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Abstract: The tuning sensitivity towards CO2 detection under in-field-like conditions was inves-
tigated using SnO2-sensitive material deposited onto Al2O3 substrates provided with platinum
electrodes with interdigital gaps of 100 µm and 30 µm. X-ray diffraction, low-magnification and
high-resolution transmission electron microscopy, and electrical and contact potential difference
investigations were employed to understand the sensing mechanism involved in CO2 detection. The
morpho-structural analysis revealed that the SnO2 nanoparticles exhibit well-defined facets along
the (110) and (101) crystallographic planes. Complex phenomenological investigations showed that
moisture significantly affects the gas sensing performance. The experimental results corroborated the
literature evidence, highlighting the importance of Pt within the interdigital electrodes subsequently
reflected in the increase in the CO2 sensing performance with the decrease in the interdigital gap.
The catalytic efficiency is explained by the distribution of platinum at the gas-Pt-SnO2 three-phase
boundary, which is critical for enhancing the sensor performance.

Keywords: SnO2 nanoparticles; CO2 sensitivity; platinum electrodes; variable interdigital gap;
catalytic activity of platinum electrodes

1. Introduction

The origin of metal oxide semiconductor (MOS)-based gas sensors may be traced back
to the early 1970s, when Taguchi introduced the first gas sensing device utilising tin dioxide
(SnO2) [1]. In addition to its use as a transparent coating element for electrode material
in solar cells or displays, SnO2 is primarily involved in gas sensing and catalysis. The
SnO2-based sensors have been utilised in various industrial sectors, including automotive,
chemical, environmental detection and control, food, medicine, military, and safety. The
initial requirement involves monitoring the emissions from the vehicle, which mostly
consist of carbon in the form of small particles, unburned hydrocarbons, carbon dioxide,
carbon monoxide, nitrogen oxides, sulphur oxides, water vapour, and various other low-
level chemicals. The need to monitor the levels of different gases has led to extensive
research and development efforts to create sensors based on SnO2 that are widely applicable
in various fields [2]. Moreover, there are plenty of studies related to doped or un-doped
SnO2 specific to the aforementioned target sectors. When it comes to the detection of carbon
dioxide (CO2), MOS-based gas sensors are almost insensitive under normal working in-field
conditions (e.g., the presence of oxygen and relative humidity—RH).

Carbon dioxide is an inert gas that absorbs short-wavelength light, contributing signif-
icantly to the greenhouse effect. It is commonly found in the atmosphere at concentrations
between 300 and 400 parts per million (ppm). As the concentration of CO2 in the environ-
ment rises, the human body will progressively encounter discomfort, difficulty breathing,
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impaired sensory function, dizziness, shock, and perhaps death [3]. Monitoring the con-
centration of CO2 in respiration can provide valuable insights into respiratory status and
circulation disorders [4]. It can also help in the timely detection of respiratory dysfunction
and other abnormal situations during general anaesthesia, making it highly valuable in
both the operating room and the intensive care department [5]. From an industrial perspec-
tive, the extensive utilisation of fossil fuels leads to an increase in the concentration of CO2
in the atmosphere. Hence, the monitoring of CO2 is interconnected with the well-being,
health, and safety of individuals, as well as the government’s oversight of carbon emissions
and precise decision-making regarding energy structure regulation [6].

Currently, CO2 detection is performed with optical sensors [7], resistive sensors [8],
potentiometric sensors [9], amperometric sensors [10], capacitive sensors [11], surface
acoustic wave sensors [12], and quartz crystal microbalance sensors [13], among others.
Chemical gas sensors, which rely on the changes in the electrical resistance (conductance)
of MOS under variable surrounding conditions, are the simplest, cheapest, and most user-
friendly alternative [14]. In this respect, binary and ternary MOSs with high porosity, a
large specific surface area, and defect structures have attracted the attention of researchers.
For instance, ternary metal oxides exhibit Schottky, Frenkel, and interstitial atom defects,
due to variations in crystal structure, cation species, and valence states. In addition, the
presence of doped cations occupying the A/B sites will result in the formation of certain non-
intrinsic defects, which in turn contribute to the absorption of the target gas. The primary
ternary metal oxide materials utilised for CO2 sensing are the perovskite structure (ABO3)
and spinel structure (AB2O4) oxides. These include barium titanate (BaTiO3), lanthanum
ferrite (LaFeO3), nickel ferrite (NiFe2O4), and magnesium ferrite (MgFe2O4). Typically,
they are manufactured to create integrated structures or heterostructures by combining
them with metal oxides to improve their gas-sensing abilities [15,16]. In the work of
Chavali et al., metal oxide nanoparticles are described by their gas-sensing performance
concerning hierarchical structure, shape, and size. Not only the gas-sensing applications
are discussed, but also their complex applications in nanotechnologies [17]. Unfortunately,
the atmospheric relative humidity (RH) significantly affects the absorption and release of
carbon dioxide. The impact of RH on the sensing mechanism was investigated using density
functional theory (DFT). Under conditions of low humidity (RH < 35%), the interaction
between carbon dioxide (CO2) and tin dioxide (SnO2) with pre-adsorbed oxygen ions
(O2− and O−) from the (110) crystal surface was minimal. At a higher RH, CO2 molecules
were adsorbed onto the (110) crystal surface of SnO2. During this process, CO2 reacts
with OH− ions (from the dissociative adsorption of water) and leads to the formation of
carbonate. Additionally, an exchange of electrons between CO2 and SnO2 occurs. The
results suggest that the pre-adsorbed OH− on the (110) crystal facet enhances the CO2
sensing properties [18]. This indicates that certain crystal surfaces have a strong ability to
adsorb or react with various atomic, ionic, and molecular groups. Xiong et al. investigated
the sensing properties of SnO2 films doped with La, Gd, and Lu, as well as pure SnO2
films, for the detection of CO2 in an environment devoid of oxygen [19]. La significantly
enhanced the performance of CO2 sensing, with the highest performance observed when
the La doping content reached 4%. The rate at which carbonates develop and the amount of
oxygen vacancies have a significant impact on the features of gas sensing. Consequently, the
researchers analysed the XPS spectra of the O 1 s and C 1 s samples. They then determined
the ratio of peak areas for residual carbon (organic carbon pollution) and carbonates, as
well as the ratio of peak areas for oxygen (O− and O2−). The optimal doping ratio was
determined to be 8 at. % when the concentrations of O2 in the carrier gas reached 21%
(in-field oxygen level), and it should increase to 16 at.% in the presence of free oxygen.

In the present study, we aimed to address a realistic scenario of the gas-surface inter-
action mechanisms involved in CO2 detection under in-field-like conditions characterised
by the presence of oxygen and variable relative humidity. Therefore, we performed DC
electrical investigations and simultaneous electrical resistance measurements assisted by the
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contact potential differences on planar sensors, which were obtained by screen-printed SnO2
thick layers on substrates with different interdigital gaps of 100 and 30 µm, respectively.

2. Materials and Methods
2.1. Powders Synthesis

As previously reported [20], a sodium hydroxide solution was added dropwise over a
solution of tin (IV) chloride containing CTAB (hexadecyltrimethylammonium bromide).
The mixture was stirred for half an hour at room temperature, was afterward sealed in
a Hydrothermal Synthesis Autoclave Reactor with a PTFE Lined Vessel of 100 mL, and
was left to react at 160 ◦C for 18 h. SnO2 powder was isolated by centrifugation, washed
repeatedly, and air-dried at 120 ◦C. To complete the synthesis process, the dried powder
was thermally treated at 550 ◦C. The chemicals were used as purchased, without any further
purification: tin (IV) chloride (SnCl4, 99.999%, Acros Organics, Geel, Belgium), sodium
hydroxide (NaOH, >98%, Honeywell Fluka, Seelze, Germany), and hexadecyltrimethylam-
monium bromide (CTAB, 99%, Acros Organics, Geel, Belgium). A final thermal treatment
at 550 ◦C has completed the preparation processes.

2.2. Structural and Morphological Investigations

Structural investigations were performed using powder X-ray diffraction with a D8
ADVANCE diffractometer (BRUKER-57AXS GmbH, Karlsruhe, Germany) with Ni-filtered
Cu radiation (λ = 1.54184 Å) at room temperature in Bragg–Brentano geometry in the range
of 2θ from 20◦ to 95◦. The XRD data were analysed using the Rietveld refinement with
MAUD version 2.99 software to determine the lattice parameters and average crystallite size.

The morphology of the SnO2 sample was investigated using a JEOL JEM-ARM200F
transmission electron microscope (JEOL LTT., Japan, Tokyo), operated at 200 kV. To prepare
the TEM sample, a small quantity of the powder was mixed with ethanol, then it was
ultra-sonicated for 10 min, and a small droplet from this mix was drop-cast on a TEM
copper grid provided with a carbon membrane.

2.3. Layer Deposition and Sensing Investigations

The layer deposition process is the subject of a national patent application, OSIM/Nr.
A 00110/18 March 2024. In brief, the as-prepared sensitive powders were combined with 1,2
Propanediol and grounded to produce a paste with a medium viscosity. Subsequently, the
paste was applied onto commercial alumina substrates using the screen-printing technique
to form thick layers. The sensors obtained were gradually dehydrated and thermally
treated at 500 ◦C in air. This procedure enables the thorough elimination of the organic
solvent, guaranteeing the porosity of the layer and enhancing its adhesion to the substrate.
The alumina substrates are made using planar technology and are provided with platinum
electrodes and a heater on the backside. The interdigital electrodes on the substrate have
gaps measuring 100 µm and 30 µm, respectively. The obtained samples were labelled “SnO2
100 µm” and “SnO2 30 µm”. The electrical power through the heater is adjusted to control
the temperature of the sensor layer, which in turn modulates the chemical interaction
between the MOS layer and the test gases. The substrates were passivated with glass
on both sides to avoid parasitic catalytic effects, thus highlighting the catalytic processes
that are taking place solely on the sensitive layer or at the three-phase boundary (e.g.,
gas–electrodes–SnO2).

A Gas Mixing System (GMS) was used to simulate the in-field atmosphere (Figure 1).
The GMS is managed by specialised software and comprises eleven gas channels fitted with
mass flow controllers, solenoid valves, and high-purity gas bottles. The system functions
in a dynamic state, maintaining a total flow rate of 200 mL/min. A relative humidity
(RH) is accomplished using a distinct pathway involving a gas-washing bottle containing
moisture. The real-time acquisition of the electrical resistance changes in sensors positioned
inside the sensor chamber was performed using a dedicated electrometer Keithley 6517A
(Tektronix, OHIO, Solon, OH, USA) operated under constant 3V bias, while the contact
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potential differences (CPD) were recorded using a McAllister 6500 Kelvin Probe (McAllister
Technical Services, CALIFORNIA, Berkeley, CA, USA).
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3. Results and Discussions
3.1. XRD Characterisation

The powder X-ray diffraction (XRD) of the SnO2 sample prepared by the hydrothermal
method at a temperature of 160 ◦C presents the characteristic diffraction lines of the SnO2
(Figure 2). It exhibits a tetragonal structure with a symmetry space group of P42/mnm,
according to CIF no. 1526637 from the COD database.
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Figure 2. XRD pattern of SnO2.

Through Rietveld refinement, using the MAUD version 2.99 software, the lattice
parameters and the average crystallite size of 21.47 ± 0.19 nm were determined. The
crystallographic parameters for the lattice are slightly different than the reference data.

3.2. Analytical TEM Characterisation

The low-magnification TEM images were used to characterise the sample’s morphol-
ogy. Figure 3a shows that the sample consists of nanoparticles with the following different
dimensions: smaller quasi-spherical nanoparticles (having ~9 nm) and larger elongated
nanoparticles (having ~35 nm).
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Figure 3. TEM image of SnO2 (a) and the corresponding SAED pattern, revealing the tetragonal
structure of SnO2 (b).

The structure of the sample was determined using selected area electron diffraction
(SAED). The SAED pattern shown in Figure 3b is typical for a polycrystalline material,
and it reveals the tetragonal structure of SnO2, with the space group P42/mnm. The white
arrows are pointing towards crystallographic planes (110), (101), and (211), as indexed
according to cif no. 2104754 from COD database.

The high-resolution TEM (HRTEM) investigations revealed the presence of (110) and
(101) crystallographic facets (Figure 4). Kuncser et al. [20], using VESTA modelling, showed
that (110) and (101) facets mostly have oxygen terminations.
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Figure 4. HRTEM images showing faceted nanoparticles having different dimensions.

Figure 4a shows two nanoparticles having the edges along (110) crystallographic
planes. The double white lines in Figure 4b indicate the (110), (10-1), and (011) crystallo-
graphic planes of a nanoparticle oriented along the [1–11] axis.

The average dimension was determined by measuring ~400 nanoparticles using
low-magnification TEM images similar to the TEM image shown in Figure 3a. The size
distribution is shown in Figure 5. After fitting the as-obtained histogram with a log-normal
function, we obtained a mean value of 15.4 nm and a standard deviation of 6.9 nm. Within
the error limits, the mean value of the particle size obtained from TEM is in accordance
with the value of the crystallite size obtained from Rietveld refinement.
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In conclusion, the morpho-structural TEM investigations have shown that the sample
consists of nanoparticles with different dimensions, having well-defined facets along (110)
and (101) crystallographic planes [21–23].

3.3. Sensing Characterisation

The response of MOS sensors depends on the operating temperature of the gas-
sensitive material, which determines the adsorption of atmospheric oxygen in its molecular
or ionic forms. The response capacity decreases at higher working temperatures due to the
different rates of the adsorption/desorption processes [24]. Consequently, we conducted an
initial experiment to observe the changes in the sensor signal as the operating temperature
varied in the range of 100–400 ◦C for sensors based on SnO2 thick layers deposited onto
interdigital Pt electrodes with alternative gaps of 100 and 30 µm. The sensor signal was
determined by calculating the ratio of the electrical resistance measured under a reference
atmosphere (e.g., a synthetic air 5.0 background with 50% relative humidity) to the electrical
resistance measured while exposed to 3000 ppm of CO2 under the same RH conditions. The
highest level of sensitivity was achieved at an operating temperature of 350 ◦C (Figure 6a).

When the sensors operate at moderate temperatures, oxygen physisorption on the
MOS surface is generally accepted. This process does not entail any transfer of electrical
charge from the sensitive material to the adsorbed molecular oxygen. When the temperature
rises, oxygen chemisorption occurs at the surface of the SnO2 grains. Consequently, electron-
depleted layers are formed near the surface of the grains due to the electron transfer from
the sensitive material to the adsorbed O− oxygen species. In terms of energy, the depleted
layers act as potential barriers, impeding the flow of electrons between the boundaries of
the grains [25].

Considering the interdigital gap as d ≈ N × g (where N is the number of grains and
g is the average grain size), the larger d is, the more grains we have and thus the more
intergranular barriers. From the electrical point of view, this situation is associated with
electrical resistance in dry air conditions, explaining the higher resistance in the case of
SnO2 deposited on the substrate with an interdigital gap of 100 µm (Figure 6b).

In humid conditions, the electrical resistance decreases due to the known reducing
effect of RH [26].

2Sn + O− + H2O → 2(Snδ+ − OHδ−) + e− (1)

A similar behaviour is related to the presence of CO2, although it is known as a rather
inert gas [27]. Herein, the resistance of SnO2 decreases under CO2 exposure, suggesting
interactions with previously chemisorbed O− (Equation (2)) or OH− (Equation (3)) species,
leading to the release of electrons in CB.

Sn + O− + CO2 → Sn − CO3
− + VO

+ + e− (2)

(Snδ+ − OHδ−) + CO2 → Sn + HCO3
− + VO

2+ + 2e− (3)
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Figure 6. The dependence of the sensor signal on the operating temperature (a), the behaviour of the
electrical resistance in the atmosphere with variable RH and CO2 concentrations for an operating
temperature of 350 ◦C (b), and the sensor signal to CO2 for SnO2 100 µm versus SnO2 30 µm (c,d).

Translating the electrical resistance changes in the sensor signals for both sensitive
structures (Figure 6c,d), it can be observed that the smaller interdigital gap (30 µm), the
higher the sensor signal is. Moreover, one can see that both sensors exhibit a special relation
with water, as long as the CO2 sensitivity increases in the presence of RH compared to
dry air. Complex phenomenological investigations (e.g., simultaneous electrical resistance
and contact potential differences) provide the perspective of an explanation regarding this
behaviour (Figure 7).

The CPD measurements provide insights into the changes in work function (∆Φ), al-
lowing us to discriminate between physisorption (associated with changes in the electronic
affinity, ∆χ) and ionosorption (associated with changes in the surface potential barrier,
q∆Vs). Considering the electrochemical potential (µ) of the SnO2 constant, we can write

q × ∆CPD = ∆Φ = ∆χ + q∆Vs = ∆χ − kBTlnRair/Rgas (4)

where q is the electron charge, ∆CPD is the contact potential difference measured with
the Kelvin Probe, kB is the Boltzmann constant, T is the operating temperature, Rair is the
electrical resistance measured under humid synthetic air, and Rgas is the electrical resistance
measured under CO2 exposure.

As shown in Figure 7a,b, ∆Φ does not vary because it is the same SnO2 material
deposited onto substrates with different interdigital gaps. On the other hand, the greater
the water effect (∆χ), the greater the potential barrier variation (q∆Vs).

At this point, it is important to understand whether the differences induced by the
interdigital gap are determined by their electrical contribution to the total resistance of the
sensors or by the catalytic activity of the platinum electrodes.
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The first hypothesis is supported by the geometrical approach of a SnO2 polycrys-
talline sensitive material, considering incompletely depleted grains, arranged between Pt
electrodes with interdigital gaps (L) of 100 and 30 µm (Figure 8a). The so-called surface
state model [28] was used to represent the surface and bulk energetic dependencies with
respect to the percolation path phase of the electric current (Figure 8b).
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For gas sensors consisting of a thick polycrystalline-sensitive MOS layer, the con-
duction mechanism is dominated by surface phenomena. Exposure to an in-field-like
atmosphere and operating temperature favours oxygen and water vapour chemisorption,
determining the covering of the surface with the negative charge. This causes the ap-
pearance of a depletion layer near the surface due to the Coulomb repulsion towards the
electrons in the bulk. Thus, the conduction is limited by the Schottky barriers (qVs) formed
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at the grain boundaries. In terms of the electrical equivalent circuit (EEC), the surface
is associated with a resistance Rs in parallel with a capacity Cs (Figure 8c). These are
controlled by the charging/discharging of the surface traps which are directly modulated
by the surface chemical gas interactions [29].

The resistance Rb corresponds to the electrons in the bulk and is weakly influenced [30].
The SnO2-Pt electrode contact is associated with the RcCc parallel circuit.

The electrons will flow from the semiconductor towards the metal because the SnO2
work function (4.53 eV) is lower than the Pt work function (5.64 eV) [31,32]. Accordingly,
the energy bands bend up due to the depletion of electrons in the semiconductor, and
the electrons flowing towards the Pt electrode must cross over the potential barrier qVc,
as in the case of the grain-to-grain Schottky element. But, taking into account that the Pt
resistance is much lower than the SnO2 surface resistance (Rc « Rs), its contribution can be
neglected, whether the interdigital gap L is 100 or 30 µm.

By close observation and through the aforementioned reasons, the electrical influence
of the interdigital electrodes on a thick film gas sensor can be considered negligible.

The second hypothesis is supported by the known spill-over effect of Pt [33,34]. In
brief, when a reducing gas is adsorbed on Pt, its dissociation is activated, followed by
migration (spill-over) on the MOS surface where it interacts with oxygen, increasing the
conductivity in the case of an n-type semiconductor [35].

In addition to the effects induced by impregnation/doping with noble metals, the
role of Pt electrodes must be considered in terms of the geometric and catalytic effects.
Several authors [36,37] have pointed out the significant role of the geometry influence of
the electrodes placed at the bottom region of the sensitive MOS layer. When a certain gas
molecule hits the MOS surface, it diffuses through the porous film and induces an electrical
effect at the bottom electrodes (so-called “three-phase boundary regions”). Starting from
the empiric demonstration of the differences in sensitivity induced by the variation in the
electrode gaps, Hoefer et al. [38,39] propose a rigorous work aiming to establish precisely
the role of interdigital geometry on the sensing performance. As such, a sensor array
with a highly asymmetric electrode configuration could develop a low-cost sensor system
with improved selectivity (e.g., the selective detection of NO2 versus CO by varying the
interdigital electrode gaps).

On the other hand, the Pt electrode shows increased activity in the direct conversion of
CO2, with implications on the electrical properties of the SnO2 sensitive layer [40]. Besides
direct conversion, the spillover effect activates the gas adsorption on the Pt, which subse-
quently leads to the diffusion or migration of the adsorbed species on the neighbouring
gains [41]. By spanning the literature, one can find that the chemical activation of CO2 as
a quite inert gas is still a matter of debate, especially with MOS-based gas sensors. The
complex work of Wang et al. [42] stated that Pd and Pt represent the most favourable
metals for CO2 conversion. The role of Pt as a single-atom catalyst has attracted extensive
attention due to the superior catalytic performance towards CO2 conversion via a reverse
water gas shift reaction (RWGS). Thus, the work of He et al. [43] presented a simple route
to load 6.4 wt %Pt on silicon carbide with superior catalytic properties. Mondoza-Núñez
et al. [44] investigated the effect of Pt addition on CO2 methanation catalysed by ZrO2-
supported Rh. Quite similar results have been obtained by Ramos Gonzalez et al. [40]
on pristine Pt-catalysed SnO2 hybrid nanostructures when operated at low temperatures
(100 ◦C), envisaging a gas sensing mechanism based on the adsorption of OH− ions onto
the SnO2 surface. The sensing mechanism was attributed to the electron transfer from
the porous silicon-based band to the conduction band of the SnO2. In the case of ZnO
nano-ribbons [45], the role of Pt was used alongside Pd, Fe, Ag, and Au as simple adatom
catalysts towards sensing H2, H2S, and CO2.

With the aforementioned review of the literature and considering the technological
details of our samples (Figure 9), it is beyond doubt that the noble parts of the sensor (e.g.,
at the three-phase boundary between gas–Pt interdigital electrodes and SnO2) have a great
share in the catalytic activity of the CO2 gas.
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Specifically, the thickness of the SnO2 layer (2.42 µm) and the Pt electrodes (3.51 µm)
was determined with the Ambios XP-100 Profilometer, and their ratio suggests that the
dominating amount of Pt controls the overall sensing effect.

It is worth mentioning that besides the Pt interdigital electrodes (e.g., where solely
catalytic effects take place), other Pt regions are covered with glass to avoid parasitic CO2
catalytic effects.

In this context, we strongly believe that the sensitivity to CO2 increases with the
proportion of Pt in the sensitive structure. This explains the higher sensor signal when
SnO2 is deposited over electrodes with an interdigital distance of 30 µm, compared to
100 µm.

These results are consistent with the results from the literature which highlights the
role of Pt in CO2 reactivity; although, in the field of chemical sensors, the findings are less
true for MOS-sensitive materials.

4. Conclusions

SnO2 powder was obtained by hydrothermal growth at a temperature of 160 ◦C. A
final thermal treatment at 550 ◦C has completed the synthesis processes. X-ray diffraction
has shown a tetragonal structure, and the Rietveld refinement revealed a crystallite size of
~21.5 ± 0.19 nm. The morpho-structural TEM/HRTEM investigations highlight nanoparti-
cles with different dimensions, having a mean value of 15.4 nm for a standard deviation
of 6.9 nm and well-defined facets along (110) and (101) crystallographic planes. The SnO2
powder was transformed into a paste by mixing it with 1,2 Propanediol, and then it was
screen-printed as a thick layer onto commercial Al2O3 substrates having Pt electrodes
with alternative interdigital gaps of 100 µm and 30 µm. The obtained sensors labelled
“SnO2 100 µm” and “SnO2 30 µm” were thermally treated at 500 ◦C in air to eliminate the
organic solvent and ensure SnO2 adhesion to the substrate. The electrical power through
the substrate backside heater controlled the temperature of the SnO2 layer, favouring the
chemical interaction with gases. A Gas Mixing System was used to simulate the in-field-like
test atmosphere (synthetic air having different relative humidity and CO2 concentration).
The contact potential differences (CPDs) induced by the chemical interactions on the SnO2
surface were recorded using a McAllister 6500 Kelvin Probe. Thus, it was possible to
differentiate between water physisorption associated with changes in the electronic affinity
and oxygen ionosorption associated with changes in the surface potential barrier and,
consequently, with the electrical resistance. The differences induced by the interdigital gap
over the sensor signal to CO2 were analysed in terms of the electrical equivalent circuit
and catalytic activity of the platinum electrodes. The thickness ratio of 2.42 µm/3.51 µm
between the SnO2 layer and the Pt electrodes allowed us to conclude that the amount of Pt
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specific for a 30 µm interdigital gap determines the increase in the sensing response to CO2
in accordance with the catalytic effect reported in the literature.
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