Towards the Mass Production of Molecularly Imprinted Polymers via Cost-Effective Photopolymerization Synthesis and Colorimetric Detection via Smartphone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Apparatus and Image Processing
2.3. Procedure for the Colorimetric Determination of SMX
2.4. Preparation of the MIP-PAD Platform for SMX
2.5. Template Removal
2.6. Binding Experiments
3. Results and Discussion
3.1. FT-IR Characterization
3.2. Real-Time Colorimetric Monitoring of Template Extraction Efficiency in MIP-PAD
3.3. MIPs Performance
3.4. Smartphone Detection
3.5. Selectivity Study
3.6. Repeatability
3.7. Stability
3.8. Reusability
3.9. Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Cardoso, P.G. Pharmaceuticals Contamination: Problematic and Threats for the Aquatic System. In Life Below Water; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 801–809. [Google Scholar] [CrossRef]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, N.; Konig, I.; English, C.; Ivantsova, E.; Souders, C.L.; Hashmi, I.; Martyniuk, C.J. Sulfamethoxazole (SMX) Alters Immune and Apoptotic Endpoints in Developing Zebrafish (Danio rerio). Toxics 2023, 11, 178. [Google Scholar] [CrossRef] [PubMed]
- Rodell, R.; Tsao, N.; Ganguly, A.; Mosammaparast, N. Use of High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) to Quantify Modified Nucleosides. In DNA Damage Responses: Methods and Protocols; Mosammaparast, N., Ed.; Springer: New York, NY, USA, 2022; pp. 125–140. [Google Scholar] [CrossRef]
- He, J.-Y.; Li, Q.; Xu, H.-X.; Zheng, Q.-Y.; Zhang, Q.-H.; Zhou, L.-D.; Wang, C.-Z.; Yuan, C.-S. Recognition and analysis of biomarkers in tumor microenvironments based on promising molecular imprinting strategies with high selectivity. TrAC Trends Anal. Chem. 2023, 162, 117033. [Google Scholar] [CrossRef]
- Li, F.; Yue, S.; Zhao, Z.; Liu, K.; Wang, P.; Zhan, S. Application of molecularly imprinted polymers in the water environmental field: A review on the detection and efficient removal of emerging contaminants. Mater. Today Sustain. 2024, 27, 100904. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, W.; Guo, C.; Zhang, J.; Yu, L.; Zhang, G.; Wang, X.; Fang, G.; Sun, D. Magnetic molecularly imprinted electrochemical sensors: A review. Anal. Chim. Acta 2020, 1106, 1–21. [Google Scholar] [CrossRef]
- Elfadil, D.; Lamaoui, A.; Della Pelle, F.; Amine, A.; Compagnone, D. Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis. Molecules 2021, 26, 4607. [Google Scholar] [CrossRef]
- Lamaoui, A.; Mani, V.; Durmus, C.; Salama, K.N.; Amine, A. Molecularly imprinted polymers: A closer look at the template removal and analyte binding. Biosens. Bioelectron. 2024, 243, 115774. [Google Scholar] [CrossRef] [PubMed]
- Hasanah, A.N.; Safitri, N.; Zulfa, A.; Neli, N.; Rahayu, D. Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules 2021, 26, 5612. [Google Scholar] [CrossRef]
- Dong, C.; Shi, H.; Han, Y.; Yang, Y.; Wang, R.; Men, J. Molecularly imprinted polymers by the surface imprinting technique. Eur. Polym. J. 2021, 145, 110231. [Google Scholar] [CrossRef]
- Mamipour, Z.; Nematollahzadeh, A.; Kompany-Zareh, M. Molecularly imprinted polymer grafted on paper and flat sheet for selective sensing and diagnosis: A review. Microchim. Acta 2021, 188, 279. [Google Scholar] [CrossRef]
- Nontawong, N.; Ngaosri, P.; Chunta, S.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A.; Amatatongchai, M. Smart sensor for assessment of oxidative/nitrative stress biomarkers using a dual-imprinted electrochemical paper-based analytical device. Anal. Chim. Acta 2022, 1191, 339363. [Google Scholar] [CrossRef]
- El Hani, O.; Karrat, A.; Digua, K.; Amine, A. Advanced molecularly imprinted polymer-based paper analytical device for selective and sensitive detection of Bisphenol-A in water samples. Microchem. J. 2023, 184, 108157. [Google Scholar] [CrossRef]
- Elfadil, D.; Saidi, K.; Amine, A. Selective extraction of maleic hydrazide in foods using magnetic molecularly imprinted polymers and colorimetric detection via smartphone. Talanta 2024, 269, 125488. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Cui, H.; Chao, J.; Huang, K.; Wang, X.; Zhou, Y.; Jing, T. Colorimetric determination of tetrabromobisphenol A based on enzyme-mimicking activity and molecular recognition of metal-organic framework-based molecularly imprinted polymers. Microchim. Acta 2020, 187, 142. [Google Scholar] [CrossRef]
- Paruli, E., III; Soppera, O.; Haupt, K.; Gonzato, C. Photopolymerization and Photostructuring of Molecularly Imprinted Polymers. ACS Appl. Polym. Mater. 2021, 3, 4769–4790. [Google Scholar] [CrossRef]
- Elfadil, D.; Amine, A. Molecularly imprinted photopolymers combined with smartphone-based optical sensing for selective detection of bisphenol A in foods. Anal. Bioanal. Chem. 2024, 416, 2479–2492. [Google Scholar] [CrossRef] [PubMed]
- Sajini, T.; Mathew, B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. Talanta Open 2021, 4, 100072. [Google Scholar] [CrossRef]
- Errayess, S.A.; Lahcen, A.A.; Idrissi, L.; Marcoaldi, C.; Chiavarini, S.; Amine, A. A sensitive method for the determination of Sulfonamides in seawater samples by Solid Phase Extraction and UV–Visible spectrophotometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 181, 276–285. [Google Scholar] [CrossRef] [PubMed]
Equation | Value | |
---|---|---|
SMX IF | 1.7 | |
SMZ (α) | 3.47 | |
SDZ (α) | 2.44 | |
SPD (α) | 3.04 |
Sample | Added (µg·mL−1) | Found (µg·mL−1) | Recovery (%) | RSD (%) (n = 3) |
---|---|---|---|---|
5 | 4.95 | 99.09 | 5.74 | |
River Water | 10 | 8.12 | 81.24 | 2.25 |
25 | 22.82 | 91.29 | 3.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saidi, K.; Elfadil, D.; Amine, A. Towards the Mass Production of Molecularly Imprinted Polymers via Cost-Effective Photopolymerization Synthesis and Colorimetric Detection via Smartphone. Chemosensors 2024, 12, 232. https://doi.org/10.3390/chemosensors12110232
Saidi K, Elfadil D, Amine A. Towards the Mass Production of Molecularly Imprinted Polymers via Cost-Effective Photopolymerization Synthesis and Colorimetric Detection via Smartphone. Chemosensors. 2024; 12(11):232. https://doi.org/10.3390/chemosensors12110232
Chicago/Turabian StyleSaidi, Kawtar, Dounia Elfadil, and Aziz Amine. 2024. "Towards the Mass Production of Molecularly Imprinted Polymers via Cost-Effective Photopolymerization Synthesis and Colorimetric Detection via Smartphone" Chemosensors 12, no. 11: 232. https://doi.org/10.3390/chemosensors12110232
APA StyleSaidi, K., Elfadil, D., & Amine, A. (2024). Towards the Mass Production of Molecularly Imprinted Polymers via Cost-Effective Photopolymerization Synthesis and Colorimetric Detection via Smartphone. Chemosensors, 12(11), 232. https://doi.org/10.3390/chemosensors12110232