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Abstract: X-ray diffraction (XRD) is extensively used in archaeometric investigation. Herein, we
provide a novel XRD spectrum-based untargeted strategy for the classification of ancient painted
pottery for various dynasties. It was accomplished using the original spectrum without a phase
identification. To eliminate the influence of baseline drift, a new baseline drift correction algorithm
was specifically designed for XRD spectra. The algorithm was implemented using local minimum
values in the analyzed signal in an iterative optimization manner. The results indicated that with the
aid of the algorithm, the baseline drift problem can be successfully resolved, and the classification of
ancient painted pottery can be greatly improved. Finally, the developed strategy was successfully
used to discriminate ancient painted pottery from the Han and Tang dynasties in the cities of Guyuan
and Zhongwei, China. The developed untargeted strategy had the remarkable advantage of almost
automatic data analysis. The toolbox of our strategy can be obtained from the authors.

Keywords: XRD baseline drift; ancient painted pottery; chemometrics

1. Introduction

Pottery plays an important role in human history. A comprehensive investigation of
the development of ancient pottery can help explore the culture, economic development,
and routine way of life of ancient people [1–6]. Accurately identifying pottery samples
during archaeological excavations can provide evidence for scientific research, and a num-
ber of sophisticated analytical techniques have been introduced to achieve this goal [7–13].
X-ray diffraction (XRD) is widely used for the analysis of ancient pottery samples. For
instance, Aoyama et al. [14] used non-destructive elemental analysis for pottery samples
from the zones of Japan Jomon and Neolithic China. Wu et al. [6] used X-ray fluorescence
to study the long-distance trade of white pottery in Neolithic China. Gajić-Kvaščev et al.
studied painted pottery samples from different periods [4].

Most studies have been performed on the basis of glazed pottery [1,3,6,13,15–19]. With
respect to other types like ancient painted pottery, mostly used as funerary objects, few
studies have been reported. A trait of this ancient painted pottery is that it was not traded
or used in ancient society, so it can serve as a direct reflection of society’s development
at that time. Historically, Guyuan and Zhongwei were key points in the Silk Road that
connected ancient China with the “West”. The study of painted funerary potteries from the
two cities can be greatly helpful for recognizing cultural integration in ancient China [5].
Unfortunately, the lack of firing step in the production of the painted funerary pottery
caused the painted materials on the surface to readily fall off during the long burial period.

Pottery needs to be recognized from different locations and dynasties in routine
work. X-ray diffraction (XRD) techniques are extensively used for tracing ancient glazed
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pottery [8,9], but their application in painted funerary pottery remains limited. Conven-
tional analysis of XRD data heavily relies on the experience of analysts. Previous knowledge
is needed to deconvolute XRD peaks to extract deduced mineralogical composition and
subsequently characterize analyzed potteries. A number of unidentified XRD peaks in the
XRD spectra are abandoned during data analysis, even if they may be helpful for tracing
painted pottery. On the other hand, the selection of various standard cards can result in
quite different results for mineralogical composition, which may puzzle users without
additional valid information about the analyzed samples.

Theoretically, the use of an entire XRD spectrum to perform an untargeted data
analysis can also provide classification results for ancient painted pottery samples. A
remarkable advantage is that the risk of incorrect deconvolution can be greatly reduced.
Meanwhile, the data analysis efficiency can be improved. However, few works have been
published using the entire XRD spectrum for pottery discrimination. A very possible
reason is the baseline drift problem in the analyzed complex samples [20]. The presence of
baseline drift can affect the qualitative resolution of an XRD spectrum and introduce bias
into the quantitative results, thereby providing inaccurate classification results for painted
pottery samples [21,22]. Most studies have been conducted using a manual baseline drift
correction strategy, in which experienced analysts select several data points in an analyzed
XRD spectrum to estimate baselines with curve-fitting algorithms. Although a number
of state-of-the-art baseline drift correction algorithms [22,23] have been developed and
used for techniques such as Raman and chromatogram analysis, their performance on XRD
analysis has not been demonstrated. In conclusion, an automatic strategy for correcting
baseline drifts in an XRD spectrum to provide classification results for ancient pottery
samples remains lacking.

In the present study, we developed a novel XRD spectrum-based untargeted strategy
for the discrimination of ancient painted funerary pottery, which is accomplished by using
the raw XRD spectrum of pottery as the input to automatically perform baseline drift
correction and chemometric analysis without a manual selection of underlying miner-
alogical composition. A remarkable advantage of the developed untargeted strategy was
that there is no need for the deconvolution of XRD peaks, and thus, archaeologists can
perform data analysis by themselves to focus on the collected pottery. A new baseline
drift correction algorithm was specifically designed for the XRD spectrum in our strategy.
The developed untargeted strategy was demonstrated by discriminating ancient pottery
samples of the Han and Tang dynasties from the cities of Guyuan and Zhongwei in Ningxia
Province, China.

2. Experiment and Methodology
2.1. Experiment
2.1.1. Painted Pottery Collection

In ancient China, painted funerary pottery was fabricated by painting various colorful
pigments on the pottery surface. A total of 22 painted funerary pottery pieces were collected
during a series of archaeological excavations in the cities of Guyuan and Zhongwei in
Ningxia, China. The archaeologists classified these potteries into 11 red potteries and
11 white potteries according to the color of major pigments on the surface, and typical
examples are shown in Figure S1, Supplementary Materials. All these potteries were
found in ancient tombs concluded to belong to the Han and Tang dynasties according
to archaeologists.

For the 11 red potteries, 8 potteries were found in the tombs of Zhongwei City, in-
cluding 6 potteries from the Han dynasty (202–220 BC) and 2 from the Tang dynasty (AD
618–690). The remaining 3 red potteries were found in the Han tombs of Guyuan City. Sim-
ilarly, among the 11 white potteries, 8 were collected from the Zhongwei City, comprising 6
Han tombs and 2 Tang tombs. The remaining 3 white potteries were excavated from the
Han tomb of Guyuan City. Powder samples of each pottery were collected by carefully
scraping the pigments on the surface. Specifically, only the red and white pigments were
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selected for the powder sample collection of red and white potteries, respectively. For each
pottery, several positions were randomly selected, and no more than 1 g of powder was
collected. The powder samples were directly used for both XRD and energy-dispersive
X-ray spectroscopy (EDS) analysis.

2.1.2. XRD Analysis

XRD analysis was performed on an UltimaIV (Rigaku, Tokyo, Japan). Parameters
were set as follows: anode in the device, CuKα; wave, 1.5419 nm; voltage, 40 kV; and
current, 40 mA. The 2θ scanning range was set as 5◦–90◦ at a step of 0.02◦. For each sample,
a single spectrum was collected. Mineralogical analysis was performed by experienced
analysts using some previous knowledge of some common compositions of artifacts. Semi-
quantitative analysis was conducted based on the RIR method, and the results are shown
in Tables S1 and S2.

2.1.3. EDS analysis

The powder (about 0.5 g) of each pottery was placed into a circle molding and then
Technovit EPOX (Hanau, Germany) resin (9 g) and Technovit EPOX HARDENER (1.286 g)
were added. Five rounds of grinding were used after demolding. Finally, the prepared sam-
ple was analyzed by EDS. A spectrometer AztecOne XT EDS (Oxford X) with a TEMJEOL
2100F microscope (Oxford, UK) was used for EDS analysis. The parameters were as follows:
accelerating voltage, 20 kV; spot size, 7.0 nm; working distance, 10 mm; and quantification
algorithm, PB/ZAF. The element of C was eliminated. The contents of detected elements
were normalized to 100% and shown in Tables S1 and S2 as well.

2.2. Methodology

The developed XRD spectrum-based untargeted strategy primarily involved baseline
drift correction and chemometric analysis. The baseline drift correction for the XRD spec-
trum was described in detail, which was accomplished based on the local minimal values
in analyzed signals [21] and comprised local minimal value detection, outlier detection,
and baseline estimation.

2.2.1. Local Minimum Detection

Mathematically, an XRD spectrum can be divided into three parts, namely, information
from chemical compositions, baseline drift, and instrument noise:

s = x + b + e, (1)

where s, x, and b are vectors corresponding to the recorded XRD spectrum, signals of chem-
ical compositions, and baseline drift in the spectrum, respectively; and e is the instrument
noise. The purpose of baseline drift correction was to find an approximate for the vector b.
Our strategy first detected minimum values in s by using the following equation:

si−1 > si and si < si+1, (2)

where si, si−1, and si+1 represent the ith, i−1th, and i+1th elements in the spectrum, respec-
tively. The extracted local minimum values are illustrated in the inserted plot of Figure 1a
(step 1), where all local minimum values in the XRD spectrum are depicted. Apart from
the local minimum values belonging to baseline drifts, those from XRD peaks can also be
extracted. They must be removed precisely to avoid signal distortion. Here, an outlier
detection strategy was designed.
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Figure 1. Graphical illustration of the developed baseline drift correction algorithm in XRD spectrum.
(a) Detailed steps of baseline drift correction. (b) Corresponding baseline drift-corrected spectrum.
Green circles in (a) mark the outliers of local minimum values.

2.2.2. Outlier Detection

To accurately distinguish local minimum values from baseline drift and those from
XRD peaks, an outlier detection strategy was designed. The intensities corresponding
with the minimum values from the baseline drift usually changed gently across the entire
spectrum, whereas the intensities of those from XRD peaks dramatically increased (step 1
in Figure 1a). Thus, the principle behind baseline drift correction was that the correction
procedure could be transformed into a problem that accurately detected outliers from the
local minimum values. To achieve this goal, the following first-order derivation-based
outlier detection equation was used in our strategy:

di = vi − vi−1, (3)

where di is the first-order derivation of the ith element; and vi and vi−1 are the ith and i−1th
minimum values in the local minimum vector v, respectively. The first-order derivation
of v was marked as another vector d, whose standard derivation was determined using a
robust statistical manner as follows:

ε = 1.483*med|d − med(d)|, (4)

where ε is the robust standard derivation of d; “med” is the median value of a vector;
and 1.483 is a correction factor to make ε obey normal distribution. If an element of v
(such as vj) obtained its first-order derivation (e.g., dj) and was three times larger than the
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robust standard derivation ε, it would be recognized as an outlier and be removed from the
vector v. In our strategy, an iteration strategy was used, whose sub-steps can be described
as follows:

(i) The first-order derivation vector d was calculated based on the original local minimum
vector vorg;

(ii) The robust statistical standard derivation ε was estimated according to Equation (4);
(iii) The outliers whose first-order derivation values exceed 3 * ε were identified and

replaced with a linear interpolation strategy to obtain a new vector vnew;
(iv) vorg was replaced with vnew, and sub-steps (i) to (iii) were repeated until no

outliers remained.

According to the above-mentioned four steps, the outliers in the local minimum
vector were iteratively removed. Owing to the complexity of the analyzed samples,
one may encounter the problem that outliers in the local minimum values cannot al-
ways be accurately identified by the first-order derivation strategy, especially for those
continuously appearing in the spectrum. To address this problem, we introduced a moving
window-based outlier detection strategy in our algorithm as well. The original local mini-
mum vector from Equation (2) vorg was smoothed with a moving window strategy, whose
window size was designed by default as 31 data points. For each window, the central point
was compared with the smoothed one as follows:

si = (vi − med(wi))/ε, (5)

where wi is the moving window of the ith data points in vorg. All elements in wi were also
extracted from vorg. si can be treated as the signal-to-noise ratio of vi. If the value of si was
above 3, vi would be treated as an outlier and removed from the vector vorg. To efficiently
remove all outliers in vorg, an iterative optimization algorithm was designed as follows:

(i) For each element in the original local minimum vector vorg, its signal-to-noise ratio
was calculated according to Equation (5).

(ii) The outliers whose signal-to-noise ratios exceeded 3 were identified and replaced
through linear interpolation to obtain a new vector vnew.

(iii) vorg was replaced with vnew, and sub-steps (i) to (iii) were repeated until convergence.
The criterion of convergence was set as

∥∥vnew − vorg
∥∥/

∥∥vorg
∥∥ < 10−6, where ∥.∥

represents the Frobenius norm.

In our XRD baseline drift correction strategy, if an element in the local minimum
vector v was found as an outlier by either the first-order derivation strategy or the moving
window smoothing strategy, it would be eliminated from the vector.

2.2.3. Estimation for Baseline Drift

The baseline drift was estimated with the remaining elements in v through simple
linear interpolation, as illustrated in the third plot of Figure 1a (step 3). After detecting the
local minimum values in the signal (step 1), outliers were recognized from the first-order
derivation strategy and the moving window smoothing strategy (step 2), as shown in the
inserted plots. The estimated baseline drift was estimated by linear interpolation on the
basis of the remaining local minimum values (step 3). Finally, the corrected signal with
baseline drift correction was obtained after removing the baseline drift (step 4). An overview
of the XRD spectrum with baseline drift correction is shown in Figure 1b. Figure 1b shows
that the baseline drift in various parts of the spectrum was properly corrected. The XRD
peaks in the spectrum were accurately maintained.

2.3. Chemometric Analysis

A Matlab GUI, AntDAS-XRD, was developed for users to benefit from their data
analysis. It was written in the Matlab environment. The GUI of AntDAS-XRD is shown in
Figure S2, which can be made available by the authors. Raw XRD spectra were imported
into our developed AntDAS-XRD to perform baseline drift correction. Additionally, data
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pretreatments like mean-centering and autoscaling can also be supported within the GUI.
Chemometric methods like principal component analysis (PCA) and partial least square
discrimination analysis (PLS-DA) can be performed within the GUI.

3. Results and Discussion
3.1. Investigation of Initialized Parameters on the Quality of Baseline Drift Correction

Our XRD baseline drift correction method required two manually preset parameters to
perform baseline drift correction, i.e., the cutoff value for signal-to-noise ratios in Equation (3)
and the moving window size in Equation (5). Here, the quality of baseline drift correction
was investigated by setting various values for the two parameters, and the results are
shown in Figure 2. Specifically, Figure 2a,b provide the baseline drift correction results
corresponding with various cutoff values of the first-order derivation. Meanwhile, those
corresponding with various moving window sizes are shown in Figure 2c,d. The profiles in
Figure 2a evidently indicated a baseline drift in the original XRD spectrum. The developed
strategy can provide satisfactory baseline drift correction at various cutoff values because
the corrected XRD spectra corresponding with various cutoff values were almost identical
to one another. Pearson coefficients were then used to quantitatively evaluate the similarity
of the corrected spectra under various cutoff values. One can find that all corrected spectra
can obtain high Pearson coefficients above 0.999, indicating that the developed method
was insensitive to the initialized cutoff value for signal-to-noise ratios in Equation (3).
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correction. (a) Baseline drift correction results with various cutoff values of n/ε in the first-order
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various moving window sizes, and (d) their similarity to the original spectrum.

The effect of moving window size on baseline drift correction was studied as well.
Moving windows with half window size (N) that varied from 5 to 30 data points were
investigated, and the results are shown in Figure 2c. The baseline drift problem in the
original XRD spectrum can be efficiently corrected by the developed method under various
window sizes by providing corrected spectra that are almost identical to one another.
Quantitative evaluation was performed using the Pearson coefficients of the corrected
spectra. The results indicated that the similarities of corrected spectra were above 0.998
(Figure 2d), implying the developed method was insensitive to the moving window size.

As shown in Figure 2, the developed XRD baseline drift correction strategy was
insensitive to the two initialized parameters involving the cutoff value for signal-to-noise
ratios in Equation (3) and the moving window size in Equation (5). Accordingly, the XRD
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data analysis can be almost automatically performed without manual optimization. Herein,
the values of 3 and 31 were used for the cutoff value of the signal-to-noise ratio and the
moving window size, respectively.

3.2. Performance in Addressing Various Kinds of Baseline Drift in the XRD Spectrum

In the routine analysis of painted pottery samples, various types of sample matrices
can be obtained during archaeological excavations, leading to baseline drift that varied
dramatically across samples in the case of XRD analysis. To demonstrate the capability of
our method to deal with various kinds of baseline drift in the analyzed signal, we provided
three types of baseline drift in the ancient potteries in Figure 3a. In the left column of
Figure 3a, the baseline drift floated in the front part of the spectrum. Conversely, the
baseline drift linearly decreased in the right part of the signal. In the middle column of
Figure 3a, the baseline drift decreased linearly from the beginning to the end part of the
signal. Moreover, a slight upward float can be found within the 2θ range of 20 to 30. A
comparison of the spectra between the first and second columns in Figure 3a indicated a
total increment of background noise in the latter one, which may increase the complexity
of baseline drift correction. With respect to the right column of Figure 3a, the baseline drift
appeared as a horizontal line in the right part of the spectrum (2θ > 40), with an exception
in the zone with 2θ < 40.
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Figure 3. A quality evaluation of the developed baseline drift correction. (a) Various types of baseline
drift problems in the original XRD spectra. (b) Estimated baseline drift with the developed strategy
(red lines) and the corresponding correction results (greed lines). (c) Enlarged baseline drift correction
to show the distribution characteristics of the local minimum values before and after baseline drift
correction (inserted plot).

The results of baseline drift correction for the spectra in Figure 3a are shown in
Figure 3b, where the estimated baseline drift and the corrected signals are marked with
red and green lines, respectively. After removing local minima belonging to XRD peaks,
the local minimum values in the signal can briefly reflect the baselines in each sample. The



Chemosensors 2024, 12, 64 8 of 13

corrected signals without baseline drift can then be obtained for analysis. The results in
Figure 3b further confirmed the reasonability of using local minimum values in the signal
for performing baseline drift correction in the XRD analysis.

Figure 3c provides a detailed illustration of the baseline drift correction by using the
spectrum in the middle plot of Figure 3a. The local minimum values in the overlapped XRD
peaks can be efficiently filtered out with the developed outlier detection algorithm. There-
fore, baseline drift can be reasonably performed with the maintained ones. Notably, we
preferred to use simple linear interpolation instead of complex curve fitting for implement-
ing baseline drift correction because the former can maximally avoid the resorting problem
during correction. Evidently, the baseline drift problem in the original XRD spectrum was
resolved, and the XRD peaks can be maintained simultaneously.

The distribution characteristics of local minimum values in the signal of Figure 3c
were studied to determine whether the baseline drift in the XRD spectrum was efficiently
corrected. Notably, all local minimum values in the spectra were extracted according to
Equation (2), and those whose intensity was below 10,000 were provided in the inserted plot.
The local minimum values in the original XRD spectrum were distributed with several local
apices along the intensity axis (x-axis). In this case, determining a noise level to accurately
extract XRD peaks for performing such as mineralogical analysis was difficult. However,
with the aid of the developed strategy, the local minimum values were distributed within
a relatively narrow range (below 1000) along the intensity axis. In this case, analysts can
readily perform XRD peak extraction by setting a value as the level of background noise.

The results of baseline drift correction for all analyzed samples are shown in
Figure 4. Figure 4a depicts the original XRD spectra of 22 ancient colored pottery samples.
The baseline drift relatively differed across samples, which may distort accurate sample
grouping. With the aid of the developed strategy, one can automatically perform baseline
drift correction for each sample to obtain high-quality XRD spectra for sample analysis
(Figure 4b). Notably, after removing baseline drifts in all samples, the noise level was
almost identical among the samples.

Chemosensors 2024, 12, x FOR PEER REVIEW 8 of 13 
 

 

corrected signals without baseline drift can then be obtained for analysis. The results in 
Figure 3b further confirmed the reasonability of using local minimum values in the signal 
for performing baseline drift correction in the XRD analysis.  

Figure 3c provides a detailed illustration of the baseline drift correction by using the 
spectrum in the middle plot of Figure 3a. The local minimum values in the overlapped 
XRD peaks can be efficiently filtered out with the developed outlier detection algorithm. 
Therefore, baseline drift can be reasonably performed with the maintained ones. Notably, 
we preferred to use simple linear interpolation instead of complex curve fitting for imple-
menting baseline drift correction because the former can maximally avoid the resorting 
problem during correction. Evidently, the baseline drift problem in the original XRD spec-
trum was resolved, and the XRD peaks can be maintained simultaneously. 

The distribution characteristics of local minimum values in the signal of Figure 3c 
were studied to determine whether the baseline drift in the XRD spectrum was efficiently 
corrected. Notably, all local minimum values in the spectra were extracted according to 
Equation (2), and those whose intensity was below 10,000 were provided in the inserted 
plot. The local minimum values in the original XRD spectrum were distributed with sev-
eral local apices along the intensity axis (x-axis). In this case, determining a noise level to 
accurately extract XRD peaks for performing such as mineralogical analysis was difficult. 
However, with the aid of the developed strategy, the local minimum values were distrib-
uted within a relatively narrow range (below 1000) along the intensity axis. In this case, 
analysts can readily perform XRD peak extraction by setting a value as the level of back-
ground noise.  

The results of baseline drift correction for all analyzed samples are shown in Figure 
4. Figure 4a depicts the original XRD spectra of 22 ancient colored pottery samples. The 
baseline drift relatively differed across samples, which may distort accurate sample 
grouping. With the aid of the developed strategy, one can automatically perform baseline 
drift correction for each sample to obtain high-quality XRD spectra for sample analysis 
(Figure 4b). Notably, after removing baseline drifts in all samples, the noise level was al-
most identical among the samples. 

 
Figure 4. Baseline drift correction results for painted ancient pottery samples: (a) original XRD spec-
tra and (b) XRD spectrum with baseline drift correction. 

Variance explained by the principal components (PCs) was first investigated, and the 
results corresponding to red and white potteries were shown in Figures S3 and S4, respec-
tively. It can be found clearly that the largest variance explained by PC1 is in the original 
XRD spectra without treatment (left columns of Figures S3 and S4). By contrast, the results 
for the XRD spectra with baseline drift correction suggested that the baseline drift can be 
successfully removed from the loading profile of PC1, and meanwhile, unwanted variance 
in baseline drift can be eliminated, resulting in the decrement of explained variance by 
PC1. The mean-centering treatment was used for further demonstration, as a part of the 
biased signal from baseline drift can be removed. It can be found from the middle columns 
of Figures S3 and S4 that the variance explained by PC1 reduced by more than 40% for the 
original XRD spectra after mean-centering treatment. With the aid of baseline correction, 
the reduction in explained variance by PC1 was about 25%. Moreover, the values of 

Figure 4. Baseline drift correction results for painted ancient pottery samples: (a) original XRD
spectra and (b) XRD spectrum with baseline drift correction.

Variance explained by the principal components (PCs) was first investigated, and
the results corresponding to red and white potteries were shown in Figures S3 and S4,
respectively. It can be found clearly that the largest variance explained by PC1 is in the
original XRD spectra without treatment (left columns of Figures S3 and S4). By contrast, the
results for the XRD spectra with baseline drift correction suggested that the baseline drift
can be successfully removed from the loading profile of PC1, and meanwhile, unwanted
variance in baseline drift can be eliminated, resulting in the decrement of explained variance
by PC1. The mean-centering treatment was used for further demonstration, as a part of
the biased signal from baseline drift can be removed. It can be found from the middle
columns of Figures S3 and S4 that the variance explained by PC1 reduced by more than
40% for the original XRD spectra after mean-centering treatment. With the aid of baseline
correction, the reduction in explained variance by PC1 was about 25%. Moreover, the
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values of explained variance by PC1 are larger for the data with baseline drift correction
than those without correction.

Another interesting phenomenon can be found in the right column of both
Figures S3 and S4; in the case of autoscaling, the baseline drift problem in the original
XRD spectra seemed to be enhanced greatly when compared with the mean-centering
treatment. In this case, the variance explained by PC1 increased again. With respect to the
XRD spectra with baseline drift correction, the autoscaling can place equal weights for all
variables in each XRD spectrum. In this case, the effect of random variables was relatively
reinforced so that, theoretically, the variance explained by PC1 decreased to a smaller
value when compared with the mean-centering treatment, which can be clearly found in
Figures S3 and S4. These results implied that the effect of baseline drift can be resolved
by our strategy so analysts can focus on the accurate grouping of ancient colored pottery
samples from different periods or locations.

3.3. Chemometric Analysis of Ancient Painted Pottery

Since the period for which the artifacts are dated is long, it can be expected that some
changes in the production technology may be varied. In this work, we focused on the
separation of pottery samples from different zones or dynasties by using the baseline
drift-corrected XRD spectrum, which may be the first study in this aspect. A 4251 × 11
matrix was obtained for analysis with 4251 data points in each spectrum, and 11 was the
number of white or red potteries. PCA was initially performed based on the XRD spectra,
and the results are shown in Figure S5. Notably, pretreatment with mean centering was
employed for both the original and the corrected XRD spectra. The original XRD spectra
classified potteries from Zhongwei City and Guyuan City clearly. After the removal of
baseline drift, however, potteries from Zhongwei City cannot be separated from those
from Guyuan City. The slight difference may lie in the fact that baseline drift cannot be
eliminated efficiently by the mean-centering treatment (see Figure S3). PCA was also
performed using the mineralogical and element compositions in Table S1 as the benchmark,
and results were shown in the right column of Figure S5. It can be found that the potteries
cannot be separated either, which was briefly consistent with those with baseline drift
correction. The analysis of white potteries indicated that they cannot be separated based
on either dynasty or location, which can be found from the XRD spectra with and without
baseline drift correction in Figure S5. Consistent results can be also found from the PCA
based on the mineralogical and element compositions in Table S2. In fact, pretreatment with
autoscaling was also performed, and the results are shown in Figure S6. It can be found
that similar results can be also obtained for the studied potteries, except that the variance
explained by the first two PCs was higher in the original XRD spectra. A very possible
reason for this may be that the problem of baseline drift was enhanced after autoscaling
(see Figures S3 and S4).

The supervised classification method, PLS-DA, was used for sample grouping, and the
results are shown in Figure 5. Notably, data treatment of the mean center and normalization
were used for XRD spectra. The left column of Figure 5 shows the sample-grouping results
from the original XRD spectra. These samples cannot be classified because the ellipses
(<95% confidence level) of the samples corresponding with Zhongwei City partially covered
the samples from the other groups. Specifically, the white materials from Guyuan and
Zhongwei seriously overlapped (Figure 5(a1,b1)).
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Figure 5. PLS-DA comparison of the classification of ancient pottery samples with and without
baseline drift correction. (a1)–(a3) Sample grouping results on the basis of red pigments of potteries.
(b1)–(b3) Sample grouping results for white pigments of potteries. Plots of (a1,b1) in the left column
show results with the original XRD spectrum, whereas (a2,b2) in the middle column show results
from the XRD spectrum with baseline drift correction. (a3,b3) show sample grouping results by
combining data from mineralogical and EDS analyses. Blue circles represent samples from Guyuan
City of the Han dynasty. Red circles are samples from Zhongwei City of the Han dynasty. Yellow
circles denote samples from Zhongwei City of the Tang dynasty.

Conversely, sample grouping results in the middle column of Figure 5a indicated
that samples from different cities and dynasties can be clearly separated, indicating the
success of baseline drift correction. The samples from Guyuan (blue circles) and Zhongwei
(red and yellow circles) cities were clearly divided into different parts in the plots of
Figure 5(a2,b2). With respect to the samples from the Tang (yellow circles) and Han (red)
dynasties in Zhongwei City, they can be properly separated. Given the very rare ancient
painted pottery studied in this work, prediction was not performed for the limited sample
number. The results in Figure 5 suggested that with efficient baseline drift correction,
ancient painted potteries can be discriminated against using the entire XRD spectrum in an
untargeted manner.

To demonstrate the success of the developed strategy, mineralogical and EDS analyses
were manually performed, and the results are shown in Tables S1 and S2. Sample grouping
results for the red and white materials are shown in Figure 5(a3,b3), respectively. The
developed XRD spectrum-based untargeted strategy can obtain almost identical sample
grouping results with manual resolution. With the aid of the local minimum-based cor-
rection algorithm, baseline drift can be reasonably corrected, and samples from different
zones and dynasties can be satisfactorily separated. The developed XRD spectrum-based
untargeted strategy had the great advantage of not needing manual deconvolution for
mineralogical analysis, so the risk of incorrect deconvolution results can be greatly avoided.

3.4. Brief Comparison with State-of-the-Art Methods

The requirement of baseline drift correction was not limited in the XRD analysis. In
some signal analysis fields such as chromatography and NMR, a number of state-of-the-art
algorithms [20,22,23] have been developed as well. However, their applications in XRD
spectroscopy are not reported publicly. Here, a brief comparison was provided. The famous
airPLS of Zhang was introduced [23] for XRD spectrum analysis for the first time. We
selected a sample to provide an illustration, and the baseline drift correction results from
the developed strategy and airPLS are shown in Figure 6. It must be noted that a single
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sample analysis cannot provide a statistical evaluation of the performance of a method.
The estimated baseline from the airPLS was almost identical to that of the developed
strategy. The Pearson coefficient of estimated baselines from the two methods was 0.9908.
The slight difference lay within the zone ranging from 15 to 45, where overlapped XRD
peaks were present in the analyzed signal. airPLS trended to overfit the baseline drift for
peaks without baseline correction. Conversely, results from the developed strategy may be
more acceptable for baseline drift correction of overlapped XRD peaks, indicating that the
developed algorithm may be valuable for XRD data analysis.
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The above-mentioned results demonstrated that the developed local minimum value-
based strategy can efficiently address the baseline drift problem in the XRD spectrum. This
strategy can benefit the XRD spectrum-based untargeted strategy for the classification
of ancient painted pottery. Evidently, ancient painted pottery from the Han and Tang
dynasties can be successfully separated after reasonable baseline drift correction by using
the developed strategy. Meanwhile, their locations can be accurately classified. The
developed baseline drift correction method was also insensitive to initialized parameters,
i.e., cutoff value for signal-to-noise ratios and moving window size. These features enabled
data analysis to be performed almost automatically in routine work. To benefit the ancient
painted pottery analysis, our strategy was implemented in a GUI, which can be obtained
from the authors.

4. Conclusions

We proposed a new automatic XRD spectrum-based untargeted strategy for the ac-
curate classification of ancient painted pottery from different dynasties and locations. To
eliminate the influence of baseline drift in the analyzed signal, a local minimum value-based
baseline drift correction algorithm was specifically designed. The developed strategy can
automatically and efficiently estimate baseline drift in the XRD spectrum and thus provide
accurate classification results for ancient painted pottery. Potteries from the Han and Tang
dynasties in the cities of Guyuan and Zhongwei, China, were used to demonstrate the
success of the developed strategy, and the results indicated that it could provide a new
solution for ancient sample analysis.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors12040064/s1, Figure S1: Typical potteries col-
lected in this work. The upper plot is a red pottery, where as the lower one is a white pottery;
Figure S2: Matlab GUI of AntDAS-XRD; Figure S3: Variance and loading from XRD spectra of red
pottery with and without baseline-drift correction. First row show variance explained by principal
components. Second row show loading plot corresponding to the PC1. Left, middle, and right
columns were spectra untreated, mean-centering, and autoscaling, respectively; Figure S4: Variance
and loading from XRD spectra of white pottery with and without baseline-drift correction. First row
show variance explained by PCs. Second row show loading plot corresponding to the PC1. Left,
middle, and right columns were spectra untreated, mean-centering, and autoscaling, respectively;
Figure S5: Sample clustering based on PCA. Left column: clustering of potteries based on original
XRD spectra (mean-centering treatment). Middle column: clustering of potteries based on original
XRD spectra (mean-centering treatment). Right column: clustering of potteries based on data of Table
S1 and S2. Autoscaling treatment was employed for the data of Table S1 and S2. Blue circles represent
samples from the Guyuan city of the Han dynasty. Red circles are samples from the Zhongwei city
of the Han dynasty. Yellow circles is samples from the Zhongwei city of the Tang Dynasty; Figure
S6: Sample clustering based on PCA. Left column: clustering of potteries based on original XRD
spectra (autoscaling treatment). Middle column: clustering of potteries based on original XRD spectra
(autoscaling treatment). Right column: clustering of potteries based on data of Table S1 and S2.
Autoscaling treatment was employed for the data of Table S1 and S2. Blue circles represent samples
from the Guyuan city of the Han dynasty. Red circles are samples from the Zhongwei city of the Han
dynasty. Yellow circles is samples from the Zhongwei city of the Tang Dynasty; Table S1: Analysis
results for the red pigments of ancient potteries; Table S2: Analysis results for the white pigments of
ancient potteries.

Author Contributions: Conceptualization, J.-J.S., Y.-Y.W. and Y.-J.Y.; funding acquisition, J.-J.S.;
investigation, Y.-Y.W. and F.-L.M.; project administration, W.-C.T. and J.-N.W.; software, Y.-J.Y.;
writing—original draft, Y.-Y.W. and J.-N.W.; writing—review and editing, J.-J.S., F.-L.M. and Y.-J.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge the financial support of the National Natural Sci-
ence Foundation of China (Grant Nos. 22378214) and the Natural Science Foundation of Ningxia
(2021AAC03438, 2023AAC05038).

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shalvi, G.; Shoval, S.; Bar, S.; Gilboa, A. Pigments on Late Bronze Age painted Canaanite pottery at Tel Esur: New insights into

Canaanite–Cypriot technological interaction. J. Archaeol. Sci. 2020, 30, 102212. [CrossRef]
2. Jones, R. The Decoration and Firing of Ancient Greek Pottery: A Review of Recent Investigations. Adv. Archaeomater. 2021, 2,

67–127. [CrossRef]
3. Buravlev, I.Y.; Gelman, E.I.; Lapo, E.G.; Pimenov, V.A.; Martynenko, A.V. Three-colored Sancai glazed ceramics excavated from

Bohai sites in Primorye (Russia). J. Archaeol. Sci. Rep. 2022, 41, 103346. [CrossRef]
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