 0.00 0.00 0.00 0.00

40–60% 0.00 0.00 0.78 0.00 79.86 6.98 12.40 0.00

50–50% 0.00 0.00 0.00 0.00 13.07 84.62 2.31 0.00

60–40% 0.00 0.00 2.78 4.17 3.47 2.08 87.50 0.00

100–0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

3.2. Optimizing Classification by Feature Selection

Here, a feature selection method based on feature importance was applied. Features
used above a specific percentage value were selected, and classification was carried out
using only the selected features. According to LDA, SVM, and Extra Trees Classifiers, the
importance levels of each feature were calculated separately, threshold values were deter-
mined starting from 4%, and classification procedures were carried out. The classification
process continued by increasing the threshold value. Table 5 gives the features selected ac-
cording to the threshold value and the classifier performances for these features. This table
clearly shows the effects of different threshold values on the classification performances.
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Table 5. Selected features according to threshold values and classifier performances.

Threshold
Value

Used Feature
Numbers

Voting
Classifier CA

Extra Trees
Classifier CA

SVM
Classifier CA LDA Classifier CA

4%

22, 24, 26, 27, 29, 30, 32,
127, 130, 143, 144, 145,
146, 148, 149, 150, 151,

153, 231, 233, 241

0.8356 ± 0.0576 0.7524 ± 0.0991 0.7932 ± 0.0676 0.4609 ± 0.2401

5%
22, 26, 32, 143, 144, 145,
146, 148, 149, 150, 151,

153, 233, 241
0.8297 ± 0.0616 0.7576 ± 0.0973 0.7924 ± 0.0676 0.4435 ± 0.2459

6% 143, 144, 145, 146, 148,
151, 153, 241 0.8221 ± 0.0610 0.7518 ± 0.0913 0.7959 ± 0.0635 0.4421 ± 0.2337

7% 144, 145, 153, 241 0.8185 ± 0.0725 0.7582 ± 0.0865 0.7718 ± 0.0679 0.4376 ± 0.2271

8% 144, 145 0.7565 ± 0.1642 0.7138 ± 0.1643 0.7174 ± 0.1358 0.3768 ± 0.1443

The classifiers were re-trained with features that were used above the threshold values,
and the test data were classified using these features. Figure 4 shows the usage percentages
of the features of the classifiers for the 7% threshold value. Since a Voting Classifier decided
by majority vote was used in this study, the usage rate of the Voting Classifier was calculated
as the arithmetic average of the usage rates of LDA, SVM, and Extra Trees Classifiers.
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4. Discussion

In this study, the sensor data of alcohol mixtures prepared at different concentrations
mixed into ethanol were classified to detect methanol, the alcohol used in producing illicit
alcohol, by an electronic nose just using smell. In the classification study, 24 different
feature extraction methods were applied to the data obtained from 11 gas sensors, and
264 features were obtained. As a result of the classification performed using LDA, SVM,
Extra Trees Classifiers, and a Voting Classifier created together, the Voting Classifier offered
the highest classification performance with a CA of 0.8588 with all of these features.

Tree-based classifiers increase classification performance by using almost all of the
features available to them to a greater or lesser extent. However, using 264 features here is
quite troublesome in terms of both cost and processing load and time because it is necessary
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to use 11 gas sensors for such a detection. As a result of the feature selection optimization
applied, Table 6 was prepared to show how much of a burden the system has been relieved
from without reducing the performance too much. Table 6 also gives the usage rates of
features and sensors in the classification process carried out with the selected features.
When the feature types used in the classification of odor signals obtained from gas sensors
were evaluated, the energy feature was calculated by taking the sum of the squares of the
data of the relevant sensors, and the SNR feature was calculated by dividing the average
value of the sensor data by the standard deviation.

Table 6. Usage percentages of features and sensors according to voting classifier.

MQ-2 MQ-3 MQ-4 MQ-5 MQ-6 MQ-7 MQ-8 MQ-9 MQ-131 MQ-135 MQ-137

Mean F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Standard
Deviation F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21

Sum F22 F23 F24 F25 F26 F27 F28 F29 F30 F31 F32

Median F33 F34 F35 F36 F37 F38 F39 F40 F41 F42 F43

Min F44 F45 F46 F47 F48 F49 F50 F51 F52 F53 F54

Max F55 F56 F57 F58 F59 F60 F61 F62 F63 F64 F65

Q1—First
Quartile F66 F67 F68 F69 F70 F71 F72 F73 F74 F75 F76

Q3—Third
Quartile F77 F78 F79 F80 F81 F82 F83 F84 F85 F86 F87

Variance F88 F89 F90 F91 F92 F93 F94 F95 F96 F97 F98

RMS (Root Mean
Square) F99 F100 F101 F102 F103 F104 F105 F106 F107 F108 F109

Skewness F110 F111 F112 F113 F114 F115 F116 F117 F118 F119 F120

Kurtosis F121 F122 F123 F124 F125 F126 F127 F128 F129 F130 F131

5.Moment (Fifth
Moment) F132 F133 F134 F135 F136 F137 F138 F139 F140 F141 F142

Energy F143 16.86 41.55 F146 F147 F148 F149 F150 F151 F152 21.87

Range F154 F155 F156 F157 F158 F159 F160 F161 F162 F163 F164

Harmonic Mean F165 F166 F167 F168 F169 F170 F171 F172 F173 F174 F175

Geometric Mean F176 F177 F178 F179 F180 F181 F182 F183 F184 F185 F186

Mean Absolute
Deviation F187 F188 F189 F190 F191 F192 F193 F194 F195 F196 F197

Coefficient of
Variation F198 F199 F200 F201 F202 F203 F204 F205 F206 F207 F208

Zero Crossing
Rate F209 F210 F211 F212 F213 F214 F215 F216 F217 F218 F219

Interquartile
Range (IQR) F220 F221 F222 F223 F224 F225 F226 F227 F228 F229 F230

Signal-to-Noise
Ratio F231 F232 F233 F234 F235 F236 F237 F238 F239 F240 19.72

Log Variance F242 F243 F244 F245 F246 F247 F248 F249 F250 F251 F252

Holder Mean F253 F254 F255 F256 F257 F258 F259 F260 F261 F262 F263

TOTAL IMPACT - 16.86 41.55 - - - - - - - 41.59

As seen in Table 6, the ethanol–methanol mixtures prepared at eight different concen-
trations were separated with an accuracy of 0.8185 CA using MQ-3, MQ-4, and MQ-137
gas sensors.
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The main difference between this study and other similar studies in the literature is
the practicality and low cost of the proposed method. By keeping the alcohol mixture
placed in a glass in the odor chamber of the e-nose system for only 40 s without any other
process, the methanol content in the mixture was successfully detected. While previous
studies on the subject in the existing literature required complex sensor arrays and high-cost
hardware, the proposed method obtained results using only MQ-3, MQ-4, and MQ-137 gas
sensors and a simple Arduino Uno card. This approach offers a significant difference and
advantage over other methods in the literature by providing the advantage of low-cost,
easy, and fast processing.

One of the most critical limitations of this study is the small number of samples used.
However, only a limited number of experiments have been conducted with specific alcohol
mixtures, which may raise some questions about the generalizability of the results. Addi-
tionally, only MQ-brand gas sensors were used in the e-nose’s sensor block; the potential
levels of sensitivity and accuracy that could be achieved using a more comprehensive
sensor array have not been investigated.

In future studies, the generalizability of the results can be increased by conducting
experiments based on different alcohol mixtures and a larger sample group. Further-
more, the accuracy and sensitivity of the system can be improved by using different
sensor technologies.

5. Conclusions

In this study, an e-nose system consisting of 11 sensors was established, and 168 odor
data points obtained from eight ethanol–methanol mixtures at different concentrations
were classified. By applying a feature selection method based on feature importance, only
4 out of 264 features were selected, and the classification process was carried out using
only MQ-3, MQ-4, and MQ-137 sensors. In this way, the number of sensors was reduced,
and the complexity of the model was diminished, resulting in a faster and more effective
classification. LDA, SVM, Extra Trees, and their combination Voting Classifier were used
for classification. The most successful classification result was obtained with the Voting
Classifier. Before feature selection, 0.8588 CA, 0.8588 SE, and 0.9798 SF performance values
were achieved, and after feature selection, 0.8185 CA, 0.8136 SE, and 0.9734 SF performance
values were achieved. These results reveal that the Voting Classifier performs better than
other classifiers and that feature selection increases the system’s overall effectiveness,
although it slightly reduces classification performance. The proposed system demonstrates
the success of the feature selection and classification methods applied here with its accuracy,
cost-effectiveness, practicality, and fast processing time. The proposed system offers a
feasible and effective solution with significant potential for detecting methanol, which is
threatening human health.
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