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Abstract: The combination of an electronic nose and an electronic tongue represents a significant
advance in the pursuit of effective detection methods for prostate cancer, a widespread form of cancer
affecting men across the globe. These cutting-edge devices, collectively called “E-Senses”, use data
fusion to identify distinct chemical compounds in exhaled breath and urine samples, potentially
improving existing diagnostic techniques. This study combined the information from two sensory
perception devices to detect prostate cancer in biological samples (breath and urine). To achieve this,
data from patients diagnosed with the disease and from control individuals were collected using a gas
sensor array and chemical electrodes. The signals were subjected to data preprocessing algorithms to
prepare them for analysis. Following this, the datasets for each device were individually analyzed
and subsequently merged to enhance the classification results. The data fusion was assessed and
it successfully improved the accuracy of detecting prostate-related conditions and distinguishing
healthy patients, achieving the highest success rate possible (100%) in classification through machine
learning methods, outperforming the results obtained from individual electronic devices.

Keywords: prostate cancer; data fusion; eNose; eTongue; machine learning

1. Introduction

Prostate cancer (PCa) is one of the most prevalent malignant neoplasms in men
worldwide, with a high incidence rate that makes it the second most diagnosed type of
cancer in the male population. According to a Global Cancer Observatory (GCO) report,
PCa represents a major public health concern, ranking fifth as a cause of death from
cancer among men [1]. Studies on PCa have reported that incidence and mortality rates
can be influenced by external factors [2—4]. Countries with greater social and economic
development generally tend to have a higher incidence of PCa. This is mainly due to
better access to medical services, including preventive health check-ups and PCa screening
programs, which vary from country to country [5,6].

In its early stages, PCa often presents with no symptoms, making it difficult to detect
without specific tests; however, symptoms, such as urinary problems, pelvic pain, or
blood in urine, may appear in more advanced stages. It is crucial to note that these
symptoms may also be associated with other benign prostate conditions, such as benign
prostatic hyperplasia (BPH) or prostatitis, underscoring the importance of regular medical
examinations for an accurate diagnosis. An early diagnosis and proper monitoring are
essential for effectively managing any prostate issue and preventing complications; the
sooner the diagnosis, the better prognosis a patient will have.

Currently, the main tests for detecting PCa are the prostate-specific antigen (PSA),
digital rectal examination (DRE), and transrectal biopsy, which are the optimal standards
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for confirming the disease. However, the latter is a highly invasive technique, causes
discomfort for patients, and may be associated with various complications, such as bleeding,
temporary urinary symptoms, and others. Regarding the PSA and DRE, in recent years,
there has been controversy regarding the effectiveness and accuracy of early PCa diagnosis
using these methods, due to their inability by themselves to distinguish between BPH,
prostatitis, and localized tumors, leading to unnecessary prostate biopsies due to false
positives, and the overdiagnosis and overtreatment of PCa [7,8]. Consequently, there is a
need to develop new techniques, preferably non-invasive, for the early detection of PCa
to reduce the number of unnecessary prostate biopsies and procedures that affect quality
of life.

Advances in artificial intelligence (AI), machine learning, and intelligent sensory tech-
nologies (E-Senses), have allowed for the proposal of innovative approaches for the early
detection and characterization of various types of cancer [9-11]. These emerging technolo-
gies served as support tools, and have redefined the oncology landscape by significantly
improving the precision of identifying and monitoring neoplasms at their earliest stages.
E-Senses, being non-invasive tests, stand out for their speed, portability, and low cost,
making them ideal solutions for implementation in rural or hard-to-reach areas, where
specialized healthcare services are limited or nonexistent.

The main objective of E-Senses systems is to detect and analyze sensory characteristics
through different types of sensors, pattern recognition techniques, and multivariate data
analysis. Some studies reported on in the literature have proposed using electronic noses as
a promising tool for the non-invasive diagnosis of PCa by analyzing biological fluids, such
as urine’s headspace [10,12-18] and breath [11,19,20]. These sensory devices have shown
potential for identifying chemical patterns that can be used to differentiate between samples
from healthy individuals and those with PCa. Similarly, using an eTongue for PCa detection
is a topic that has barely been studied; however, some studies have explored its application
to analyzing urine samples [9,21,22]. Overall, all the studies mentioned above, for both
systems, have achieved high levels of sensitivity and specificity, individually exceeding an
80% success rate in many cases. In a previous study by Durén et al., the effectiveness of
eNose and eTongue systems in detecting PCa and related diseases was evaluated using
non-invasive samples of exhaled breath and urine. In that report, the eTongue system
achieved an accuracy of 92.9% in classifying the samples from the PCa and the control
groups, while the eNose system also achieved a high accuracy in classification, including
for additional control subcategories, such as patients with BPH, prostatitis, and healthy
individuals [23].

Nowadays, combining data acquired through these sensory systems can provide
more precise and complete information about a sample compared to the same detection
devices working individually. This improves sensory analysis’s sensitivity, discrimination,
and reliability, leading to more accurate diagnoses and a remarkable ability to detect and
differentiate between pathological conditions [24,25]. Therefore, in previous research, there
was a simple approach where the data from breath samples and urine headspace were
combined using an eNose for PCa detection, achieving 95.6% accuracy, 84.55% sensitivity,
98.6% specificity, and 86.25% precision in the classification of patients with BPH, prostatitis
and healthy individuals as the controls [23]. Regarding the above, the present study aims to
evaluate the data fusion method, with all possible combinations, to determine if it is capable
of improving the results obtained by the two devices, which have been used independently
in recent reports. Therefore, for testing purposes, the odor patterns and taste profiles of
the urine samples analyzed by the different sensory technologies (eNose and eTongue)
were extracted, and their ability to classify patients as those with PCa or as controls was
evaluated using various artificial intelligence algorithms, achieving an accuracy rate of up
to 100%, based on the combination of the urine measurements acquired through the C110
and 250BT electrodes for the eTongue, the urine sample measurements obtained with the
eTongue and eNose, and the measurements of urine and breath samples with both systems.
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This work is the first to explore using multiple data combinations from both eNose
and eTongue devices to detect prostate cancer and related conditions, such as BPH and pro-
statitis. This innovative method enhances the classification accuracy and demonstrates the
effectiveness of using combined sensory data to improve the diagnostic capability for PCa
and related diseases, setting a new benchmark for non-invasive prostate cancer diagnostics.

2. Materials and Methods

This section outlines the modules employed for the experimental tests with the “E-
Senses” devices. Figure 1 depicts the process for detecting PCa through the following
stages: (1) conditioning of the urine samples and breath, (2) data acquisition, and (3) data
treatment and processing.
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Figure 1. Scheme of E-Senses for improving PCa detection.

As shown in the figure, this study primarily focused on detecting PCa through urine
samples collected for analysis using an electronic tongue. Similarly, an eNose was used
to analyze the breath and urine headspace, where a set of measurements was acquired
that revealed significant chemical and biological differences between patients with various
prostate conditions. A uStat8000 potentiostat manufactured by Metrohm DropSens Com-
pany (Llanera, Spain) [26] was used for the eTongue measurements of the urine samples.
Two types of screen-printed electrodes were tested in this study: carbon-based C110 and
gold-based 250BT. These electrodes consist of a working electrode, an auxiliary electrode,
and a reference electrode. For the operation of the eTongue, both electrodes were used
in the different tests by connecting them to the potentiostat, which recorded the currents
generated during the electrochemical reactions. For each acquired measurement, voltammo-
grams were extracted to create a representative database of the samples, showing marked
differences in the responses of the urine samples between those from the patients with
prostate cancer and those from the controls. These differences allowed for the identification
of the specific patterns associated with various prostate conditions. The purpose of testing
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these two sensor types was to evaluate which one yielded better results for differentiating
between and classifying the PCa patients and controls.

The exhaled breath samples were collected from volunteer patients using an eNose to
detect the volatile organic compounds (VOCs) associated with the PCa and control groups.
Additionally, the urine samples were heated to a temperature of 60 °C using a hotplate
device to generate the headspace, obtaining gaseous samples, which were then directed into
the gas sensor chamber. The signals produced by the commercial sensors, manufactured
with Micro-Electro-Mechanical System (MEMS) technology, were acquired as resistance
values (Q)), representing the chemical reactions, and were converted into electrical values
corresponding to the VOCs present in the breath and urine (see Table 1). Therefore, as
with the eTongue, the differences in these patterns allowed for the discrimination between
patients with PCa and other groups.

Table 1. MEMS-type gas sensors.

Sensitive Layers Detected . -
Type Sensors No. Manufactured Number Compounds Detection Limit
. Ethanol 5 ppm
BME 680 2 Bosgir(f;‘fﬂ;gen’ 1 Isoprene/2-methyl- 1000m
Y 1,3 butadiene PP
Ethanol 10 ppm
Digital CCssll 2 Sciosense (Eindhoven, 1 eTVOC 0 ppm to 32,768 ppm
The Netherland) eCO, 400 ppm to 29,206 ppm
Ethanol 0.3 ppm to 10 ppm
Sensirion (Chicago, H; 0.5 ppm to 3 ppm
SPG30 2 IL, USA) 2 TVOC 0 ppb to 60,000 ppb
COzeq 400 ppm to 60,000 ppm
Carbon monoxide 1 ppm to 1000 ppm
Nitrogen dioxide 0.05 ppm to 10 ppm
ol T o s
MICS 6814 1 (Neuchatel, 2 YCToBs PP PP
Switzerland) Ammoniac 1 ppm to 500 ppm
witzera Methane >1000 ppm
Propane >1000 ppm
Iso-butane >1000 ppm
Carbon monoxide 0 ppm to 1000 ppm
Nitrogen dioxide 0.05 ppm to 10 ppm
Analog MICS 4514 1 SGX S h 3 Ethanol 10 ppm to 500 ppm
ensortec Hydrogen 1 ppm to 1000 ppm
Ammoniac 1 ppm to 500 ppm
Methane >1000 ppm
Carbon monoxide 0.1 ppm to 400 ppm
CCs801 1 Sciosense 1 Ethanol 0.1 ppm to 208 ppm
Formaldehyde 0.1 ppm to 2 ppm
Winsen Electronics
GM 502B 1 (Zhengzhou, china) 1 Alcohol 1 ppm to 100 ppm
Acetone
Toluene
Formaldehyde

Once the measurements were acquired, they were preprocessed through feature ex-
traction techniques to capture the most relevant information from the dataset, including
the parameters, such as signal intensity or amplitude and other factors, for sample classifi-
cation. Additionally, the measurements were normalized to eliminate noise and variability,
followed by multivariate analysis techniques, such as principal component analysis (PCA)
and discriminant function analysis (DFA), to reduce the data dimensionality to discrimi-
nate and classify the measurements. After data preprocessing, the data fusion technique
was applied to the responses generated by the two systems. Therefore, the information
obtained from the two biological sources (urine and breath) was combined, creating a
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more robust dataset with more significant information and improved predictive capability.
Moreover, the eTongue and eNose data were processed using machine learning methods,
creating training models based on algorithms, like Support Vector Machines (SVMs), Naive
Bayes, and K-Nearest Neighbors (KNN). Finally, confusion matrices, represented by the
diagonals of the predictions and error rates, were used to evaluate the classification models.
Here, metrics were determined with which to assess the model’s performance, provid-
ing a better perspective on evaluating the model’s effectiveness in classifying PCa and
related conditions.

Sample Collection Process

This study’s population comprised two groups: 66 patients with histopathologically
confirmed PCa via biopsies, and 47 volunteers who served as the control group. Among the
control group, 30 had BPH; 6 had prostatitis; and 11 were healthy individuals with no family
history of PCa, no evidence of neoplastic disease, and a PSA level below 1 ng/mL. The
selected patients visited the Urology Center “Uronorte S.A.”, located in Cticuta (Colombia),
and both groups were aged between 50 and 89 years. In addition, each patient signed an
informed consent form, where they were informed about this study’s procedure, risks, and
benefits. Each patient was instructed to refrain from eating and to limit fluid intake for 10 h
before the urine sample collection to prevent the dilution of the sample. Additionally, the
patients were asked to provide their first-morning urine, ensuring the sample was more
concentrated and representative. Fifty milliliters of urine were collected from each patient
in sterile containers and stored in Falcon tubes at —20 °C until analysis. As for the breath
samples, they were taken directly at the Uronorte facilities.

The breath samples were collected directly using an eNose (Figure 2a) with a dispos-
able mouthpiece equipped with a unidirectional valve to prevent backflow. The patients
were instructed to exhale continuously until they could no longer do so. The eNose device
collected the exhaled breath in an internal concentration chamber heated to 60 °C. During
the process, the first portion of the exhalation (the initial 10 s) was discarded, and the device
captured the last portion, known as the alveolar breath, over the next 50 s. This air sample
was then sent directly into the sensor chamber for measurement. Afterward, the device
switched to an ambient air for 60 s to allow the sensors to recover and return to the baseline.

Mouthpiece

(a) (b)

Figure 2. eNose System: (a) Sampling device for breath collection using a disposable mouthpiece,
(b) Sampling protocol for urine collection generating a headspace.

The urine sample collection with the eNose involved creating a headspace by heating
20 mL of centrifuged urine in a sealed container at 60 °C for 30 min (see Figure 2b).

The resulting VOCs were directed into a sampling chamber maintained at 40 °C to
minimize humidity and prevent condensation. A constant airflow of 0.9 L/min carried the
VOCs to the sensor chamber, which was kept between 39 °C and 41 °C with 30% relative
humidity. The process started with a 2 min ambient air baseline, followed by 3 min of
VOCs detection. Afterward, ambient air was flushed through the system to clean the
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sensors and avoid memory effects. This protocol ensured precise VOCs measurements
under controlled conditions.

For the eNose, the process started by normalizing the raw data using the “mean-
centering” technique, which involved adjusting the data so that the mean value of each
variable became zero. This step was conducted after calculating the steady-state pa-
rameter, defined as the difference between the maximum and minimum voltage values
(AV1 = VMax — VMin), Where Vo« = maximum voltage value and Vyjin = minimum volt-
age value of the sensor responses. Once the eNose data were normalized, the orthogonal
signal correction (OSC) algorithm was applied to the gas sensor signals to eliminate any
systematic variations unrelated to the primary data of interest, specifically addressing
signal drift [27].

For the eTongue, the same steady-state parameter (AV;) was applied to the dataset
through the ALy = Iyjax — Ivin parameter, with the additional enhancement of calculating
the initial and final current values (Al = Igina — Iinitial) to obtain further information, where
Ipinal = final current value and Iy, = initial current value of the electrode response. This
technique aimed to extract more features and provide a richer data set for further analysis.

As with the eNose, the normalization method was applied to the eTongue data to
standardize the measurements. Since the electrode signals showed no significant drift,
using the orthogonal signal correction (OSC) algorithm was considered unnecessary to
ensure the stability of the data. After completing the data preparation for both devices,
principal component analysis (PCA) and discriminant function analysis (DFA) methods
were applied to reduce the dimensionality of the datasets and highlight the most relevant
patterns for further analysis. These methods effectively highlighted the most pertinent
patterns, making it easier to uncover the underlying trends within the data. As a result,
two matrices (“scores”) were generated from these multivariate analyses, with dimensions
of 113 x 2, from which the most significant principal components (PCs) and factors were
extracted. Finally, the datasets were merged, resulting in a combined matrix providing a
more comprehensive dataset for further interpretation and analysis.

It should be noted that the k-fold cross-validation method was employed to evaluate
the performance of each classification model for predicting unseen data. To achieve this,
the dataset was divided into smaller subsets (five folds), where the model was trained
on some subsets and tested on the remaining ones. This process was repeated multiple
times, using a different subset as the test set. For example, the DFA method was applied to
the training data within each fold (during each split), and the test data were transformed
using the DFA model trained on the training set. This method ensured consistency within
the transformation application and helped avoid overfitting. The transformed test data
were then evaluated using the SVM classifier, allowing for the model to be assessed on
previously unseen data.

Subsequently, several performance metrics were calculated from the confusion matri-
ces to assess the classification model’s effectiveness at detecting PCa and distinguishing it
from the control cases.

3. Results

The results were divided into two phases: The first phase involved selecting the best
previously published results, which showed that the best discrimination results for the
two categories were achieved using PCA, and for the four categories, the best performance
was obtained with the DFA classifier. Various classification models were also evaluated,
and the best ones were selected to calculate the metrics. In the second phase, the most
notable findings from the data fusion were determined using the previously mentioned
data processing methods.

As mentioned, each analysis was based on the 113 measurements acquired from the
E-Senses devices. The categories for prostate cancer and the control patients were classified,
and an additional effort was made to classify the categories proposed for the control group.
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3.1. eNose Data Analysis

Figure 3 shows two radar plots created to visualize four raw signals acquired with the
eNose to detect the VOCs in the breath (a) and the urine samples” headspace (b). This plot
is related to prostate gland conditions, such as PCa, BPH, prostatitis, and healthy states,
and provides an overall description of the contribution of the variables.

Radar Plot of Breath signals using ELECTRONIC NOSE Radar Plot of Urine signals using ELECTRONIC NOSE

~e—~PCa =@ PCa

18] e

~o—Prostatitis 9272.9 Healthy
Healthy 5

(@ (b)

Figure 3. Radar plot of sensor responses of eNose for prostate conditions (PCa, BPH, prostatitis, and
healthy patients). (a) Breath samples signals, and (b) urine samples HS signals.

The sensors (51-515) in the eNose system represent a different detection channel for
the specific VOCs found in the breath (left) and urine (right) samples. The orange line (PCa)
generally shows higher sensor responses to the breath samples, indicating higher VOCs
signals. However, in the urine samples, the intensity of the PCa signals is notably lower,
representing a weaker response than in the breath samples. The numerical values represent
the intensity of the sensor responses, in arbitrary units corresponding to the concentration
of VOCs detected.

Almost all the sensors had a significantly elevated response when sensing exhaled
breath, with especially high readings for the S1, S3, S5, 56, S7, S8, and S9 gas sensors,
where the signal’s intensity indicates a strong response to specific gas molecules present
in the breath of patients with PCa. Likewise, the urine samples show distinct peaks for
sensors S1, 57, S8, and 59, with a significant difference from the breath samples. The green
line represents healthy individuals and is mainly contained within the other lines, and
especially shows lower responses for the breath compared to the urine samples, as there
are significant variations in most of the sensors, such as S1, 53, 57, and S8, during breath
detection. On the other hand, the healthy individual’s profile based on the urine samples is
still within the lower range compared to the disease states, but with a noticeable peak for
sensors S1, S3,S7, and S8.

Nevertheless, the figures show some overlaps between BPH (yellow line), prostatitis
(purple line), and healthy profiles in the breath and urine samples, demonstrating the
diverse behavior of the eNose for both types of samples.

Based on the sensor data, the radar plot demonstrates that the eNose can differentiate
between prostate-related conditions, such as PCa, and the control group. The important
variations between the two plots underscore the importance of the sample type for detecting
these conditions. Thus, it provides a preliminary visual assessment of the eNose data, which
is crucial for guiding the development of data preprocessing and processing strategies,
particularly in machine learning for classification tasks.

3.1.1. Urine Analysis with eNose: PCa vs. Control and PCa vs. Prostatitis, BPH,
and Healthy

Figure 4a presents the PCA plot that discriminates between the PCa patients and
the controls. PC1 captures almost all the information needed to differentiate between
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the two groups, achieving a total data variance of 98.97%, while PC2 accounts for only
0.42%. Nevertheless, some overlap between the two groups can be observed, indicating
that, although the model achieves good overall discrimination, some samples were too
complex to classify correctly based on just two components.

DEVICE VOCaP (eNose) URINE SAMPLES DEVICE VOCaP (eNose) URINE SAMPLES
PCA Plot. PCa and Control patients PCA Plot. PCa, BPH, Prostatitis, Healthy
* PCa 10/[*Pca
5 { #* Control] * % * * BPH
o %, O Prostatitis
—_ * ¥ Y 5 rostal o 4
Y * o *%é:}* 1‘* **mﬁ 9 #* Healthy * *%n m g F % w
S * * * Q0 * * ' 4 % A % *
it * * A < *x
g * e -5 *
O * S
a-10 ©-10 N
* 15
15 * *
* 20
150 ~100 50 0 50 100 200 -150  -100  -50 0 50 100
PC1 (98.966%) PC1 (98.954%)
(a (b)

Figure 4. (a) PCA plot of PCa and control categories of urine samples using eNose, (b) PCA plot of
urine samples (PCa vs. BPH, prostatitis, and healthy) using eNose.

A cross-validation method with k-fold = 5 and an SVM classifier was applied, achiev-
ing 100% success in classification. Figure 4b presents the PCA plot based on the urine
samples from patients with different prostate conditions, such as PCa, BPH, and prostatitis,
and those from the healthy patients, illustrating that 99% of the data variation can be
captured through the first two PCs. The figure clearly distinguishes between the groups,
particularly between the healthy individuals and those with PCa. Moreover, the healthy
patients are primarily clustered around negative PC1 values, whereas the PCa patients
have positive values, indicating significant differences in their chemical profiles.

However, there is considerable overlap between the control group’s subcategories.
This may be because some chemical characteristics of the urine samples are common
among these categories, making precise discrimination challenging. Furthermore, the
metrics presented in Table 2 show that the model based on the combination of PCA-SVM is
effective at correctly classifying the urine samples of the PCa patients and controls, with
the metrics reaching 100%, which were obtained using SVM to classify the PCa vs. control
categories with the eNose.

Table 2. Metrics for PCA-SVM model for classifying PCa and control urine samples using eNose.

Urine-eNose-PCA-SVM

Metrics PCa (%) Control (%)
Precision 100 100
Sensitivity 100 100
Specificity 100 100
Accuracy 100 100
NPV 100 100

The SVM model effectively maximizes the margin of separation using data from three
dimensions (PC1, PC2, and PC3) derived from the PCA. Although some overlap may
be visible in the 2D representation (PC1 and PC2), the SVM can optimize the margin of
separation based on the three-dimensional data (PC1, PC2, and PC3).

Figure 5 shows the 3D DFA plot using the eNose device applied to the urine samples
from the patients. The plot illustrates the classification of four distinct patient groups:
PCa, BPH, prostatitis, and healthy individuals. The three axes represent the discriminant
functions, which are the combinations of features used to classify the samples.
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DEVICE VOCaP (eNose) URINE SAMPLES
DFA Plot. PCa, BHP, Prostatitis and Healthy patients

# PCa
BPH
O Prostatitis * o -3
*
Healthy FJ ¥ g
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™ 2 # ®
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Figure 5. DFA plot for PCa and control categories classification of urine samples using eNose.

In a short analysis, PCa forms a relatively distinct cluster towards the right side of
the plot, showing clear separation from the other groups along DF1 and DF2. The BPH
patients occupy a different plot area, showing some similarities with the PCa group but
generally remaining distinct. The prostatitis patients are more scattered, occupying a
central location in the plot and being somewhat distinguishable from the other groups. The
healthy patients form a clear and separate cluster, located towards the left and upper part of
the plot, showing a strong separation from the diseased groups. The DFA plot successfully
highlights how the eNose device can distinguish between these patient groups based on
urine samples, with relatively strong separation, particularly between the healthy group
and those with prostate-related conditions.

Table 3 illustrates the performance metrics obtained using a DFA-Random Forest
model with a k-fold cross-validation (k = 5) to classify the urine samples into four cat-
egories. The metrics for this model are highly accurate, demonstrating that the eNose
has an excellent capacity to identify prostate conditions along with healthy individuals.
Additionally, it shows an overall accuracy of 91.2% across all the categories. However,
the lower sensitivity for BPH and prostatitis indicates that these conditions may be more
difficult to distinguish, possibly due to similarities in the VOCs detected by the system,
making it challenging to identify these two categories.

Table 3. Metrics for DFA-Random Forest model for classifying PCa vs. BPH, prostatitis, and healthy
urine samples using eNose.

Urine—eNose-DFA-Random Forest

Metrics PCa (%) BPH (%) Prostatitis (%) Healthy (%)
Precision 90.0 92.3 100 91.6
Sensitivity 95.5 82.8 83.3 91.7
Specificity 85.1 97.6 100 99.0
Accuracy 91.2 91.2 91.2 91.2
NPV 93.0 94.3 99.1 99.0

3.1.2. Breath Analysis with eNose: PCa vs. Control and PCa vs. Prostatitis, BPH,
and Healthy

In Figure 6a, it can be observed that 79.8% of the total variability in the data acquired
using the eNose and breath samples from the PCa patients versus the controls is captured
by PC1 and PC2. This means that nearly 80% of the information in the original samples can
be captured and visualized with this plot. Regarding separating the two categories, the PCa
samples are primarily located in the negative region of PC1; in contrast, the control samples
are mainly located in the positive area of the same axis, indicating a difference between
the patterns in each group. Only a small proportion of the PCa and control samples are
classified incorrectly.
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Figure 6. (a) PCA plot of PCa vs. control categories of breath samples using eNose, (b) PCA analysis
of PCa vs. control categories of breath samples using eNose.

On the other hand, Figure 6b represents the separation between the different prostate
conditions and the healthy patients through a breath analysis, especially between the PCa
patients and healthy individuals. However, some overlap is illustrated between the BPH
and prostatitis groups, indicating similarities in the exhaled breath characteristics between
these two conditions. In total, 79.87% of the variance is captured.

Table 4 represents the metrics showing an outstanding performance of 100% for both
the PCa and control groups (BPH, prostatitis, and healthy). This indicates that the PCA-
SVM model can completely distinguish between prostate cancer patients and healthy
individuals from the dataset based on exhaled breath.

Table 4. Metrics for PCA-SVM model for classifying PCa vs. control categories with breath samples
using eNose.

Breath-eNose-PCA-SVM

Metrics PCa (%) Control (%)
Precision 100 100
Sensitivity 100 100
Specificity 100 100
Accuracy 100 100
NPV 100 100

A similar trend is observed in the distribution of the categories with the eTongue,
demonstrating the eTongue’s ability to effectively classify patients according to their
prostate condition, distinguishing between PCa patients and healthy individuals. Therefore,
utilizing a DFA analysis (see Figure 7), the separation between the other groups is observed
by classifying the categories with the breath samples, where the factors can be used to
distinguish between different prostate diseases using learning methods.

DEVICE VOCaP (eNose) BREATH SAMPLES
DFA Plot. PCa, BPH, Prostatitis and Healthy patients
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Figure 7. DFA plot of PCa vs. control categories of breath samples by using eNose.
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The metrics for the DFA-KNN model indicate a high performance in classifying
prostate conditions and healthy patients (see Table 5). In this case, the accuracy is high
for all the groups, especially for prostatitis and healthy patients, where the classification
model achieved 100% accuracy for PCa and BPH. Although the accuracy remains high,
some misclassified cases indicate that some false positives occurred. Regarding sensitivity,
it is notably high for PCa, BPH, and healthy patients; however, its sensitivity for prostatitis
is significantly lower (66.7%), indicating that the model struggles to detect all cases of
prostatitis, which could be due to the similarity of its characteristics with those of other
groups. For specificity and accuracy, the percentages for the four categories exceed 90%, and
the specificity shows that the model is effective at avoiding false positives, which is essential
to minimize unnecessary medical interventions or overdiagnosis. The high accuracy implies
that the model makes correct predictions in most cases, making it a valuable tool for
classifying and diagnosing prostate conditions through evaluating exhaled breath.

Table 5. Metrics for DFA-KNN model for classifying PCa vs. BPH, prostatitis, and healthy breath
samples using eNose.

Breath-eNose-PCA-SVM

Metrics PCa (%) BPH (%) Prostatitis (%) Healthy (%)
Precision 94.2 96.5 100 100
Sensitivity 98.4 96.5 66.7 91.6
Specificity 914 98.8 100 100
Accuracy 95.5 95.5 95.5 95.5
NPV 97.7 98.8 98.1 99.1

3.2. eTongue Data Analysis

The following section presents the results obtained with the eTongue. Voltammetric
signals were acquired, and the steady-state parameters described earlier were extracted to
increase the amount of information.

3.2.1. C110 Electrode for PCa vs. Control and PCa vs. Prostatitis, HBP, and
Healthy Analysis

The electrochemical responses of the urine samples from the PCa patients (orange)
and the control (green) are depicted in Figure 8. The horizontal axis (x) shows the applied
potential (V), while the vertical axis (y) displays the resulting current (LA) measured by
the C110 electrode. The signal from the PCa patient shows a significant increase in the
current, reaching up to 140 pA when the applied potential is around 1 V, indicating a
strong and rapid oxidation process in the PCa samples. For the control patient, a different
behavior is observed, as the current value does not exceed 40 pA in the same potential
range, indicating lower electrochemical activity in the control group samples and a likely
different chemical composition that does not include the same disease markers present
in the PCa group. The clear difference between the signals (magnitude and curve shape)
indicates that cyclic voltammetry with the C110 electrode can differentiate between samples
from the PCa patients and control individuals.

In the PCA analysis, based on the measurements of the urine samples using the
eTongue with carbon electrodes (C110), it can be observed in both graphs that most of the
variability in the data occurs in PC1, with 99.94%, meaning that most of the information for
differentiating between the urine samples from the two groups is captured on this axis.

In Figure 9a, a separation between the two groups is visible, indicating that the urine
samples from the PCa patients and controls have different electrochemical compositions,
as detected by the electrode. However, in Figure 9b, the discrimination is not complete, as
there is some overlap in the central area of the plot, demonstrating the greater complexity
of the separation of the groups, especially between PCa, BPH, and prostatitis. Although
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these diseases have different pathological characteristics, they affect the prostate system
and urinary tract in ways that can produce similar chemical compounds (both conditions
generate biochemical products, such as amino acids, nucleic acids, and proteins, related to
the inflammatory process and cell growth) in urine, which may explain the overlap in the
samples. It can be seen in both graphs that most of the variability in the data occurs in PC1,
with 99.94%, meaning that the majority of the information gained through urine samples
for the two groups is captured on this axis.

Cyclic Voltammetry (PCa and Controls)
Sensor C110
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Figure 8. Signals acquired with eTongue based on C110 electrode for distinguishing between PCa
(orange) and controls (green) in urine samples.
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Figure 9. PCA plot of C110 electrode using eTongue. (a) PCa and control categories of urine samples
and, (b) PCa vs. BPH, prostatitis, and healthy urine samples.

Table 6 presents the metrics for the results acquired using the PCA-KNN model to
differentiate between the PCa patients and controls.

Table 6. Metrics for PCA-KNN model for classifying PCa vs. control urine samples using eTongue
(C110 electrode).

Urine-eTongue (C110 Electrode)-PCA-KNN

Metrics PCa (%) Control (%)
Precision 96.7 89.3
Sensitivity 90.0 89.3
Specificity 95.0 92.4
Accuracy 92.9 91.1

NPV 92.4 89.3
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A precision of 96.7% is achieved, minimizing the number of false positives (indi-
viduals without cancer incorrectly classified as PCa, also called “False Positives”). The
high sensitivity (90%), specificity (95%), and accuracy (92.9%) ensure that each category
is adequately classified in each group, allowing for the successful identification of PCa
patients and controls in both groups. In contrast, Figure 10 shows good separation between
the samples from the PCa patients and healthy individuals, while the BPH and prostatitis
categories overlap.

C110 ELECTRODE CARBON (eTongue) URINE SAMPLES
DFA Plot. PCa, BHP, Prostatitis and Healthy patients
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Figure 10. DFA plot of PCa and control categories for urine samples by using eTongue.

This overlap in the measurements between prostatitis and BPH is due to similar
alterations in electrolyte levels, such as calcium, sodium, and potassium, which are caused
by the growth of prostate tissue in BPH and inflammation in prostatitis. Since the eTongue
detects variations in ionic compounds and other non-volatile metabolites, the differences
in ion levels between BPH and prostatitis may not be significant enough to allow for a clear
distinction between the two conditions [28,29].

Table 7 presents the metrics for the DFA-KNN model using the information extracted
from the C110 electrode and the analysis of the urine samples. By comparing the results of
both systems, it is observed that both technologies demonstrate 100% accuracy in detecting
prostatitis, indicating an excellent performance in identifying this disease. In the case of
PCa, the eTongue achieves a higher accuracy of 92.5%, compared to the eNose, which
reaches 90.0%. Additionally, for patients with BPH and healthy individuals, the eNose
shows better performance.

Table 7. Metrics for DFA-KNN model for classifying PCa vs. BPH, prostatitis, and healthy individuals
through urine samples using eTongue (C110 electrode).

Urine-eTongue (C110 Electrode)-DFA-KNN

Metric PCa (%) BPH (%) Prostatitis (%) Healthy (%)
Precision 92.5 89.6 100 83.3
Sensitivity 93.9 86.6 83.3 90.9
Specificity 89.3 96.3 100 98.0
Accuracy 91.1 91.1 91.1 91.1
NPV 91.3 95.2 99.0 99.0

Concerning the sensitivity, the eNose exhibited higher sensitivity at detecting PCa
(95.5% vs. 93.9%) and healthy subjects (91.7% vs. 90.9%), while the eTongue was more
sensitive at detecting BPH. However, the eTongue was more specific at detecting PCa
(89.3%), implying a remarkable ability to avoid false positives with this diagnosis. For BPH
and healthy subjects, the eNose demonstrated better specificity.
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3.2.2. 250BT Electrode

Figure 11 depicts two electrical signals representing a characteristic current response
as a function of the applied potential, corresponding to a voltammetric signal generated
from the urine samples of patients with PCa and controls using a 250BT sensor. Observing
the PCa signal, several increases in the positive and negative current peaks are generated
compared to the control signal, especially in the region with a positive potential applied
(from 0 to 1.5 V), which indicates more significant Redox activity in the prostate cancer
samples. The difference in the current peaks may be related to specific biomarkers in
the urine, whose levels or activities may change in the presence of diseases such as PCa.
The above is due to particular cancer metabolites being absent in the control samples or
present at lower concentrations. According to the literature, specific molecules, such as
particular proteins, oxidized nucleic acids, and oxidative stress metabolites, are present at
higher concentrations in cancer and can be detected electrochemically due to their ability
to transfer electrons at an electrode [30,31].

Cyclic Voltammetry (PCa and Controls)
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Figure 11. Signals from measurements acquired with eTongue with 250BT electrode for detecting
PCa and controls using urine samples.

Figure 12a illustrates a clear separation between the PCa patients and the control
group, indicating that the 250BT electrode can capture distinctive features in the urine
samples that allow for differentiation between the two groups. The variance captured by
PC1 explains nearly all the data variability, accounting for 99.19%. On the other hand, in
Figure 12b, it can be seen that the PCa samples are mainly concentrated on the left side of
the graph, near the PC1 axis, which suggests that the chemical characteristics in the PCa
samples measured by the eTongue are significantly different from those of BPH, prostatitis,
and healthy individuals. Additionally, the BPH samples are more dispersed and tend to
cluster on the right side of the graph, away from the PCa samples; however, there is some
overlap with the prostatitis and healthy samples, making the differentiation less clear when
using the 250BT electrode due to the biological complexity of the compounds.

The metrics demonstrate the good performance of the PCA-SVM model at classifying
the PCa vs. control urine samples with the eTongue and 250BT electrode.

Table 8 demonstrates that its accuracy and specificity for detecting prostate cancer are
100%, implying a perfect identification of the PCa patients. Although there is a slight drop
in accuracy for the control group samples, the PCA-SVM model remains remarkably robust,
with nearly all the performance metrics approaching 100%. This highlights the model’s
reliability and effectiveness at distinguishing between the PCa and control subjects with
minimal error.



Chemosensors 2024, 12, 228

15 of 32

250BT ELECTRODE GOLD (eTongue)URINE SAMPLES
PCA Plot. PCa and Control patients .

250BT ELECTRODE GOLD (eTongue) URINE SAMPLES
PCA Plot. PCa, BHP, Prostatitis and Healthy patients

40
% PCa 0.1 % PCa
30 | * Control : BPH
20 « * O Prostatitis o
=20 = # Health
S . % ® 05—
- * - a
© 10- © *
3 W& ¢ ety N bt 4 .
50 re S o ey .
** R s o
2 o i§ it . O s -8 MESR a
wxow aea?‘ * &
-20 0.05 - *
* *
30 . | . .
-150 100  -50 0 50 100 150 200 250 0.4 -0.2 0 0.2 0.4 0.6
PC1 (99.19%) PC1 (99.19%)
(a) (b)

Figure 12. (a) PCA plot of PCa and control groups urine samples using 250BT electrode with eTongue.
(b) PCA plot of PCa vs. BPH, prostatitis, and healthy urine samples using 250BT electrode with
eTongue.

Table 8. Metrics for confusion matrix of urine samples for PCa vs. control categories classification
using PCA and SVM using 250BT electrode with eTongue.

Urine-eTongue (250BT Electrode)-PCA-SVM

Metrics PCa (%) Control (%)
Precision 100 97.9
Sensitivity 98.4 100
Specificity 100 98.4
Accuracy 99.1 99.1
NPV 97.9 100

In Figure 13, there is a clear discrimination between the prostate cancer and healthy
patients, with minimal overlap between these two groups. However, a significant similarity
is observed between the BPH, prostatitis, and healthy categories. This indicates that the
eTongue system, using the 250BT electrode for urine samples, exhibits a lower performance
when distinguishing between BPH, prostatitis, and healthy individuals, as the classes are
not well separated. The considerable overlap between these categories indicates that the
system struggles to differentiate between them, leading to reduced classification accuracy
for these conditions.
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Figure 13. DFA plot of PCa and control groups urine samples acquired with —250BT electrode
with eTongue.
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FUSION ELECTRODES CARBON/GOLD C110/250BT (eTongue) URINE SAMPLES

Table 9 shows the performance of a DFA-SVM model for classifying urine samples,
such as between PCa, BPH, prostatitis, and healthy individuals, using a 250BT electrode.
The model demonstrates high accuracy and sensitivity at identifying PCa and BPH, but
cannot correctly classify patients with prostatitis and healthy individuals, with an accuracy
and sensitivity of 0% for these two categories. The overall accuracy across all the classes
is 84%, and the negative predictive value is high across all the categories (around 90%),
reaching 100% for BPH. In summary, this model is well suited for PCa detection, but shows
limited performance for other conditions, like prostatitis, BPH, and healthy individuals,
especially compared to the results reported in Table 6 for the carbon electrode, which proves
more effective for classifying the control group categories.

Table 9. Metrics for confusion matrix generated through PCA and SVM model for classifying PCa vs.
BPH, prostatitis, and healthy urine samples using eTongue (250BT electrode).

Urine-eTongue (250BT Electrode)-PCA-SVM

Metrics PCa (%) BPH (%) Prostatitis (%) Healthy (%)
Precision 100 62.5 0.00 0.00
Sensitivity 98.4 100 0.00 0.00
Specificity 100 78.3 100 100
Accuracy 84.0 84.0 84.0 84.0
NPV 97.9 100 94.6 90.2

3.2.3. Combination of C110 and 250BT Electrodes

In this section, a combination of C110 and 250BT carbon/gold electrodes is applied
to analyze the urine samples from patients with PCa and other related conditions. The
results are processed using a PCA analysis to determine the system’s ability to differentiate
between these groups based on the biochemical patterns in the urine samples. Figure 14a
displays the PCA results comparing the urine samples from the PCa patients and con-
trols. The first two principal components, PC1 (88.67%) and PC2 (10.73%), account for a
combined 99.40% of the total variance in the dataset, indicating that these components
effectively perceive the underlying differences between the groups. Therefore, the results
from Figures 8 and 11 show that it is possible to improve the discrimination between the
PCa and control classes, reaching a total variance of 99.4% using PC1 and PC2.
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Figure 14. (a) PCA plot of PCa and control groups urine samples acquired using C110 and 250BT
electrodes with eTongue. (b) PCA plot of PCa vs. BPH, prostatitis, and healthy urine samples using
eTongue (C110 and 250BT electrodes).
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Figure 14b illustrates the analysis of the patients with BPH, prostatitis, PCa, and
healthy controls. In this case, the variance obtained by PC1 (88.67%) and PC2 (10.73%)
remains the same. Though most of the control samples are not well discriminated, the
trend in PCa identification shows a slight improvement.

Table 10 depicts the performance metrics of the confusion matrix for classifying the
PCa and control categories derived from the PCA-SVM model with an eTongue with C110
and 250BT electrodes. These results demonstrate the system’s robustness, when equipped
with both electrodes, at distinguishing between prostate cancer and the control groups
using the classification model. The precision and specificity for PCa detection reaches 100%,
meaning that all the positive predictions for PCa are correct.

Table 10. Metrics for confusion matrix of breath samples for PCa vs. control categories classification
using PCA and SVM using C110 and 250BT electrodes with eTongue.

C110/250BT-eTongue (Urine)-PCA-SVM

Metrics PCa (%) Control (%)
Precision 100 97.9
Sensitivity 98.4 100
Specificity 100 98.4
Accuracy 99.1 99.1
NPV 97.9 100

The DFA plot in Figure 15 shows the classification of the urine samples from the
patients with PCa and related conditions. The analysis with C110 and 250BT electrodes
demonstrates its ability to classify the samples and highlights its potential as a diagnos-
tic tool for PCa detection. While BPH and prostatitis show some overlap, the overall
classification of healthy individuals and those with prostate conditions remains robust.
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Figure 15. DFA plot of PCa vs. BPH, prostatitis, and healthy urine samples acquired with eTongue
(C110 and 250BT).

Table 11 shows the performance metrics for classifying PCa and related prostate
diseases based on urine samples using the DFA and SVM models with the C110 and 250BT
electrode responses. The highest accuracy is observed for the DFA-SVM model using
the C110/250BT electrodes, with the urine samples showing a consistent accuracy of 92%
across all the categories, compared with the accuracies calculated in Tables 6 and 8.
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Table 11. Metrics for DFA and SVM model for classifying PCa vs. BPH, prostatitis, and healthy urine
sample measurements through eTongue (C110/250BT).

C110/250BT-eTongue (Urine)-DFA-SVM

Metrics PCa (%) HPB (%) Prostatitis (%) Healthy (%)
Precision 100 84.3 50.0 90.0
Sensitivity 98.4 90.0 50.0 81.8
Specificity 100 93.9 97.2 99.0
Accuracy 92.0 92.0 92.0 92.0
NPV 97.9 96.3 97.2 98.0

3.3. Data Fusion of the “E-Senses” Devices

This section describes the results for the data fusion of both systems, specifically aimed
at enhancing the detection of PCa. Therefore, by integrating the data from both systems,
we seek to determine whether their combination can significantly improve classification
accuracy, increase sensitivity, and optimize additional performance metrics.

3.3.1. Data Fusion of Breath and Urine Samples Through eNose

Figure 16 details the PCA analysis of the combination of the VOCs emitted from the
breath and urine samples acquired with the eNose to increase the detection capability using
the two datasets. The newly constructed dataset allows for a broader and more precise
detection of the compounds associated with PCa and other disease states, improving
diagnostic reliability. PC1, accounting for 88.42% of the variance, clearly discriminates
between the PCa patients and controls, with the two groups mostly separated along the PC1
axis. The results indicate that the eNose system can effectively distinguish between PCa
patients and healthy individuals when analyzing the VOCs from both biological samples.
While there is some overlap between the two groups, the overall trend demonstrates
strong discriminatory power, indicating that the combination of the breath and urine data
significantly enhances the detection of prostate cancer. This highlights the potential of the
eNose system for non-invasive PCa diagnosis.
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Figure 16. PCA plot of PCa and control groups with breath and urine measurements acquired with
eNose system.

The PCA loadings plot (Figure 17) reveals which gas sensors contribute most to
this separation. Sensors like SGP30 [EtOH] and MiCS4514 [OX] have strong loadings on
PC1, indicating they are crucial for distinguishing PCa from the controls. The sensors
with significant loadings on PC2 (like MiCS6814 [NH3] and MiCS6814 [NO;]) capture
more subtle variations among the control groups. These loadings help to identify the
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15 gas sensors that discriminate between the PCa and control patients based on breath and
urine measurements.
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Figure 17. PCA loadings plot for PCa and control groups with breath and urine measurements
acquired with eNose system.

Table 12 demonstrates a perfect classification performance when employing a PCA
and decision trees model for distinguishing between the PCa and control categories through
both types of samples. With all the metrics at 100%, the model shows no misclassification,
signifying that the combination of PCA and decision trees with the eNose system is highly
significant for accurately detecting prostate cancer based on the two biological samples.
This level of performance implies excellent discriminatory power between the two groups.

Table 12. Metrics derived for PCA and decision trees classification of PCa vs. control categories based
on breath and urine samples using eNose.

eNose (Breath/Urine)-PCA-Decision Trees

Metrics PCa (%) Control (%)
Precision 100 100
Sensitivity 100 100
Specificity 100 100
Accuracy 100 100
NPV 100 100

The PCA plot in Figure 18 shows the discrimination of PCa and related conditions
based on breath and urine measurements through the eNose system. Although the PCa and
healthy individuals are well separated, there is an overlap between BPH and prostatitis,
indicating that their VOCs profiles are more similar, making them difficult to differentiate.
In summary, the 96.78% variance obtained demonstrates the strong performance of the
eNose system, particularly for identifying PCa. However, it also indicates some difficulties
distinguishing between BPH and prostatitis, hinting that the VOCs profiles of these con-
ditions may share similarities that complicate their classification. In this case, the SGP30
[EtOH, H;] and CCS811 gas sensors can distinguish PCa, while the MiCS6814 [NH3, NO,]
sensor helps separate the healthy groups. Additionally, the remaining sensors, including
CCs801, MiCS4514 [RED], GM502B, BME680, and CCS811, contribute to differentiating
between BPH and prostatitis by influencing both PCs.
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Figure 18. PCA plot of prostate cancer and related disease categories through breath and urine

measurements acquired with eNose system.

Alternatively, Figure 19 illustrates a DFA plot showcasing the eNose system’s clas-
sification performance in distinguishing between those categories. As it can be seen, the
system demonstrates a good separation between the PCa and healthy groups, with min-
imal overlap. Nevertheless, some overlap is observed between the BPH and prostatitis
categories, indicating similarities in their VOCs profiles, which makes these two conditions
difficult to classify. In addition, partial similarities are seen between the BPH and PCa
samples, suggesting that specific BPH profiles may slightly resemble those of PCa patients,
complicating the classification of these two groups. Despite this, the eNose system shows
robust separation between the PCa and healthy individuals.
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Figure 19. DFA plot of prostate cancer and related disease categories through breath and urine
measurements acquired with eNose system.

The classification performance of the eNose system, employing DFA and KNN to
distinguish between all the categories (PCa, BPH, prostatitis, and healthy individuals) is
detailed in Table 13. The data fusion of the breath and urine samples achieves perfect scores
of 100% for precision, sensitivity, specificity, accuracy, and NPV for prostatitis and healthy
categories. In addition, it performs outstandingly well at PCa classification, with 100%
sensitivity, 99.1% accuracy, and 98.5% precision. Its sensitivity for BPH classification is
slightly lower, reaching 96.5% and an NPV of 98.8%, but still performs strongly.
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Table 13. Metrics for breath and urine samples using DFA and KNN model for classifying PCa vs.
BPH, prostatitis, and healthy measurements through eNose system.

eNose (Breath/Urine)-DFA-KNN

Metrics PCa (%) BPH (%) Prostatitis (%) Healthy (%)
Precision 98.5 100.0 100 100
Sensitivity 100 96.5 100 100
Specificity 97.8 100 100 100
Accuracy 99.1 99.1 99.1 99.1
NPV 100 98.8 100 100

The system demonstrates an outstanding classification performance, particularly for
PCa, prostatitis, and healthy individuals, compared with the results for the metrics in
Tables 2-8.

3.3.2. Data Fusion of eTongue and eNose Data for Urine Sample Analysis

This first combination corresponds to the data acquired through the eNose and
eTongue (C110 electrode) with urine samples, where the PCA plot depicts the data fusion
applied to the urine samples from the PCa and control patients. The results show that PC1
explains 83.98% of the variance, while PC2 accounts for 15.31%. As can be seen, there is a
clear trend of separation between the PCa and control groups; however, some overlapping
between the two clusters is evident, particularly along the PC1 axis (see Figure 20). This
overlap indicates that while the both systems, in combination, are effective at distinguishing
between the two categories, some similarities in the chemical profiles of the samples exist.
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Figure 20. PCA plot of prostate cancer and control categories through urine samples acquired with
eNose and eTongue (C110 electrode) systems.

It should be noted that the confusion matrices obtained from Figures 21, 23, 25, 27 and
30 were applied to determine the performance of the best classifier for detecting the PCa
and control samples, which were used to calculate the metrics associated with each model.

The confusion matrix in Figure 21 represents the performance of a PCA-SVM classi-
fication model applied to the urine samples to distinguish between the PCa and control
patients using a combination of the eTongue system with a carbon electrode (C110) and the
eNose. The matrix shows that the model correctly classifies 65 PCa samples and misclassi-
fies one as a control, resulting in 98.5% of the PCa samples being correctly identified. Of the
control samples, 100% are correctly identified. The model is 97.9% accurate at classifying
the control samples, with a 2.1% error rate for control predictions.
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Figure 21. Confusion matrix obtained from PCA-SVM classification model for urine samples (PCa vs.

control) using eNose and eTongue (C110 electrode).

Table 14 summarizes the key performance metrics obtained for the PCA-SVM classifi-
cation model applied to urine samples to distinguish between the PCa and control patients
using data from the eNose and eTongue (C110 electrode) systems. The model performs
well, with 100% precision for PCa and 97.9% for the controls, indicating a low false-positive
rate. The sensitivity reaches 98.4% for PCa and 100% for the controls, representing a near-
perfect detection of PCa cases and no missed control cases. The method also achieves
100% specificity for PCa, ensuring no misclassification of healthy controls as PCa, while the
specificity for the controls is slightly lower at 98.4%. The model’s overall accuracy is 99.1%
for both categories, reflecting its robustness. Lastly, the NPV for the model is 97.9% for PCa
and 100% for the controls, highlighting the model’s reliability at correctly identifying true
negatives, which is crucial for minimizing missed diagnoses in clinical applications.

Table 14. Metrics derived for PCA-SVM model through urine samples of PCa vs. control categories
using eNose and eTongue (C110 electrode).

eNose (Urine)-eTongue (Urine)-PCA-SVM

Maetrics PCa (%) Control (%)
Precision 100 97.9
Sensitivity 98.4 100
Specificity 100 98.4
Accuracy 99.1 99.1
NPV 97.9 100

Figure 22 shows that the DFA plot provides more precise visual separation between
the PC and control categories compared to the PCA; it also introduces more classification
errors, as demonstrated by some overlap in the DFA plot. This may be because the DFA,
while optimized for class separation, can overfit the data or be less flexible in handling
complex, nonlinear relationships between features. Despite showing more overlap visually,
the PCA might have a more balanced approach to capturing the underlying variance in the
data, which could explain the fewer misclassifications.
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Figure 22. DFA classification of prostate cancer and control categories through breath and urine
samples acquired with eNose and eTongue (C110 electrode) systems.

The confusion matrix in Figure 23 shows the classification results from a DFA-SVM
model applied to urine samples for detecting PCa and control patients, combining the
eNose and eTongue (C110) information.
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Figure 23. Confusion matrix obtained from DFA-SVM classification model of urine samples (PCa vs.

control) using eNose and eTongue (C110 electrode).

The matrix indicates high accuracy in both categories: for the PCa patients, 63 out of
66 samples are correctly classified (95.5%), with only three misclassified as controls. Simi-
larly, 44 out of 47 control samples are correctly identified (93.6%), with three measurements
misclassified as PCa. The overall performance shows a good discrimination ability between
the two groups with minimal error rates, reflecting the model’s efficacy. The DFA-SVM
model accurately classifies 95.5% of the PCa and 93.6% of the control samples.

Table 15 summarizes the metrics calculated for the DFA-SVM classification model.
The model, applied to urine samples using both systems, shows strong performance at
classifying the PCa and control patients. The precision, sensitivity, and accuracy for both
categories are high, with 95.4% for PCa and slightly lower values for the control (93.6%).
The DFA-SVM model’s reliability in distinguishing between the PCa and control patients
is high.
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Table 15. Metrics derived for DFA-SVM model using urine samples of PCa vs. control categories
using eNose and eTongue (C110 electrode) systems.

eNose (Urine)-eTongue (Urine)-DFA-SVM

Metrics PCa (%) Control (%)
Precision 95.4 93.6
Sensitivity 95.4 93.6
Specificity 93.6 95.4
Accuracy 94.6 94.6
NPV 93.6 95.4

The following PCA plot (see Figure 24) demonstrates the ability of the combined
eNose and eTongue systems using a C110 carbon electrode to differentiate PCa from related
conditions through a urine sample analysis.
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Figure 24. PCa plot of prostate cancer and related conditions categories through urine measurements
acquired with eNose and eTongue (C110 electrode) systems.

PC1 obtained 98.89% of the variance, effectively distinguishing between disease cat-
egories. The PCa patients form a distinct cluster, showing good separation from the other
groups. Nevertheless, there is a notable overlap between BPH, prostatitis, and healthy patients.

Through the following confusion matrix, the model accurately detects PCa with a 95.5%
accuracy, correctly classifying 63 out of 66 samples (see Figure 25). Its BPH classification
has a 64.4% sensitivity, with some misclassification in the PCa group, reflecting the overlap
observed in the PCA plot. Thus, prostatitis is incorrectly classified, while the healthy
samples have a 66.7% misclassified sample accuracy, showing some overlap with BPH.
These findings are consistent with the PCA analysis and indicate that although the model
performs well in detecting PCa, there is a need for further improvement to distinguish
between non-cancerous conditions, like BPH, prostatitis, and healthy patients, where
overlaps still exist.

The metrics for the PCA-SVM model show a good performance at detecting PCa with
100% precision, 95.4% sensitivity, and high specificity, indicating that the model is highly
effective at identifying disease cases with no false positives (see Table 16). Nevertheless,
while BPH is detected with perfect sensitivity, the model’s moderate precision of 64.4%
results in some misclassifications. Its prostatitis detection is poor, with 0% for precision
and sensitivity, highlighting its significant misclassification issues. The model has a good
precision of 80%, but a low sensitivity of 33.33% for healthy patients, indicating that many
are incorrectly classified. The model maintains a balanced accuracy of around 84.9% across
all conditions.
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Figure 25. Confusion matrix obtained from PCA-SVM classification model of urine samples (PCa vs.
related diseases) using eNose and eTongue (C110 electrode).

Table 16. Metrics derived for PCA-SVM model through urine samples of PCa vs. related disease
categories using eNose and eTongue (C110 electrode).

eNose (Urine)-eTongue (Urine)-PCA-SVM

Metrics PCa (%) BPH (%) Prostatitis (%) Healthy (%)
Precision 100 64.4 0.00 80.0
Sensitivity 95.4 100 0.00 33.33
Specificity 100 80.9 100 99.01
Accuracy 84.9 84.9 84.9 84.96
NPV 94.0 100 94.6 92.59

Figure 26 illustrates a DFA plot drawn from the urine samples measured using the
eNose and eTongue systems, which are projected onto a 3D space. The PCa and BPH
samples have some overlap but are primarily distinct, while the healthy samples form a
separate cluster. The prostatitis samples are more spread out, indicating more significant
variability and difficulty in classification. The plot demonstrates the system’s ability to
distinguish between these categories, though there are overlaps, particularly between the
PCa and BPH samples.
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Figure 26. DFA plot of PCa and related disease categories through urine measurements acquired
with eNose and eTongue (C110 electrode) systems.

The confusion matrix in Figure 27 and the metrics in Table 16 demonstrate that the
DFA-SVM model performs strongly at detecting PCa and healthy individuals, achieving
high precision (94-100%) and sensitivity (95.4-100%) for both classes. BPH is also well
classified, with 90.3% precision and 93.3% sensitivity, although three misclassified samples
overlap with PCa.
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Figure 27. Confusion matrix obtained from DFA-KNN classification model of urine samples (PCa vs.
related diseases) using eNose and eTongue (C110 electrode).

On the other hand, prostatitis presents more significant challenges, as the model
achieves 100% precision but only 66.6% sensitivity. Although the model effectively differ-
entiates between PCa and healthy individuals, it encounters some difficulty distinguishing
BPH and prostatitis from PCa, leading to a slightly reduced accuracy in these cases (see
Figure 17).

3.3.3. Data Fusion of eNose and eTongue for Analyzing Urine and Breath Samples

The PCA plot presented in Figure 28 differentiates the PCa patients from the healthy
controls using breath and urine samples analyzed by the eNose and eTongue (C110/250BT
electrodes) systems. In this case, the PCa patients are categorized on the left, while the
healthy individuals cluster on the right, with minimal overlap. The two principal compo-
nents (PC1 and PC2) reach 81.80% and 10.28% of the variance, respectively, indicating that
the system effectively separates the two groups based on the sensor data.
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Figure 28. (a) PCA plot of prostate cancer and control categories through breath and urine mea-
surements acquired with eNose and eTongue (C110/250BT electrodes) systems. (b) PCA plot of
prostate cancer and related diseases through breath and urine measurements acquired with eNose
and eTongue (C110 electrode) systems.

The metrics obtained with DFA-KNN model in Table 17 align closely with the PCA
plot results, which show a clear separation between the prostate cancer (PCa) patients and
control individuals, with minimal overlap.
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Table 17. Metrics derived for DFA-KNN model through urine samples of PCa vs. related conditions
categories using eNose and eTongue (C110/250BT electrodes).

eNose (Urine)-eTongue (Urine)-DFA-KNN

Metrics PCa (%) BPH (%) Prostatitis (%) Healthy (%)
Precision 94.0 90.3 100 100
Sensitivity 95.4 93.3 66.6 100
Specificity 914 96.3 100 100
Accuracy 93.8 93.8 93.8 93.8
NPV 93.4 97.5 98.1 100

This visual distinction of Figure 28 is supported by Table 18, with 100% precision,
sensitivity, specificity, and accuracy, indicating that the PCA-KNN model, when combined
with data from the eNose and eTongue, effectively distinguishes between the two groups
without misclassifications. Therefore, the table demonstrates that both systems, combined
with the PCA and KNN models for the classification process, provide an alternative method
for accurately identifying prostate cancer patients based on breath and urine samples.

Table 18. Metrics derived for PCA-KNN model through urine samples of PCa vs. related conditions
categories using eNose and eTongue (C110/250BT electrodes).

eNose (Breath and Urine)—eTongue (Urine)-PCA-KNN

Metrics CaP (%) Control (%)
Precision 100 100
Sensitivity 100 100
Specificity 100 100
Accuracy 100 100
Precision 100 100

Figure 29 shows the 3D DFA plot, which separates the PCa, BPH, prostatitis, and
healthy individuals based on the breath and urine measurements acquired using both the
eNose and eTongue systems with carbon/gold electrodes. The clear separation between
the four categories indicates that the eNose and eTongue systems effectively distinguish
between prostate-related conditions and healthy patients.
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Figure 29. DFA classification of prostate cancer and related conditions through breath and urine
measurements acquired with eNose and eTongue (C110/250BT electrodes) systems.

This confusion matrix demonstrates the high accuracy of the DFA-SVM model at
classifying the PCa, BPH, prostatitis, and healthy individuals using breath and urine
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through the combination of the eNose and eTongue (C110/250BT electrodes) information
(see Figure 30).
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Figure 30. Confusion matrix of prostate cancer and related diseases through breath and urine
measurements acquired with eNose and eTongue (C110/250BT electrodes) systems applying DFA
and SVM models.

The model identifies PCa and BPH with 98.5% and 96.7% accuracy rates, respectively,
and achieves 100% precision for PCa. Additionally, its performance for prostatitis is slightly
lower, with 83.3% accuracy; the overall results highlight the system’s potential for the
non-invasive detection of prostate-related diseases.

Table 19 illustrates the classification performance metrics obtained from the confusion
matrix using the DFA-SVM model. Thus, the data acquired from the breath and urine
samples using the eNose and eTongue systems with C110/250BT electrodes allows for the
evaluation of four categories, where the precision shows the proportion of true positive
classifications, with 100% precision for prostatitis and slightly lower values for PCa (98.5%),
BPH (96.7%), and healthy individuals (90.9%). By contrast, the sensitivity reflects the
model’s ability to detect true positives, achieving 100% for PCa and BPH but only 83.3%
for prostatitis. Specificity, which measures the correct identification of true negatives, is
high across all the categories, reaching 100% for prostatitis and at least 97.8% for the others.
The accuracy for all the groups is uniformly high at 97.3%, indicating an overall excellent
classification performance. The NPV indicates a good performance, with perfect scores for
PCa and nearly ideal scores for prostatitis, BPH, and healthy individuals, suggesting a low
rate of false negatives in these categories.

Table 19. Metrics for DFA-SVM model through urine and breath samples of PCa vs. related disease
categories using eNose and eTongue (C110/250BT electrodes) systems.

eNose (Breath/Urine)-eTongue (Urine)-DFA-SVM

Metrics PCa (%) BPH (%) Prostatitis (%) Healthy (%)
Precision 98.5 96.7 100% 90.9
Sensitivity 100 96.7 83.3% 90.9
Specificity 97.8 98.8 100% 99.0
Accuracy 97.3 97.3 97.3% 97.3
NPV 100 98.8 99.0% 99.0

4. Discussion

The analysis of the metrics obtained from the C110 and 250BT electrodes, individ-
ually and in combination, reveals significant insights into their performance. The C110
electrode demonstrated strong results across most metrics, particularly excelling at identi-
fying patients with prostatitis and healthy individuals. While its accuracy at identifying
healthy patients was slightly lower at 83.3%, its sensitivity was consistently high across
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all categories. Notably, its sensitivity for PCa reached 93.9%, and for healthy patients it
was 90.9%. These results highlight the carbon electrode’s ability to differentiate between all
four diagnostic categories effectively. In contrast, the performance of the 250BT electrode
was more limited. While it achieved high accuracy and specificity for the PCa and BPH
categories, it failed to accurately predict prostatitis and identify healthy patients, with both
the accuracy and sensitivity dropping to 0%. This suggests that the gold electrode is less
reliable for these categories.

However, the data fusion of both electrodes significantly improved the system’s per-
formance, particularly for classifying patients with prostatitis and healthy individuals.
Although the results for prostatitis were moderate, the combined accuracy and sensitivity
were satisfactory. Across all categories the key metrics, such as accuracy, specificity, and
NPV, were high, reinforcing the idea that electrodes with different materials offer varied sen-
sitivity and selectivity toward specific compounds or biochemical patterns. This indicates
that each electrode reacts differently to various ions and chemicals and combining them in
the eTongue enhances the information gained. As a result, the fusion of electrodes led to
improved classification accuracy, which is crucial for diagnosing complex conditions like
PCa, where minimizing false negatives (to avoid missing critical cases) and false positives
(to prevent unnecessary treatments) are essential.

Alternatively, comparing the data fusion using the eTongue (Section 3.2.3), the eNose
system demonstrated superior sensitivity, specificity, and accuracy results. It was more
capable of correctly identifying the four categories, especially for detecting prostate cancer
and related diseases. In addition, combining urine and breath samples analysis using an
electronic nose could be a more effective method for PCa detection. While the electronic
tongue benefits from data fusion, the electronic nose appears to outperform it in key
diagnostic metrics, making it a more powerful tool for comprehensive disease detection.
Similarly, the data fusion results from the analysis of the two biological samples acquired
with the eNose achieved superior classification levels across the categories proposed in this
study, reaching precision, sensitivity, and specificity values of 100% for the classification
of the categories. These outcomes were compared with the results from the analysis of
urine and breath samples when used individually in each system, as evidenced by the
sensitivity and specificity values, with their precision and accuracy ranging from 94.2% to
100%, showing a better performance at classifying the breath samples than urine samples.
It should be noted that these values correspond to conditions such as prostatitis and
healthy individuals.

Although both analyses provided significant results when conducted separately, the
data fusion technique improved the accuracy and consistency of disease identification, as
each biological sample contributed a different part of the body’s metabolic profile. For
instance, exhaled breath VOCs are of endogenous origin, resulting from metabolic pro-
cesses released and distributed into the bloodstream, entering the air in the lungs through
diffusion across the pulmonary alveolar membrane, and appearing in the exhaled breath.
On the other hand, urine VOCs are generated through the excretory system, offering a
complementary view of the metabolic state [32,33]. Urine analysis has traditionally been
used to detect urological disorders, infections, and cancer, as urine directly reflects the
metabolic waste products from the blood and kidneys [34,35]. This is why, by fusing the
data from biological matrices such as the breath and urine, and analyzing them with the
eNose, valuable information about a patient’s metabolic state can be captured, improv-
ing the robustness of the model and ultimately providing a more reliable and effective
diagnostic tool for detecting complex diseases, such as prostate cancer [36]. Through this
study, it is demonstrated that the combination of data from both the eTongue and eNose
offers a promising alternative for detecting prostatic diseases (PCa, BPH, and prostatitis)
and healthy individuals by detecting VOCs and non-volatiles (ions, metabolites, and other
dissolved molecules). However, it is noteworthy that the analysis of the breath and urine
samples using only the eNose yielded better results, indicating that this device performs
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better when combining the two data sets, which increases the information about a patient’s
metabolic state and overall health.

Finally, as presented in Section 3.3.2, the eNose data (breath and urine samples) and
the eTongue data (urine samples) identified high PCa values with 100% sensitivity and
97.8% specificity, corresponding to the high precision of cancer identification achieved by
both devices. These high values indicate that these systems can be used as reliable tools for
the early diagnosis of such diseases.

5. Conclusions

The data fusion of eNose and eTongue devices demonstrated a marked improvement
in detecting and classifying prostate cancer and related conditions, such as prostatitis
and BPH, including healthy cases. The combined methods achieved a higher accuracy
than using each device individually, underscoring the potential of integrated sensory
technologies for more precise diagnostics.

The eNose performed best at classifying the four categories of prostate-related con-
ditions and healthy patients by analyzing the volatile organic compounds (VOCs) in
the breath and urine samples. Specifically, the eNose showed outstanding accuracy and
sensitivity at distinguishing between PCa and healthy individuals, with near-perfect clas-
sification metrics (up to 100% in some cases). The eNose could also clearly separate PCa
patients from those with BPH and prostatitis. However, there was some overlap between
BPH and prostatitis, likely due to similarities in the VOCs profiles for these conditions. The
eNose also demonstrated its ability to differentiate between pathological conditions and
healthy patients. It is an effective non-invasive prostate cancer diagnosis tool, particularly
when paired with appropriate machine learning models, such as SVM and PCA.

The application of advanced machine learning algorithms, such as SVM, PCA, and
DFA, played a crucial role in improving the classification of prostate conditions. This study
highlighted how proper data preprocessing and dimensionality reduction can optimize
the performance of sensory data in clinical diagnostics. These portable and cost-effective
devices make them highly suitable for implementation in low-resource settings. This could
enhance access to prostate cancer diagnostics in rural areas, where traditional medical
infrastructure may be lacking, making early detection more accessible.

This study proved that using breath and urine samples, non-invasive diagnostic
techniques, could effectively detect PCa. These methods could reduce reliance on inva-
sive procedures like biopsies, lowering patient discomfort and the risk of unnecessary
interventions caused by false positives.

Future research should involve more significant and more diverse clinical trials to
strengthen the generalizability of the findings. This would ensure that the sensory devices
perform consistently across different populations and further validate their clinical utility
compared to standard diagnostic methods. On the other hand, GC-MS should be used
to complement the eNose and eTongue systems by identifying the specific biomarkers
responsible for their sensor responses. This would allow for a direct comparison between
the precision of GC-MS and the practical reliability of sensory devices for identifying PCa
and related conditions, providing a more comprehensive understanding of the strengths
and limitations of both systems.

Compared to the studies reported on in the literature, the main advancement of this
research is the combination of different data obtained from both devices when analyzing
different biological matrices. Additionally, classification errors between benign conditions,
such as prostatitis or benign hyperplasia, and between prostate cancer and healthy patients
were minimized, achieving 100% accuracy. Using machine learning algorithms, such
as SVM, KNN, and Random Forest, combined with advanced preprocessing techniques
(like orthogonal signal correction), allows for superior sensitivity, specificity, and accuracy
performance.
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6. Patents

A patentability process is underway with the Superintendence of Industry and Com-
merce for the eNose technology, registered under the code NC2024/0000087.
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