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Abstract: The utilization of bismuth as a sensing material for the detection of heavy metal ions
has gained significant attention due to its exceptional interfacial activity and selective absorption
properties. However, it also poses challenges in terms of agglomeration and its inferior electrical
conductivity during the synthesis process. This paper employed a facile in situ synthesis and elec-
trodeposition approach to uniformly grow a bismuth film on a conductive carbon cloth, designated as
Bi/Ag@CC. The Bi/Ag@CC electrode material exhibited benign electrochemical properties, enabling
its application for detecting Pb2+ in tap water and lake water samples. Furthermore, this work
investigated the impact of electrochemical parameters, including electrolyte pH, deposition potential
and pre-enrichment time, on the detection performance. The results demonstrated the sensor’s wide
linear range (from 20 to 400 ppb) and detection limits (0.15 ppb) for heavy metal ion detection, along
with excellent anti-interference capabilities and satisfactory repeatability, with an RSD of less than
2.31% (n = 6). This paper offers a novel strategy for positioning the bismuth-based composite as a
promising candidate for practical electrochemical sensing applications.

Keywords: electrochemical sensor; bismuth film; lead ions; carbon cloth; heavy metal ions

1. Introduction

The issue of global ecological pollution has garnered considerable attention, as water
resources are intricately tied to the survival of both humans and other living organisms [1–3].
Nevertheless, due to industrialization, heavy metal pollution in aquatic environments not
only causes ecological devastation but also poses a significant threat to human habitats, po-
tentially resulting in public health crises [4]. Among these heavy metal ions, Pb2+ emerges
as a particularly toxic ion capable of inflicting substantial harm to the heart, brain, and other
organs in living organisms when present in concentrated forms [5]. Nevertheless, ensuring
environmental safety and mitigating the biological harm caused by the accumulation and
non-degradability of heavy metal ions remains a daunting task for the global community.

Traditional heavy metal detection strategies, such as inductively coupled plasma mass
spectrometry (ICP-MS), high-performance liquid chromatography (HPLC) and atomic
absorption spectrometry (AAS), are widely recognized and employed extensively due to
the benefits of extensive linearity, remarkable sensitivity and low detection limits. However,
these sensing technologies demand substantial operational expertise and a considerable
testing time [6,7]. In recent years, fluorescence and colorimetric methods have emerged as
cutting-edge technologies for visually detecting heavy metal ions with specific targeted sites.
However, one of the primary problems lies in the limited detecting range of targeted heavy
metals [8–11]. Alternatively, the electrochemical sensor addresses this challenge by deposit-
ing the targeted ions on the electrode surface and inducing an electrochemical reaction of
dissolution in the electrolyte under an applied potential. This reaction generates a distinct
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peak redox current, enabling the precise detection of the target substance [3,12,13]. Owing
to its convenience, cost efficiency and remarkable precision, this detection strategy has
garnered significant attention in the field of heavy metal detection [14]. Furthermore, elec-
troanalytical techniques offer adequate sensitivity, miniaturized and portable equipment
and satisfactory accuracy and precise performance [15,16]. By employing conventional
techniques such as spin coating and droplet-dripping, it is feasible to achieve the desired
modifications on the electrode surface. Viviana et al. [17] proposed a synthetic approach for
constructing carbon nanodots derived from biomass-based carbon materials. The modified
electrode exhibited high stability and adsorption properties, enabling the electrochemical
detection of heavy metal ions such as lead and cadmium ions. The conventional electrode
modification method results in the degradation of the optimal performance of the working
electrode due to interfacial adhesion [18]. Taking into account the robust, sensitive and
selective characteristics of metal–organic frameworks (MOFs) for the targeted metal ions, a
rapid electrochemical detection of diverse heavy metal ions has been reported using the
MOFs as electrode materials [19,20]. Nevertheless, MOF materials on the surface of the
glass carbon electrode over time compromise detection performances.

To address these limitations, in situ growth on the electrode surface was carried out
and directly applied to detect heavy metal lead ions without interfacial adhesion. Wang and
colleagues constructed a flexible nickel-doped WO3/CC (carbon cloth) electrode for glucose
detection based on in situ synthesis, and the hierarchical microsheets of WO3 exhibited
a substantial specific surface area, greatly enhancing the rate of electron transfer [21].
Gao et al. [6] presented a cupric ion-sensing electrode, featuring the in situ growth of
porous rod-like tungsten oxide assembled onto stainless steel mesh, which demonstrated
impressive detection capabilities and promising practical applications. Shao et al. [22]
illustrated a molybdenum oxide adsorbent with mixed valence, exhibiting selectivity for
silver detection and recovery in wastewater. Therefore, the process of in situ synthesis can
significantly enhance the stability and reproducibility for the electrochemical detection of
heavy metal ions.

Metallic nanomaterials, thanks to their minute size, extensive specific surface area, and
exceptional electrical conductivity, could significantly enhance the sensitivity and linearity
of electrochemical detection. Bismuth nanoparticles, among various metal particles such as
gold and silver nanoparticles, exhibit superior cost effectiveness, environmental friendliness
and resistance to oxygen, as well as low toxicity, positioning them as a promising candidate
for the electrochemical detection of highly toxic mercury [3]. With the assistance of the
electrochemical plating method, Jiang et al. designed and fabricated an integrated and
wearable detecting platform by printing bismuth films, and this platform was successfully
utilized for the real-time detection of heavy metal ions [23] Feng et al. [24] successfully
achieved remarkable stability and sensitivity in measuring trace amounts of lead ions
by employing nitrogen-doped carbon nanosheets encapsulating bismuth nanoparticles
(Bi@NC). The porous carbon composite, co-doped with Bi/Bi2O3, was derived from a
bismuth-based organic framework, offering a wide linear range for the electrochemical
detection of lead ions. Notably, the sensor exhibited exceptional stability, reproducibility
and satisfactory selectivity [25].

In this work, an electrochemical sensor based on Bi/Ag@CC electrode material was
constructed and applied to the detection of Pb2+ in tap water and lake water samples. The
introduction of Ag nanoparticles significantly enhanced the conductivity of the sensor,
which was achieved through a simple solution-based synthesis method. Additionally,
a Bi layer was deposited on the surface of Ag@CC using an electrochemical deposition
approach. The integration of Bi with Ag improved both the electrochemical activity and acid
resistance of the sensor. Furthermore, the carbon film serving as a support skeleton not only
ensured high electrical conductivity and rapid electrochemical kinetics but also effectively
mitigated volume changes during the detection of heavy metal ions [26]. Finally, the
Bi/Ag@CC composite was employed as an electrochemical detecting electrode material for
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Pb2+ sensing using the DPV mode, demonstrating excellent electrochemical performance
and electrocatalytic behavior towards heavy metal ions.

2. Materials and Methods
2.1. Materials

All chemicals used to measure heavy metal ions were of analytical grade. Silver nitrate
(AgNO3), ascorbic acid, lead nitrate (Pb[NO3]2), bismuth nitrate (Bi[NO3]3), potassium
ferricyanide (K3Fe[CN]6), potassium chloride (KCl) and standard solutions of 1 mg/mL
Pb in 2% nitric acid were obtained from Aladdin Chemical Reagent Co., Ltd. (Shanghai,
China). The carbon cloth was purchased from Keshenghe (W0S1011, Shenzhen, China).
Deionized water was prepared by our own lab equipped with a Flom ultrapure water
system (18 MΩ·cm). All the chemicals were utilized directly without further purification.

2.2. Preparation

Carbon cloth as a substrate was firstly soaked and cleaned with acid solution, ethyl
alcohol and deionized water, respectively. After drying, the carbon cloth was cut into the
size of 20 mm × 10 mm × 1 mm. The carbon cloth was soaked in 0.1 mM AgNO3 for 20 min
and then dried. Next, the dried carbon cloth was added into the 0.2 mM ascorbic acid
solution for 10 min, leading to the reduction of Ag nanoparticles, which was named Ag@CC.
The Bi/Ag@CC electrode was synthesized via an electrochemical deposition process. The
deposition potential and time were selected to be −0.9 V and 480 s, respectively, and the
concentration of Bi(NO3)3 was 0.2 g/L. Then, the dried samples were named Bi/Ag@CC
electrodes. For the Bi@CC electrode materials, the preparation process remains identical to
the aforementioned procedure, with the exception of the absence of the in situ reduction of
silver nitrate solution.

2.3. Morphological Characteristics

The scanning electron microscopy (ZEISS, GeminiSEM 300, Jena, Germany) with
an accelerating voltage of 3 kV was applied to observe the morphology of the prepared
electrodes and EDS elemental mapping images. And, the crystal structure of samples was
recorded by an X-ray diffractometer (XRD, Tongda, Hong Kong, China) with a scanning
speed of 5◦ min−1. X-ray photoelectron spectroscopy (XPS, PHI QUANTERA-II SXM,
Waltham, MA, USA) was used to analyze the elements and valence states of the catalysts.
The electronic conductivity was measured by a digital multimeter (RIGIOL, Beijing, China).

2.4. Electrochemical Characteristics

The electrochemical performances were measured via the electrochemical workstation
(CHI-760E, CHI Instruments, Shanghai, China) with a conventional three-electrode system.
The counter electrode, reference electrode and the working electrode were the graphite rod,
Ag/AgCl electrode and the prepared electrodes, respectively. To mitigate the impact of
extraneous ions on the accuracy of measurement results, the electrolyte solution employed
in this study is a standardized lead nitrate solution. And, the pH of the electrolyte was
adjusted by the acidic and basic solutions. Differential pulse voltammetry (DPV) was used
by scanning from −1.0 V to −0.2 V, and the pulse height was set as 50 mV. The pulse
amplitude and pulse time were set by the instrument without change. And, the scanning
rate was adjusted during the experimental measurements. The deposition voltage and time
were −1.2 V and 360 s for the preconcentration of heavy metal ions, respectively. The cyclic
voltammetry (CV) with a measurement range of −0.6 V~0.6 V and the electrochemical
impedance spectroscopy (EIS) at the frequency range of 0.01 Hz to 100 kHz were tested.
All the tests were conducted at room temperature.
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3. Results and Discussion
3.1. Morphological and Structural Characteristics

Scheme 1 demonstrated the synthesis of Bi/Ag@CC electrode materials via a combina-
tion of solution immersion and electrochemical deposition reactions. Firstly, the pristine
carbon cloth was immersed in an acidic solution to remove the impurity and soaked into
the AgNO3 solution to yield silver nanoparticles on the carbon cloth surface, which was
named Ag@CC. Subsequently, a Bi film was formed by employing electrodeposition on
top of the Ag@CC to synthesize Bi/Ag@CC electrode material. Figure 1a depicts the SEM
images of the untreated carbon cloth, which exhibit a dense fiber structure with an overall
smooth appearance. The SEM images of Ag@CC are presented in Figure 1b, revealing silver
nanoparticles attached to the surface of the fibers. Due to the specificity of nucleation sites,
the silver particles exhibit a non-uniform distribution across the fiber surface. Ascorbic acid
functions as a reducing agent, efficiently converting silver ions into silver monomers [27].
Figure 1c,d depicts the SEM images of the fibers following bismuth electrodeposition. The
bismuth film completely covered the fiber surfaces, providing an ample contact area for the
subsequent adsorption of heavy metal ions. Additionally, Figure S1 illustrates the effect of
varying silver plating concentrations on conductivity. The concentration of silver plating on
the carbon cloth surface was adjusted by varying the soaking time in silver nitrate solution,
and the soaking duration of 10 min yielded the most significant reduction in resistance on
the CC surface, leading to an enhancement in the conductivity of the electrode. Therefore,
the immersion duration for Ag@CC in the solution was standardized at 10 min for all
subsequent experiments. To deposit a Bi film, an electrodeposition potential of −0.9 V and
a pre-enrichment time of 480 s were selected, as depicted in Figure S2.
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Scheme 1. Schematic illustration of the synthesis of Bi/Ag@CC. The red dotted circle illustrated
the Bi3+.

The crystallographic structures of the prepared samples were determined through
XRD analysis, with the diffraction peaks of Bi/Ag@CC, Ag@CC and CC presented in
Figure 2a. All samples exhibited broad and weak diffraction peaks at 2θ = 25.5◦ and 43.4◦,
corresponding to the (002) and (001) planes of graphite (PDF#41-1487) [28]. Specifically,
the XRD spectra of Bi/Ag@CC exhibited two primary peaks at 27.2◦ and 39.7◦, aligned
with the crystal facets of bismuth (012) and (110), respectively. And, the absence of other
impurity peaks suggested the exclusive deposition of metal Bi on the CC substrate [29,30].
The additional analysis of Bi@CC in Figure S3 reveals the absence of the diffraction peaks
of Bi, indicating that the bismuth film cannot be effectively deposited on the carbon cloth
surface without the silver nanoparticle pre-treatment. These findings suggested that silver
nanoparticles on the carbon cloth not only enhance the electronic conductivity of the
electrode materials but also facilitate the strong adhesion of bismuth film. Furthermore,
the elemental composition and chemical states of the prepared samples were characterized
using X-ray photoelectron spectroscopy (XPS). The XPS survey spectra confirmed the
presence of Bi, Ag and C elements in the Bi/Ag@CC electrode material (Figure 2b). As
depicted in Figure 2c, the high-solution XPS spectra of Bi 4f exhibited distinct peaks at
binding energies of 164.5 eV and 159.4 eV, which can be unambiguously assigned to the
4f5/2 and 4f7/2 states of Bi0, respectively, in accordance with previous reports [31,32]. This
observation provided direct evidence for the successful in situ synthesis of bismuth film
on CC surfaces. Furthermore, Figure 2d presents the XPS spectra of Ag, revealing fitted
peaks at binding energies of 368.1 eV and 374.3 eV, which correspond to the 3d5/2 and
3d3/2 stated of Ag0, respectively.
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Figure 2. The characteristics of phase structure and elemental composites of Bi/Ag@CC. (a) XRD
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3.2. Electrochemical Characteristics

The electrochemical properties of the Bi/Ag@CC electrode materials were examined
using the [Fe(CN)6]3−/4− redox probe through cyclic voltammetry conducted at a scanning
rate of 50 mV/s (Figure 3a). Additionally, Figure 3b illustrates the evolution of the redox
peak current in cyclic voltammetry curves as the scanning rate increased in [Fe(CN)6]3−/4−

solution. Notably, the anodic current associated with the oxidation of Fe2+/Fe3+ on the
Bi/Ag@CC electrode increased proportionally with the scan rate. Figure 3b shows that
the CV curve recorded at 150 mV/s exhibited the highest redox peak current, which
demonstrated that as the scanning rate rose, the peak redox current was also augmented.
Figure 3c presents the EIS curves of Bi/Ag@CC, Ag@CC and CC, which were measured
over a frequency range of 0.01–100 kHz. These curves revealed that the electron-transfer
resistance (Rct), a metric reflecting the interfacial properties of the electrode materials, was
5.6 Ω, 6.1 Ω and 46.3 Ω for Bi/Ag@CC, Ag@CC and bare CC, respectively. Based on the
measurement results, the findings revealed that the Rct value of Bi/Ag@CC was lower
compared to both Ag@CC and CC electrodes, indicating that the Bi/Ag@CC electrode ma-
terial possessed superior electrochemical properties compared to other electrode materials,
and the deposition of bismuth did not produce a significant alteration in the conductivity
of the substrate [33].
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The electrochemical performances of the prepared samples in a 100 ppb Pb2+ solu-
tion are depicted through the DPV curves shown in Figure 3d. The Bi/Ag@CC electrode
demonstrated a pronounced electrochemical response, manifesting that the preconcentra-
tion process enhances the reduction of heavy metal. Moreover, the activated Bi/Ag@CC
electrode material treated with enriched lead exhibited a significantly more prominent peak
current, with an increase of 8.53%, suggesting that the process necessitates pre-enrichment
treatment rather than direct detection [34]. And, the DPV measurements of the Bi@CC
electrode material revealed the minimal peak current, suggesting that the pure bismuth film
deposited on the carbon cloth did not exhibit a significant interfacial reaction with heavy
metal ions. Similarly, the Ag@CC and carbon cloth electrode displayed limited current
peaks, illustrating that the Ag nanoparticle and carbon substrate primarily facilitated the
electronic path and did not significantly contribute to the electrochemical detection of
heavy metal ions.

3.3. Electrochemical Detection of Pb2+

To further elucidate the electrochemical properties of the Bi/Ag@CC electrode materi-
als in detecting heavy metal ions, a comprehensive analysis of critical parameters, including
electrolyte pH, deposition voltage and enrichment time, were conducted. Figure 4a displays
the current peak response of the Bi/Ag@CC electrode with a pH range of 3.0 to 9.0, with a
Pb2+ concentration of 100 ppb. The acidity–alkalinity of the electrolyte was adjusted by
nitric acid and sodium hydroxide solution. The testing results demonstrated that the peak
current of Pb2+ on the Bi/Ag@CC electrode increased under acidic conditions. However,
as the acidity increased, bubbles were observed on the electrode surface when pH of the
electrolyte was 3.0, potentially due to the interference from the hydrogen evolution reaction
with the dissolution of Pb2+ ions. For weak acid solution, the current signal decreased
sharply. In alkaline environment, the sample electrode was damaged, resulting in a reduced
peak current. Therefore, the optimized electrolyte pH of 4.5 was chosen for the subsequent
experiments. Figure 4b displays the variation in peak currents with respect to various
deposition potentials, ranging from −1.3 to −0.8 V. The maximum peak current value was
observed at −1.2 V, leading to the selection of −1.2 V as the optimal deposition voltage for
depositing Pb2+ on the Bi/Ag@CC electrode surface. Furthermore, Figure 4c explores the
relationship between the peak current and pre-enrichment time (pH = 3, −1.2 V), with the
experimental results illustrating that the current peak is at 360 s. Consequently, 360 s was
deemed as the optimal deposition time for the subsequent measurements.
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During the conventional DPV measurement for heavy metal ion detection, two dis-
tinct electrochemical reactions occur on the electrode surface. Firstly, a fixed duration of
negative electrodeposition potential was applied to deposit the targeted metallic ions onto
the electrode surface. Then, these deposited metallic ions were dissolved by oxidation
to metal ions with a specified potential under the DPV measurement mode, resulting in
a distinct current peak [35,36]. Figure 5a describes the DPV response of the Bi/Ag@CC
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electrochemical detection of Pb2+ across a concentration range of 20 ppb to 400 ppb. And,
the current variation in lead ion with a concentration of 5 ppb could be observed by the
electrochemical sensor, as shown in Figure S4. Figure 5b showcases the peak current values
at −0.47 V, demonstrating a linear relationship between the peak current and the Pb2+ con-
centration. The linear equation was calculated as Ip (µA) = 312.6 × 0.97C (ppb) (R2 = 0.995)
for the concentration of Pb2+ ranging from 20 to 300 ppb and Ip (µA)= 542.2 × 1.89C (ppb)
(R2 = 0.956) for the concentration of Pb2+ ranging from 300 to 400 ppb. Moreover, the limit
of detection (LOD) value for Pb2+ was evaluated to be 0.15 ppb (LOD = 3σ/S). The low
LOD may be attributed to the shape of the calibration curve and the variability in the blank
signal [37,38]. To investigate the electrochemical detection process between the sample
electrodes and heavy metal ions, Figure S5 depicts the elemental mapping of Bi/Ag@CC
following DPV measurements, revealing the presence of trace amounts of lead on the
surface of the electrode material.
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The practical application capabilities of the electrochemical sensor hinge crucially on
its selectivity, stability and reproducibility. Considering that the presence of non-target ions
in electrolytes may disturb the detection outcome of Bi/Ag@CC, a thorough examination of
detection accuracy in the presence of various interfering ions such as Cl−, SO4

2−, HCO3
−,

Zn2+ and CO3
2− was performed. As Figure 6a illustrates, the experimental results exhibit

acceptable anti-interference performance for Pb2+ detection. Figure 6b showcases the
peak current during repeatable testing, which experienced a 2.94% reduction after four
measurement cycles. This slight decline could be attributed to the weakening of the
bismuth film’s performance on the carbon cloth surface due to the enrichment process.
Furthermore, to evaluate the repeatability feature, the DPV responses (Pb ions at 100 ppb)
of six Bi/Ag@CC samples produced using the same fabrication process are illustrated in
Figure 6c. The obtained data demonstrated a relative standard deviation (RSD) of 2.31%
for the peak current, manifesting the acceptable reproducibility of Bi/Ag@CC electrode
materials. When compared to other reported detection strategies, the sensor presented in
this work offers an acceptable linear range and superior detection performance (Table 1).
Furthermore, to assess the practical utility of Bi/Ag@CC, tap water and lake water samples
were collected and analyzed. These samples were spiked with different concentrations of
Pb2+ and measured by DPV. The results, presented in Table 2, demonstrate that Bi/Ag@CC,
as electrochemical electrode material, exhibited relatively high precision and was capable
of detecting Pb2+ in actual samples.
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Table 1. Comparison of various Bi-based electrodes for determination of Pb2+.

Electrode Materials Technique Linear Range (ppb) LOD (ppb) Ref.

BiCuFE SWASV 47.5–632.4 1.2 [39]
BiCu0.5-ANPs@CF/SPCE SWASV 5–150 0.95 [27]

Bi-MWCNTs-CPE DPASV 41.4–414.4 8.97 [40]
Bi/SPCE ASV 5–100 0.97 [41]

MXA-CuO/CC DPASV 4–1200 0.2 [34]
Bi/UiO-66-NH2@CNHs DPV 200–800 10.56 [7]

Bi/AuNP-SPCE DPV 1–150 0.03 [42]
Bi/Ag@CC DPV 20–300 0.15 This work

Table 2. The determination of Pb2+ in real samples.

Sample Spiked (µM) Found (µM) Recovery (%) RSD (% n = 3)

Tap water 80 76.93 96.20 1.81
100 90.88 90.88 8.7

Lake water
70 68.31 97.60 1.46
90 79.44 88.26 8.27

4. Conclusions

In summary, this paper presents the development of a bismuth film composite sup-
ported by carbon cloth, serving as electrode materials for the electrochemical detection of
heavy metal ions. Through the optimization of electrochemical parameters, the optimal
deposition potential and preconcentration time for DPV measurements were identified as
−1.2 V and 360 s, respectively. Furthermore, the impact of varying targeted ion concentra-
tions (5–400 ppb) and pH values (3–9) on the detection performance was examined. The
resulting sensor demonstrated an impressive linear range of 20–300 ppb, with detection
limits reaching 0.15 ppb for Pb2+ ions. Notably, it exhibited excellent anti-interference capa-
bilities and satisfactory repeatability, with an RSD of less than 2.31% (n = 6). Additionally,
the simplicity of the in situ electrodeposition synthesis strategy, cost-effective non-precious
reactants and remarkable detection performance collectively position this bismuth-based
composite as a promising candidate for practical electrochemical sensing applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors12060103/s1, Figure S1: The resistance variation
in Ag@CC with the soaking time. Figure S2: The electrodeposition parameters of bismuth film.
(a) Deposition potential and (b) deposition time for the Bi film on the Ag@CC surface. Figure S3:
XRD spectra of Bi@CC. Figure S4: The current variation in the electrochemical sensor for lead ions
in concentration of 5 ppb. Figure S5: SEM images and elemental mapping of Bi/Ag@CC following
DPV testing.
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