

Article **SnO² Nanowire/MoS² Nanosheet Composite Gas Sensor in Self-Heating Mode for Selective and ppb-Level Detection of NO² Gas**

Jin-Young Kim ¹ , Ali Mirzaei 2,[*](https://orcid.org/0000-0003-2301-634X) and Jae-Hun Kim 1,[*](https://orcid.org/0000-0001-6537-0350)

- ¹ Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea; piadote@naver.com
- ² Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
- ***** Correspondence: mirzaei@sutech.ac.ir (A.M.); jaehun@inha.ac.kr (J.-H.K.)

Abstract: The development of low-cost and low-power gas sensors for reliable NO₂ gas detection is important due to the highly toxic nature of $NO₂$ gas. Herein, initially, $SnO₂$ nanowires (NWs) were synthesized through a simple vapor–liquid–solid growth mechanism. Subsequently, different amounts of SnO₂ NWs were composited with MoS₂ nanosheets (NSs) to fabricate SnO₂ NWs/MoS₂ NS nanocomposite gas sensors for NO₂ gas sensing. The operation of the sensors in self-heating mode at 1–3.5 V showed that the sensor with 20 wt.% SnO₂ (SM-20 nanocomposite) had the highest response of 13 to 1000 ppb NO² under 3.2 V applied voltage. Furthermore, the SM-20 nanocomposite gas sensor exhibited high selectivity and excellent long-term stability. The enhanced $NO₂$ gas response was ascribed to the formation of n-n heterojunctions between SnO₂ NWs and MoS₂, high surface area, and the presence of some voids in the SM-20 composite gas sensor due to having different morphologies of $SnO₂ NWs$ and $Mo₂ NSs$. It is believed that the present strategy combining $Mo₂$ and $SnO₂$ with different morphologies and different sensing properties is a good approach to realize high-performance $NO₂$ gas sensors with merits such as simple synthesis and fabrication procedures, low cost, and low power consumption, which are currently in demand in the gas sensor market.

Keywords: MoS₂ nanosheet; SnO₂ NWs; self-heating; NO₂ gas; sensing mechanism

1. Introduction

NO² is a highly dangerous gas emitted from industrial activities, fuel combustion, biomass burning, and electricity generation [\[1\]](#page-10-0). $NO₂$ can affect global air quality and human health $[2]$. Long-term exposure to parts per million (ppm) levels of $NO₂$ can cause infections in the respiratory tract and lungs. Asthma, tissue hypoxia, pulmonary edema, and cardiovascular disease are affected by the presence of $NO₂$ gas [\[3](#page-11-0)[–5\]](#page-11-1). Additionally, NO₂ contributes to the formation of acid rain and reduces the visibility of atmospheric photochemical smog $[6,7]$ $[6,7]$. Therefore, the threshold limit for NO₂ gas is set at 3 ppm $[8]$. In addition to its toxic effects, $NO₂$ gas is also considered a biomarker of lung infections [\[9\]](#page-11-5). Thus, the detection of $NO₂$ gas is highly important from safety and health perspectives.

Semiconducting metal oxides are often used for the detection of toxic gases. However, they often need a high temperature to show their best sensing performance [\[10,](#page-11-6)[11\]](#page-11-7). Transition metal dichalcogenides (TMDs) with a two-dimensional (2D) nanosheet (NS) nature have the general formula MX_2 (M = Mo or W; X = S, Se, or Te), in which the metal layers are sandwiched between two chalcogen layers [\[12](#page-11-8)[,13\]](#page-11-9). They can be used in different applications as a gas adsorbent [\[14\]](#page-11-10), microwave adsorbent [\[15\]](#page-11-11), and gas sensor.

 WS_2 [\[16\]](#page-11-12), WSe_2 [\[17\]](#page-11-13), Mo_2 [\[18\]](#page-11-14), and $MoSe_2$ [\[19\]](#page-11-15) are the most important TMDs for gas sensing studies. In particular, $MoS₂$ has features such as fast charge transfer, adjustable band gap, high carrier mobility, and large surface area owing to its 2D nature, making it a favorable TMD for gas sensing applications, particularly low- or room-temperature gas

Citation: Kim, J.-Y.; Mirzaei, A.; Kim, J.-H. SnO₂ Nanowire/MoS₂ Nanosheet Composite Gas Sensor in Self-Heating Mode for Selective and ppb-Level Detection of NO₂ Gas. *Chemosensors* **2024**, *12*, 107. [https://](https://doi.org/10.3390/chemosensors12060107) [doi.org/10.3390/chemosensors](https://doi.org/10.3390/chemosensors12060107) [12060107](https://doi.org/10.3390/chemosensors12060107)

Academic Editor: Boris Lakard

Received: 10 May 2024 Revised: 7 June 2024 Accepted: 7 June 2024 Published: 9 June 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

sensing [\[20\]](#page-11-16). However, its sensing properties in pristine form are generally not adequate for the high standards of today's life. Accordingly, it can be decorated [\[21\]](#page-11-17), doped [\[22\]](#page-11-18), or composited with other materials [\[23](#page-11-19)[,24\]](#page-11-20) to enhance its sensing properties. In particular, composite fabrication leads to the formation of heterojunctions, which can provide an additional source of resistance modulation, ultimately leading to significant resistance modulation [\[25\]](#page-11-21).

Semiconducting *n*-type SnO₂ ($E_g = 3.37$ eV) [\[26\]](#page-11-22) has high electron mobility, high availability, ease of synthesis, high stability, and excellent gas sensing properties [\[27,](#page-11-23)[28\]](#page-11-24). Accordingly, different morphologies of SnO₂-like nanoparticles (NPs) [\[29\]](#page-12-0), nanorods [\[30\]](#page-12-1), nanobelts [\[31\]](#page-12-2), nanotubes [\[32\]](#page-12-3), nanofibers [\[33\]](#page-12-4), and nanowires (NWs) [\[34\]](#page-12-5) have been used for the detection of various gases. Even though some room temperature $SnO₂$ gas sensors have been reported in the literature $[35]$, SnO₂ gas sensors often require high temperatures to achieve their best performance.

Thus, $SnO₂-Mo₂$ nanocomposites are a good choice for gas sensing [\[36–](#page-12-7)[39\]](#page-12-8), combining the relatively good sensitivity of $MoS₂$ at room temperature (RT) with the high sensitivity of $SnO₂$ at higher temperatures, resulting in the realization of a room-temperature or relatively low-temperature gas sensor with good performance. For example, Bai et al. [\[40\]](#page-12-9) reported the growth of vertically aligned $MoS₂$ on $SnO₂$ nanotubes for the room-temperature detection of $NO₂$ gas with a response of approximately 35 to 100 ppm $NO₂$ gas. In addition, polyaniline- MOS_2 -SnO₂ nanotubes were reported as room-temperature ammonia gas sensors [\[41\]](#page-12-10). Wang et al. [\[42\]](#page-12-11) used $SnO₂$ NPs-MoS₂ NSs for ammonia sensing at RT. Viet et al. [\[43\]](#page-12-12) decorated $MoS₂$ NSs on SnO₂ NWs to detect and discriminate between CO, NH_3 , and H_2 gases. Xu et al. [\[44\]](#page-12-13) used MoS_2 NSs/SnO_2 nanotubes for the detection of trimethylamine at 200 °C. Han et al. reported a $MoS₂$ NSs-SnO₂ NPs composite gas sensor with an 18.7–5 ppm response of $NO₂$ gas at RT [\[45\]](#page-12-14). Anyway, less attention has been paid to the composites of SnO₂ NWs with MoS₂ NSs. SnO₂ NWs with strong intrinsic gas sensing features, high surface area, and one-dimensional (1D) nature, in combination with MoS² NSs, can generate numerous heterojunctions, which offer new opportunities for the detection of $NO₂$ gas. Additionally, the operation of gas sensors in self-heating conditions is a promising approach to not only significantly decrease the sensing temperature but also remarkably lower power consumption. Hence, self-heated sensors offer opportunities for application in places with limited energy access.

In this study, SnO² NWs were initially produced using a vapor–liquid–solid (VLS) growth mechanism, which is a simple, low-cost, and highly efficient method for the synthesis of metal oxide NWs [\[46\]](#page-12-15). Afterward, $SnO₂$ NWs (10, 20, and 30 wt.%) were composited with MoS² NSs. Overall, the synthesis procedure is highly cost-effective, and even large-scale synthesis is feasible for possible industrial applications. After different advanced characterizations, gas sensors were fabricated, and the sensor with 20 wt.% $SnO₂$ NWs revealed the highest response to $NO₂$ gas under 3.2 V in self-heating mode with parts per billion (ppb)-level detection ability, high selectivity, and long-term stability. The enhanced NO₂ gas sensing performance was mainly related to the formation of $SnO₂-Mo₂$ n-n heterojunctions and the high surface area of the nanocomposite. We believe that the optimal sensor developed in this study, with low power consumption, low synthesis cost, and high sensing performance, can be regarded as a potential choice for industrial and practical applications.

2. Materials and Methods

2.1. Starting Materials

Metallic Sn powders with high purity of 99.5% (Merck, <150 µm size, Darmstadt, Germany) were used for growth of SnO₂ NWs. Also, commercial MoS₂ NSs (ACS Material, 100–200 nm, Pasadena, CA, USA) were used to prepare the $SnO₂/MoS₂$ nanocomposites.

Networked SnO₂ NWs were synthesized via a VLS growth mechanism similar to that reported in a previous study [\[47\]](#page-12-16). First, high-purity metallic Sn powder was put in a crucible inside a tubular furnace. A $SiO₂$ -grown (200 μ m) Si substrate equipped Ti (50 nm) /Pt (200 nm) bi-electrode was placed within a short distance. Then, the temperature was gradually increased in the presence of flowing O_2 (10 sccm) and N_2 (300 sccm) gases, and SnO_2 NWs were grown at 900 °C for 15 min on the substrate (Figure 1a). The SnO_2 NWs were then scratched from the substrate (Figure [1b](#page-2-0)) to form a composite with $MoS₂$ Notes were then scratched from the substrate (Figure 1b) to form a composite with MoS₂ NSs. To prepare the composite, 5 mg MoS₂ NSs were mixed with 10, 20, and 30 wt.% SnO₂ NWs (denoted as SM-10, SM-20, and SM-30, respectively) under magnetic stirring for 24 h (Figure [1c](#page-2-0)).

Figure 1. (**a**) Schematic of SnO2 NWs grown via VLS mechanism on the surface of substrate equipped **Figure 1.** (**a**) Schematic of SnO² NWs grown via VLS mechanism on the surface of substrate equipped with electrodes. (**b**) Scratching of SnO₂ NWs for characterizations. (**c**) Preparation of SnO₂/MoS₂ composites. (**d**) Gas sensing measuring system. composites. (**d**) Gas sensing measuring system.

2.3. Characterizations

and transmission electron microscopy (TEM; JEM2100F/JEOL, Tokyo, Japan) were used for morphological analysis. In FE-SEM, cold type was used as field emission gun with
15 JM asuse X gave used at also genetic executive WAS: K Alaba (Therma asiantific Sear) For morphological analysis. In Fernando type was type was for the surface of the surface elements. Monochromated Al K α was used as the X-ray source. The surface area was evaluated using the Brunauer–Emmett–Teller method (BET, MICROMERITICS Tristar, Norcross, GA, USA) from the N_2 adsorption–desorption isotherms. Induced temperature due to the Joule effect during the operation of the sensor frisch frieding mode was monitored using a thermometer
(IT-480S, Horiba, Kyoto, Japan). Ultraviolet photoemission spectroscopy (UPS, Thermo Fisher Scientific Co. Theta probe, Seoul, Republic of Korea) was used to estimate the work function values. He I (21.22 eV) was used as the light source. Field-emission scanning electron microscopy (FE-SEM; Hitachi S-4200, Tokyo, Japan) 15 kV power. X-ray photoelectron spectroscopy (XPS; K-Alpha/Thermo scientific, Seoul, during the operation of the sensor in self-heating mode was monitored using a thermometer

$\frac{1}{2}$ θ \cos θ \sin \cos T \sin θ *2.4. Gas Sensing Tests*

First, 5 mg of the sensing material was mixed with ethanol, and $0.075 \mu L$ of the solution (in three drops) was drop-coated onto the $SiO₂$ substrate equipped with Ti (50 nm)/Pt *2.4. Gas Sensing Tests* provided in Figure S1. A lab-made gas-sensing apparatus was used for the experiments Figure 1d). The channel was placed inside a tabular quartz ramace connected to a Kenincy (1.1gure 1d). MFCs at a total flow rate of 100 sccm. The resistances in air (R_a) and in the presence of (200 nm) bi-layer electrodes (Figure [1c](#page-2-0)). Also, digital images of fabricated sensor are (Figure [1d](#page-2-0)). The chamber was placed inside a tubular quartz furnace connected to a Keithley

the target gas (R_{g}) were measured constantly, and the sensor response was calculated as $R = R_g/R_a$ for NO₂ gas and vice versa for reducing gases. Additionally, the response time (τ_{res}) and recovery time (τ_{rec}) were defined as the times required for the resistance to reach its 90% final value after injection and stoppage of $NO₂$ gas, respectively [\[48\]](#page-12-17). During the gas sensing tests, the relative humidity (RH) in the chamber was 30% at RT. However, to evaluate the effect of higher humidity on the gas response, 80% RH was introduced into the gas chamber and measured at RT. sensing tests of \mathbb{R}) in the chamber was 30% at RT. However, to evaluate was 30% at RT. However, to evaluate

90% final value after injection and stoppage of NO2 gas, respectively [48]. During the gas

3. Results and Discussion

3.1. Characterization Studies

Figure S2a–c present low-magnification SEM images of pristine SnO₂, pristine MoS₂, and SM-20 nanocomposite samples, respectively. SnO₂ NWs are densely packed, while M o S ₂ are loosely packed. Also, the SM-20 nanocomposite is comprised of both SnO₂ NWs and $MoS₂$ NSs with some voids among different components.

Figure [2a](#page-3-0)–c display SEM images of the SM-20 composite. In the high-magnification image (Figure [2a](#page-3-0)), the diameter of $SnO₂$ NWs is approximately 60–100 nm. Furthermore, in the lower-magnification images (Figure [2b](#page-3-0),c), the formation of a nanocomposite comprising NSs and NWs is demonstrated. Due to the 1D morphology of $SnO₂$ NWs and 2D morphology of MoS₂ NSs, there are some voids among them, which are advantageous for the diffusion of gases. SEM-TEM EDS mapping analysis of different elements, namely Mo (panel i), S (panel ii), Sn (panel iii), and O (panel iv), shows that the composition of NSs is M oS₂ and the composition of NWs is SnO₂. SEM-EDS compositional analysis is presented in panel v of Figure 2. The amounts of Mo, S, Sn, and O elements were 21.92, 40.51, 12.15, in panel v of Figure 2. The amounts [of](#page-3-0) Mo, S, Sn, and O elements were 21.92, 40.51, 12.15, and 25.42 at.%, respectively. and 25.42 at.%, respectively.

Figure 3a,b show TEM views of the SM-20 nanocomposite at two different magnifi-cations. Both MoS² NSs and SnO² NWs co-exist in the composite. High-resolution TEM (HRTEM) images of the SM-20 nanocomposite are shown in Figure 3c,d. The spacings between the parallel fringes are 0.335 and 0.27 nm, which correspond to (110) and (100) crystalline planes of SnO₂ and MoS₂, respectively [\[49,](#page-12-18)[50\]](#page-12-19). TEM-EDS elemental mapping correction in Figure [3,](#page-4-0) the NW morphology is mainly composed of Sn and O and, therefore, has a composition of SnO₂, whereas NSs have an MoS₂ composition. Figure S3a shows the XPS survey of the SM-20 composite. It shows the signals related to C (ambient carbon), Mo, S, Sn, and O, which demonstrates a high purity of the synthesized SM-20 composite. Figure [3a](#page-4-0),b show TEM views of the SM-20 nanocomposite at two different magnifiis presented in Figure [3e](#page-4-0), panel i–iv. Based on the distribution of Sn, O, Mo, and S in

Figure S3b displays the Mo 3d core-level region of the SM-20 composite, with two main peaks related to Mo $3d_{3/2}$ and Mo $3d_{5/2}$ at 233.1 and 229.9 eV, respectively, which can be attributed to Mo^{6+} ions in MoS_2 [\[51\]](#page-12-20). Additionally, a peak related to S 2s is observed near the Mo 3d peaks. Figure S3c manifests the S 2p core-level region of the SM-20 composite. It is comprised of S 2 $p_{1/2}$ and S 2 $p_{3/2}$ peaks, corresponding to S^{2−} ions in MoS₂ [\[52\]](#page-12-21). Figure S3d presents the Sn 3d core-level region of the SM-20 composite, where two high-intensity peaks at 495.5 and 487.1 eV with a separation of 8.4 eV belong to Sn 3d $_{3/2}$ and Sn 3d $_{5/2}$, respectively, in SnO₂ [\[53\]](#page-12-22). The O 1s core-level region is also presented in Figure S3e.

Figure 3. Analysis of SM-20 nanocomposite (**a**,**b**) TEM images at two different magnifications. (**c**,**d**) **Figure 3.** Analysis of SM-20 nanocomposite (a,b) TEM images at two different magnifications.
 (c,d) HRTEM images. (e) TEM-EDS elemental mapping analysis displaying the distribution of (i) Sn, O, (**iii**) Mo, and (**iv**) S elements. (**ii**) O, (**iii**) Mo, and (**iv**) S elements.

Figure S4a–e display the N_2 adsorption–desorption curves of different samples. Based on these curves, the surface areas of the pristine $MoS₂$ and pristine $SnO₂$, SM-10, SM20, and SM-30 nanocomposites were samples were 0.65, 1.69, 2.14, 2.32, and 2.67 m^2/g , respectively.
Therefore, after composite formation, the surface area increased by approximately four Therefore, after composite formation, the surface area increased by approximately four times relative to the MoS_2 NSs. In addition, it was approximately 1.4 times higher relative to the SnO₂ NWs. Thus, the composite sensors are expected to provide more adsorption sites for NO₂ gas and a higher response. Also, even though the SM-30 sample has a higher surface area relative to the SM-20 sample, it is expected to show a lower response due to the fact that in the SM-30 sample, more SnO₂ NWs are present, which have poorer sensing properties relative to MoS₂ at low temperatures.

3.2. Gas Sensing Studies 3.2. Gas Sensing Studies

Figure S5a,b exhibit the dynamic resistance and dynamic response plots of the pristine
- $\frac{1}{2}$ MoS₂ NSs gas sensor to 1 ppm NO₂ at 25 °C (RH 30%) and higher temperatures (50–150 °C) under 1 V applied voltage, respectively. The resistance increased upon injection of the $NO₂$ gas, revealing the *n*-type nature of Mos₂. For better insight, the corresponding N_{2} gas response and baseline resistance versus operating temperature are depicted in Figure S5c. NO2 gas response and baseline resistance versus operating temperature are depicted in The baseline resistance gradually decreased with increasing temperature due to the jumping In the baseline resistance gradually decreased with increasing temperature due to the jumping of electrons to the conduction band under the influence of temperature. This behavior demonstrates the semiconducting nature of the MoS₂ gas sensor. Furthermore, the tracking demonstrates the semiconducting nature of the MoS₂ gas sensor. Furthermore, the tracking $\frac{1}{2}$ demonstrates the semiconduction change $\frac{1}{2}$ and $\frac{1}{2}$ gas sensored and $\frac{1}{2}$ $\frac{1}{2}$ of response versus temperature shows that the highest response occurs at 100 °C, with a gas, revealing the *n*-type nature of MoS₂. For better insight, the corresponding NO₂ gas

response of 4.5–1 ppm NO₂ gas. At lower temperatures, there is insufficient energy for NO₂ gas to be sufficiently adsorbed on the sensor surface, and at higher temperatures, the desorption rate surpassed the adsorption rate. At $100 °C$, maximum net adsorption occurs, resulting in enhanced gas response. Figure S5d,e show dynamic resistance and response plots of pristine SnO₂ NW gas sensors to 1 ppm NO₂ at 25 °C (RH 30%) and higher temperatures (50-350 °C) under 1 V applied voltage, respectively. Additionally, the corresponding $NO₂$ gas response and baseline resistance versus operating temperature are plotted in Figure S5f. Similar to the MoS₂ NSs gas sensor, the SnO₂ NWs gas sensor displays an *n*-type semiconducting behavior. However, its optimal sensing temperature was at a low temperature for sensors, the response of the response of the most considered a low temperature for sensors, the most considered a l 300 \degree C, with a high response of 38–1 ppm NO₂ gas. Therefore, although the optimal sensing temperature (100 °C) of the MoS₂ NSs sensor was lower relative to that of the SnO₂ NWs gas semsor was lower relative to that of the SnO₂ NWs gas sensor (300 °C), the response of the SnO₂ NWs sensor ($R_g/R_a = 38$) was almost eight times that of the MoS₂ NSs gas sensor ($R_g/R_a = 4.5$). Conversely, at 100 °C, which is considered a low temperature for sensors, the response of the MoS₂ NSs sensor ($R_g/R_a = 4.5$) was more than four times higher than that of the SnO₂ NWs gas sensor ($R_g/R_a = 1.05$). This implies that to achieve high-performance gas sensors at low temperatures, the presence of only $SnO₂ NWs$ is insufficient, and they should be used in combination with other materials, such as $MoS₂$, which have better sensing properties at low temperatures. $\frac{300}{\pi}$ and $\frac{30}{\pi}$ 1 $\frac{30}{\pi}$ under $\frac{30}{\pi}$ under 1 $\frac{1}{\pi}$ appearance temperatures (1 $\frac{1}{\pi}$) under $\frac{60}{\pi}$ and $\frac{1}{\pi}$

In the next step, we explored the $NO₂$ gas-sensing features of all fabricated gas sensors at 100° C. Figure [4a](#page-5-0) displays the dynamic response curves of different gas sensors to 1 ppm $NO₂$ gas at 100 $°C$, and Figure [4b](#page-5-0) compares the response and baseline values of different gas sensors. The SnO₂ NWs gas sensor showed the lowest response of 1.05, whereas the response of the MoS₂ NSs gas sensor was 4.5. The responses of the SM-10, SM-20, and SM-30 sensors to 1 ppm $NO₂$ gas were 7.4, 11.8, and 10.7, respectively. Thus, all composite gas sensors exhibited a higher response than both the SnO₂ and MoS₂ gas sensors alone. In addition, among all gas sensors, the SM-20 composite exhibited the highest response; hence, it was selected for further study. In addition, the resistance of the gas sensors increased with $\frac{1}{100}$ increasing $SnO₂$ content, and pure $Mo₂$ and $SnO₂$ sensors exhibited the lowest and highest mercasing one from the most and pure most and shot allows and ingrest baseline resistances, respectively. Next, we exposed the SM-20 composite gas sensor to 1 ppm NO₂ gas at different applied voltages (1–3.5 V), as shown in Figure [5a](#page-6-0). Figure [5b](#page-6-0) plots the response as a function of voltage. The response gradually increased with the applied voltage, and the maximum response occurred at 3.2 V. Thus, the optimal applied voltage was 3.2 V, and subsequent experiments were performed under this applied voltage.

Figure 4. (a) Sensing curves of different gas sensors to 1 ppm $NO₂$ gas at 100 °C. (b) Comparison of response to 1 ppm NO₂ gas at 100 °C and baseline resistance of different gas sensors.

Figure 5. (**a**) Sensing curves of SM-20 gas sensor to 1 ppm NO2 gas at 25 °C under various applied **Figure 5.** (**a**) Sensing curves of SM-20 gas sensor to 1 ppm NO² gas at 25 ◦C under various applied voltages. (**b**) Corresponding response of 1 ppm NO₂ gas at 25 °C versus applied voltage.

concentrations of various gases at a fixed 3.2 V. The corresponding selectivity histogram is presented in Figure 6b. The responses to 1000 ppb $\mathrm{NO_2}$, SO₂, CO, and $\mathrm{C_3H_6O}$ were 13, 2, 1.9, and 2, respectively. Thus, the sensor exhibited a much higher response to $NO₂$ gas than to other gases, demonstrating its high selectivity towards NO_2 gas. To check the reproducibility of the optimal sensor, we prepared three gas sensors under the same experimental procedures and checked their selectivity behavior, as shown in Figure S6a–c. All fabricated sensors revealed almost the same sensing response towards different gases,

all fabricated sensors revealed almost the same sensing response towards different gases, as shown in Figure 36d. Thus, the reproductionly of the sensor was demonstrated. In of NO₂ gas (Figure [6c](#page-7-0)). Based on extrapolation to the y-axis, the experimental detection limit was 15 ppb, which was close to the theoretically calculated (Text S1 in Supporting Information) LOD (17.9). Figure 6d exhibits the sensing gr[ap](#page-7-0)hs (five cycles) of the SM-20 composite sensor in the fresh state and after three months of exposure to 1 ppm $\rm NO_2$ gas at 3.2 V, and Figur[e](#page-7-0) 6e compares the responses in the fresh state and after three months. Overall, negligible differences were observed in the responses, even after three months.
———————————————————— To be more quantitative, the average response and standard deviation of the sensor in the $\frac{1}{2}$ fresh state were 12.6 and 0.525, respectively, and those parameters for the sensor after three
months. Tore 12.52 and 0.286, respectively. If we define the stability fector as the sygnece. response after three months to the average response in the fresh state, it is $12.52/12.6 = 0.99$. This demonstrates the good long-term stability of the sensor. Figure [6a](#page-7-0) shows the dynamic normalized resistance curves of the SM-20 sensor at low as shown in Figure S6d. Thus, the reproducibility of the sensor was demonstrated. In months were 12.52 and 0.386, respectively. If we define the stability factor as the average

Finally, we explored the response of the SM-20 composite sensor at 80% RH (Figure 6f). The response to 1 ppm NO_2 gas at 3.2 V under dry conditions was 12.6, which decreased to 11.4 under humid (80% RH) conditions. Thus, although the response decreased in a humid environment, the sensor still exhibited a high response. In humid conditions, H_2O molecules are adsorbed on the sensor surface, limiting the number of available adsorption

sites. Therefore, a smaller amount of NO₂ gas can be adsorbed onto the sensor surface, bringing about a decrease in the sensor response in humid atmospheres [\[54\]](#page-13-0).

Figure 6. Sensing performance of SM-20 gas sensor. (a) Sensing curves at low concentrations of various gases at fixed 3.2 V. (b) Corresponding selectivity histogram. (c) Calibration curve for low concentrations of NO₂ gas. (**d**) Dynamic resistance curves (five cycles) in fresh state and after the state of the state and after three months of 1 ppm NO₂ gas at 3.2 V. (**e**) Comparison of the responses in fresh state and after the three months of 1 ppm NO₂ gas at 3.2 V. (**e**) Comparison of the responses in fresh state and after three months. (**f**) Dynamic resistance curves for 1 ppm NO₂ gas at 3.2 V under dry and humid (80% RH) conditions. conditions. (80% RH) conditions.

in other studies, which demonstrates good performance of present sensor. Table [1](#page-7-1) compares the $NO₂$ gas-sensing properties of present work with those obtained

in other papers. The optimal sensor in this study has a higher performance in terms of high response, Γ (°C) conc. (ppb) Response (R_g/R_a) **SnO₂ NWs (20 wt%)-MoS₂ NSs RT, (3.2 V) 1000 12.6 2 2 Composite as sensor or** $\frac{268}{63}$ **c** This work Nb-MoSe₂ $WSe₂ nanosheets$ RT 1000 8.21 $50/1050$ $50/30$ $50/30$ $50/30$ $50/1050$ $50/1050$ $50/1050$ $50/1050$ $50/1050$ $50/1050$ $50/1050$ $50/1050$ $50/1050$ $50/1050$ $50/1050$ $50/1050$ $50/1050$ $50/1050$ $50/1050$ $50/1$ $\frac{1}{2}$ Trilaver WSe, film RT $\frac{1}{2}$ $\frac{1}{2}$ 3D crumpled reduced graphene RT and 1000 and 1.5 and $500/3000$ s and 1601 $SnO₂-rGO nanocomposites$ 50 500 1.5 400/300 s [\[61\]](#page-13-7) $\text{SnO}_2/\text{Ti}_3\text{C}_2\text{T}_\text{x}$ nanocomposite RT 300 78.2% [∆R/R_a (%)] 54/400 s [62] T_{MOS_2} T_{MNS_2} and T_{MOS_2} and T_{MOS_2} and T_{MOS_2} (T_{MNS_1} T_{MOS_2} T_{MNS_1} T_{MNS_2} (T_{MNS_1} T_{MNS_2} T_{MNS_1} T_{MNS_2} T_{MNS_1} T_{MNS_2} T_{MNS_1} $\text{MoS}_2/\text{Ti}_3\text{C}_2\text{T}_x$ nanocomposite RT 20 65.6% $\text{[}\Delta\text{R}/\text{R}_a$ (%)] 525/155 [\[65\]](#page-13-11) $\frac{\text{Ti}_3\text{C}_2\text{T}_x/\text{CuO}}{\text{nanocomposite}}$ RT 100 59% $\left[\Delta R/R_a^{\text{o}}(\%) \right]$ ~100/~100 [66] S ensing Material or (R_a/R_g) τ**Res/**τ**Rec Ref.** $\frac{268}{63}$ RT, (3.2 V) 1000 12.6 268/63 s This work WS₂/Graphene heterostructure RT 50 6.0 110/168 s [\[55\]](#page-13-1)
Nb-MoSe₂ 150 3000 8.0 30/30 min [56] Nb-MoSe₂ 150 3000 8.0 30/30 min [\[56\]](#page-13-2) WSe₂ nanosheets RT 1000 8.21 50/1050 s [\[57\]](#page-13-3)

S₂-rGO heterojunction 160 3000 1.24 8/20 s [58] $\text{MoS}_2\text{-rGO heterojunction}$ 160 3000 1.24 8/20 s [\[58\]](#page-13-4) Trilayer WSe₂ film **RT** 10,000 2.8 960/600 s [\[59\]](#page-13-5) RT 1000 1.5 500/3000 s [\[60\]](#page-13-6)
oxide nanosheets $ZnO/T_{13}C_2T_x$ nanocomposite 160 8 3.6 254/~380 [\[63\]](#page-13-9)

MoS₂/MXene nanocomposite RT 100 65.6% [$\Delta R/R_a$ (%)] ~700/~900 [64] Ti₃C₂T_x/CuO nanocomposite RT 100 59% [∆R/R_a (%)] ~100/~100 [66]

Table 1. Comparison of the NO₂ gas-sensing responses obtained in this study with those reported in fast response, and recovery time relative to most of the listed sensors. other papers. The optimal sensor in this study has a higher performance in terms of high response,

3.3. Gas-Sensing Mechanism

Initially, when the fresh sensors are in the air, oxygen gas is adsorbed on the sensor surface; because of the high electron affinity of oxygen, it takes electrons from the conduction band of the sensing material as follows [\[67\]](#page-13-13).

$$
O_2(g) \to O_2(ads) \tag{1}
$$

$$
O_2(ads) + e^- \to O_2^- (ads) \, \text{T} < 150 \, \text{°C} \tag{2}
$$

$$
O_2^- (ads) + e^- \to 2O^- 150 \, ^\circ\text{C} < T < 300 \, ^\circ\text{C} \tag{3}
$$

$$
2O^- + e^- \to O^{2-} \, \text{T} > 300 \, \text{°C} \tag{4}
$$

Hence, at room temperature and at 300 °C, dominant oxygen species are O_2^- and O^- , respectively. The depletion of electrons from the exposed surfaces of the sensing layer with *n*-type semiconducting nature leads to the appearance of an electron depletion layer (EDL), where the concentration of electrons is lower than that in the core regions, resulting in the high resistance of *n*-type sensors in air. Upon exposure to NO₂ gas, which is an oxidizing gas, more electrons are abstracted from the sensing layer as follows [\[8\]](#page-11-4).

$$
NO_2(g) \to NO_2(ads)
$$
 (5)

$$
NO2(ads) + e^- \rightarrow NO2- (ads)
$$
 (6)

$$
NO_2(ads) + O^- \to NO_2^-(ads) + 1/2O_2(g)
$$
\n(7)

Consequently, the EDL width increases in the presence of $NO₂$, which brings about the higher resistance of the sensor in the presence of $NO₂$ gas. However, both pristine Sn $O₂$ and $MoS₂$ sensors revealed a low response at 100 °C due to limited sources of resistance modulation. All composite sensors exhibited a higher response to $NO₂$ than the pristine sensors, which could be related to the presence of *n*-*n* heterojunctions in the composite sensors, When collar be related to the presence of n n heterogenerisms in the composite sensors. Figure [7a](#page-8-0) shows side views of MoS₂ NSs and the SM-20 composite on the substrate. In the composite sensor, it is expected that $SnO₂$ NWs bridge among $Mo₂$ NSs owing to the lower amount of SnO₂ NWs relative to MoS₂ NSs; hence, numerous n -*n* heterojunctions were created. Figure S7a presents the UPS spectra of the $MoS₂$ NSs and SnO₂ NWs. Based on energy-cut-off values and procedure reported in [68], the work functions of $MoS₂$ and $SnO₂$ were calculated to be 4.82 and 4.37 eV, respectively.

Figure 7. (a) Side views of MoS_2 NSs and SM-20 composite on the substrate. (b) Schematic of NO_2 gas sensing mechanism of SM-20 composite gas sensor. (**c**) Self-heating effect of SM-20 gas sensor. gas sensing mechanism of SM-20 composite gas sensor. (**c**) Self-heating effect of SM-20 gas sensor.

Accordingly, we constructed their energy band levels, as shown in Figure S7b. Owing to the difference between the work functions of $SnO₂$ and $MoS₂$, upon intimate contact, the electrons were moved from $SnO₂$ to MoS₂ to equate the Fermi levels on both sides of the contact. This led to band bending and the formation of *n*-*n* heterojunction barriers in the air. Furthermore, due to the flow of electrons to $MoS₂$, which acts as the main sensing material, the thickness of the EDL on $MoS₂$ was smaller than that of the pristine $MoS₂ sensor (Figure 7b)$ $MoS₂ sensor (Figure 7b)$ $MoS₂ sensor (Figure 7b)$. Accordingly, more electrons are available for extraction by $NO₂$ gas; hence, higher resistance modulation is expected. In addition, when the composite sensors were exposed to $NO₂$, more electrons were abstracted from the sensor surface, and the height of the heterojunction barriers further increased, which eventually led to an increase in resistance in the presence of $NO₂$ gas, contributing to the sensing signal. Thus, the presence of numerous heterojunctions in composite gas sensors is beneficial for $NO₂$ gas sensing. Therefore, the SM-20 composite exhibited a higher response than the SM-10 composite sensor.

However, a further increase in $SnO₂$ content decreased the sensor response, which could be related to the agglomeration of $SnO₂ NWs$, a decrease in the number of *n*-MoS₂/ n -SnO₂ heterojunctions, and a simultaneous increase in the number of $SnO₂$ -SnO₂ homojunctions. Additionally, as the amount of $SnO₂$ is increased, the amount of MoS₂ NSs that are better sensing materials at 100 \degree C is simultaneously decreased. In other words, the contribution of SnO₂ NWs with interferer sensing response at 100 $^{\circ}$ C may be significant in the CM-30 nanocomposite sensor, resulting in a decrease in the overall performance. In addition to the formation of heterojunctions, the higher surface area of the composite gas sensors and the presence of voids between the $SnO₂$ NWs and $Mo₂$ NSs were beneficial for the diffusion and migration of $NO₂$ gas molecules. Owing to the combination of 1D SnO₂ NWs with $2D\text{ MoS}_2$ NSs, some voids were created among them, which acted as channels for the high diffusion of $NO₂$ gas into deeper parts of the sensor.

High selectivity to $NO₂$ gas can be related to (i) the high electron affinity of $NO₂$ gas (2.28 eV) compared to oxygen (0.43 eV), which can directly abstract electrons on the sensor surface, whereas other gases must react with adsorbed oxygen species to generate a sensing signal $[69]$, (ii) the presence of N in NO₂ gas with an unpaired electron, which can bond with the sensor surface [\[70\]](#page-13-16), and (iii) the relatively low bond energy of O–NO (305.0 kJ/mol) in $NO₂$, which improves the response to $NO₂$ [\[71\]](#page-13-17).

During the operation of the gas sensors in self-heating mode, electrons accelerate owing to the application of voltage, and on their pathways, they lose their high kinetic energies as heat after collision with other electrons, ions, and atoms in a process known as the Joule heating effect. Figure S7a manifests the induced temperatures of the M oS₂ NSs, SnO² NWs, and SM-20 composite gas sensor versus applied voltage. Among them, the temperature of the SM-20 composite sensor was higher at a fixed applied voltage, demonstrating the presence of more sources of heat generation inside the sensor owing to the contact areas between the $MoS₂ NSs$ and $SnO₂ NWs$, which acted as powerful sources of Joule heating (Figure [7c](#page-8-0)). Figure S7b shows the induced temperature of the SM-20 composite as a function of applied voltage in the range of 1–3.5 V. Under 1, 1.5, 2, 2.5, 3, 3.1, 3.2, 3.3, 3.4, and 3.5 V applied voltage, the induced temperature values were 38, 55, 71, 88, 106, 110, 114, 118, 122, and 126 \degree C, respectively. Therefore, under the optimal applied voltage of 3.2 V, a sufficiently high temperature was induced inside the sensor, which was sufficient to activate the adsorption and reaction of $NO₂$ gas on the sensor surface. Under optimal sensing temperature and voltage, the power consumption ($\rm V^2/\rm R$) of MoS₂ NSs (100 \degree C, 1 V), SnO₂ NWs (300 \degree C, 1 V), and SM-20 nanocomposite (RT, 3.2 V) sensors were calculated to be = 23.6, 0.2, and 1.3 μ W, respectively. Despite the low power consumption of the SnO₂ NW gas sensor (0.2 μ W), an increase in the temperature to 300 °C using external heating will result in significant power consumption, as an external heater is required to maintain this high temperature. For example, if an external heater uses 5 V to increase the sensor temperature to 300 °C, the power consumption will be 5.2 μ W. Therefore, the SM-20 nanocomposite gas sensor showed the lowest power consumption in this study.

4. Conclusions

Briefly, we introduced self-heated $NO₂$ gas sensors based on $SnO₂ NWs/MoS₂ NSs$ composites. $SnO₂$ NWs were synthesized via a VLS mechanism, and then 10, 20, and 30 wt.% SnO₂ NWs were composited with MoS₂ NSs. Different characterization techniques, such as SEM/TEM and EDS, demonstrated the formation of nanocomposites with desired compositions. Also, some voids were presented among NWs and NSs, which were beneficial for efficient gas diffusion. Different voltages were applied on the sensor electrodes in self-heating mode, and the SM-20 composite, with 20 wt% SnO₂ NWs, showed the highest response of 13 to 0.1 ppm NO² gas at 3.2 V applied voltage. Furthermore, the optimal sensor revealed selectivity, long-term stability, reproducibility, and repeatability. The improved sensing performance was attributed to the generation of *n*-SnO₂/*n*-MoS₂ heterojunctions, which acted as sources of resistance modulation, high surface area due to the NW and NS nature of $SnO₂$ and $MoS₂$ materials, respectively, along with the presence of voids in the SM-20 composite sensor. The present strategy, which combines the gas sensing properties of $SnO₂$ and $MoS₂$ with 1D and 2D morphologies, is a promising approach to boost the sensing features of the resultant gas sensor.

Supplementary Materials: The following supporting information can be downloaded at: [https://](https://www.mdpi.com/article/10.3390/chemosensors12060107/s1) [www.mdpi.com/article/10.3390/chemosensors12060107/s1,](https://www.mdpi.com/article/10.3390/chemosensors12060107/s1) Text S1: Calculation of limit of detection; Figure S1: (a,b) Digital images of fabricated sensor; Figure S2: SEM images of (a) SnO₂ NW, (b) MoS₂ NSs, and (c) SM-20 nanocomposite; Figure S3: (a) XPS survey of SM-20 composite. XPS core-level regions of (b) Mo 3d, (c) S $2p$, (d) Sn 3d, and (e) O 1s; Figure S4: N₂ adsorption–desorption isotherms of (a) $MoS₂$ NSs, (b) $SnO₂$ NWs, (c) SM-10, (d) SM-20, and (e) SM-30 nanocomposite; Figure S5: Dynamic resistance and dynamic response plots of pristine $MoS₂$ NS gas sensor to 1 ppm $NO₂$ at (a) 25 °C and (b) different temperature (50–150 °C) under 1 V applied voltage. (c) Corresponding NO₂ gas response and baseline resistance versus operating temperature. Dynamic resistance plots of pristine SnO₂ NW gas sensors to 1 ppm NO₂ at (d) 25 °C and (e) different temperatures (50–350 °C) under 1 V applied voltage. (f) Corresponding NO₂ gas response and baseline resistance versus operating temperature; Figure S6. Reproducibility tests of three SM-20 gas sensors prepared under the same conditions. Sensing performance of SM-20 gas sensor (a) number 1, (b) number 2, and (c) number 3 (a) to low concentrations of various gases at fixed 3.2 V. (d) Corresponding selectivity histograms of three gas sensors; Figure S7: (a) UPS spectra and energy cut-off values of MoS₂ NSs and $SnO₂ NWs.$ (b) Energy band levels of $Mo₂ NSS$ and $SnO₂ NWs$ before and after intimate contact; Figure S8: (a) Sensor temperature versus applied voltage for different gas sensors. (b) Temperature of SM-20 gas sensor versus applied voltage in the range of 1 to 3.5 V.

Author Contributions: Investigation, data curation, writing—original draft preparation, writing—review and editing, J.-Y.K.; writing—original draft preparation, writing—review and editing, supervision, A.M.; conceptualization, validation, formal analysis, investigation, writing—original draft preparation, writing—review and editing, visualization, supervision, funding acquisition, J.-H.K. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by INHA UNIVERSITY Research Grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data will be made available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Liu, F.; Zhang, L.; Zhang, C.; Chen, Z.; Li, J. Impact of NO² Emissions from Household Heating Systems with Wall-Mounted Gas Stoves on Indoor and Ambient Air Quality in Chinese Urban Areas. *Sci. Total Environ.* **2024**, *908*, 168075. [\[CrossRef\]](https://doi.org/10.1016/j.scitotenv.2023.168075)
- 2. Jion, M.M.M.F.; Jannat, J.N.; Mia, M.Y.; Ali, M.A.; Islam, M.S.; Ibrahim, S.M.; Pal, S.C.; Islam, A.; Sarker, A.; Malafaia, G.; et al. A Critical Review and Prospect of NO² and SO² Pollution over Asia: Hotspots, Trends, and Sources. *Sci. Total Environ.* **2023**, *876*, 162851. [\[CrossRef\]](https://doi.org/10.1016/j.scitotenv.2023.162851) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/36921864)
- 3. Bai, H.; Feng, C.; Guo, H.; Li, X.; Liu, W.; Feng, Y.; Liu, K.; Chen, D.; Zheng, Y.; Guo, F. UV-Activated CuO Nanospheres Modified with rGO Nanosheets for Ppb-Level Detection of NO² Gas at Room Temperature. *Sens. Actuators B Chem.* **2023**, *393*, 134195. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2023.134195)
- 4. Peng, H.; Yang, J.; Lin, C.; Qi, L.; Li, L.; Shi, K. Gas-Sensitive Performance of Metal-Organic Framework-Derived CuO NPs/Ti3C2T^X MXene Heterostructures for Efficient NO² Detection at Room Temperature. *J. Alloys Compd.* **2024**, *980*, 173657. [\[CrossRef\]](https://doi.org/10.1016/j.jallcom.2024.173657)
- 5. Gao, J.; Yin, Y.; Guo, Y.; Jia, L.; Xia, F.; Liu, C.; Hou, M.; Wang, F. Synthesis of Ti3C2T^x Nanosheets / ZnO Nanowires Composite Material for NO² Gas Sensing. *Arab. J. Chem.* **2024**, *17*, 105776. [\[CrossRef\]](https://doi.org/10.1016/j.arabjc.2024.105776)
- 6. Feng, Z.; Wang, H.; Zhang, Y.; Han, D.; Cheng, Y.; Jian, A.; Sang, S. ZnO/GaN n-n Heterojunction Porous Nanosheets for Ppb-Level NO² Gas Sensors. *Sens. Actuators B Chem.* **2023**, *396*, 134629. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2023.134629)
- 7. Brophy, R.E.; Junker, B.; Fakhri, E.A.; Árnason, H.Ö.; Svavarsson, H.G.; Weimar, U.; Bârsan, N.; Manolescu, A. Ultra Responsive NO² Silicon Nanowires Gas Sensor. *Sens. Actuators B Chem.* **2024**, *410*, 135648. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2024.135648)
- 8. Shin, K.Y.; Mirzaei, A.; Oum, W.; Kim, E.B.; Kim, H.M.; Moon, S.; Kim, S.S.; Kim, H.W. Enhanced NO₂ Gas Response of ZnO–Ti3C2T^x MXene Nanocomposites by Microwave Irradiation. *Sens. Actuators B Chem.* **2024**, *409*, 135605. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2024.135605)
- 9. Mokrushin, A.S.; Gorban, Y.M.; Averin, A.A.; Gorobtsov, P.Y.; Simonenko, N.P.; Lebedinskii, Y.Y.; Simonenko, E.P.; Kuznetsov, N.T. Obtaining of $ZnO/Fe₂O₃$ Thin Nanostructured Films by AACVD for Detection of Ppb-Concentrations of NO₂ as a Biomarker of Lung Infections. *Biosensors* **2023**, *13*, 445. [\[CrossRef\]](https://doi.org/10.3390/bios13040445)
- 10. Qin, H.; Xie, J.; Xu, H.; Li, Y.; Cao, Y. Green Solid-State Chemical Synthesis and Excellent Xylene-Detecting Behaviors of Y-Doped α-MoO³ Nanoarrays. *Mater. Res. Bull.* **2017**, *93*, 256–263. [\[CrossRef\]](https://doi.org/10.1016/j.materresbull.2017.05.018)
- 11. Hussain, S.; Amu-Darko, J.N.O.; Wang, M.; Alothman, A.A.; Ouladsmane, M.; Aldossari, S.A.; Khan, M.S.; Qiao, G.; Liu, G. CuO-Decorated MOF Derived ZnO Polyhedral Nanostructures for Exceptional H2S Gas Detection. *Chemosphere* **2023**, *317*, 137827. [\[CrossRef\]](https://doi.org/10.1016/j.chemosphere.2023.137827) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/36646181)
- 12. Joseph, S.; Mohan, J.; Lakshmy, S.; Thomas, S.; Chakraborty, B.; Thomas, S.; Kalarikkal, N. A Review of the Synthesis, Properties, and Applications of 2D Transition Metal Dichalcogenides and Their Heterostructures. *Mater. Chem. Phys.* **2023**, *297*, 127332. [\[CrossRef\]](https://doi.org/10.1016/j.matchemphys.2023.127332)
- 13. Krishna, S.; Choi, S.H.; Kim, S.M.; Kim, K.K. Sapphire Substrates for Large-Area 2D Transition Metal Dichalcogenides Synthesis: A Brief Review. *Curr. Appl. Phys.* **2024**, *59*, 208–213. [\[CrossRef\]](https://doi.org/10.1016/j.cap.2023.11.016)
- 14. Guan, L.; Chen, Z.; Liu, Y.; Wang, R.; Yan, K.; Xu, Z.; Li, J.; Liu, Z.; Li, J.; Liu, H. Engineering Sulfur-Rich MoS₂ Adsorbent with Abundant Unsaturated Coordination Sulfur Sites for Gaseous Mercury Capture from High-Concentration SO_2 Smelting Flue Gas. *Chem. Eng. J.* **2024**, *483*, 149122. [\[CrossRef\]](https://doi.org/10.1016/j.cej.2024.149122)
- 15. Yan, Y.; Zhang, K.; Qin, G.; Gao, B.; Zhang, T.; Huang, X.; Zhou, Y. Phase Engineering on MoS₂ to Realize Dielectric Gene Engineering for Enhancing Microwave Absorbing Performance. *Adv. Funct. Mater.* **2024**, *34*, 2316338. [\[CrossRef\]](https://doi.org/10.1002/adfm.202316338)
- 16. Yang, D.-H.; Kim, J.-H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Co-Decoration of WS₂ Nanosheets with Both Au and In₂O₃-Nanoparticles for Attaining the CO Sensing in Self-Heating Mode. *Appl. Surf. Sci.* **2023**, *635*, 157790. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2023.157790)
- 17. Wang, T.; Liu, G.; Zhang, D.; Wang, D.; Chen, F.; Guo, J. Fabrication and Properties of Room Temperature Ammonia Gas Sensor Based on SnO² Modified WSe² Nanosheets Heterojunctions. *Appl. Surf. Sci.* **2022**, *597*, 153564. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2022.153564)
- 18. Pramanik, M.; Jana, B.; Ghatak, A.; Das, K. Improvement in Efficiency of MoS₂ Nanoflower Based Ethylene Gas Sensor on Transition Metal Doping: An Experimental and Theoretical Investigation. *Mater. Chem. Phys.* **2024**, *314*, 128892. [\[CrossRef\]](https://doi.org/10.1016/j.matchemphys.2024.128892)
- 19. Kodan, S.; Kumar, A.; Sanger, A.; Arora, A.; Malik, V.K.; Chandra, R. Vertically Aligned MoSe₂-WS₂ Nanoworms Heterojunction towards Room Temperature NO² Gas Sensors. *Sens. Actuators B Chem.* **2024**, *407*, 135481. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2024.135481)
- 20. Kumar, S.; Mirzaei, A.; Kumar, A.; Lee, M.H.; Ghahremani, Z.; Kim, T.-U.; Kim, J.-Y.; Kwoka, M.; Kumar, M.; Kim, S.S.; et al. Nanoparticles Anchored Strategy to Develop 2D MoS₂ and MoSe₂ Based Room Temperature Chemiresistive Gas Sensors. *Coord. Chem. Rev.* **2024**, *503*, 215657. [\[CrossRef\]](https://doi.org/10.1016/j.ccr.2024.215657)
- 21. Chen, P.; Hu, J.; Yin, M.; Bai, W.; Chen, X.; Zhang, Y. MoS₂ Nanoflowers Decorated with Au Nanoparticles for Visible-Light-Enhanced Gas Sensing. *ACS Appl. Nano Mater.* **2021**, *4*, 5981–5991. [\[CrossRef\]](https://doi.org/10.1021/acsanm.1c00847)
- 22. Burman, D.; Raha, H.; Manna, B.; Pramanik, P.; Guha, P.K. Substitutional Doping of MoS₂ for Superior Gas-Sensing Applications: A Proof of Concept. *ACS Sens.* **2021**, *6*, 3398–3408. [\[CrossRef\]](https://doi.org/10.1021/acssensors.1c01258) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/34494827)
- 23. Le, V.T.; Vasseghian, Y.; Doan, V.D.; Nguyen, T.T.T.; Vo, T.-T.T.; Do, H.H.; Vu, K.B.; Vu, Q.H.; Lam, T.D.; Tran, V.A. Flexible and High-Sensitivity Sensor Based on Ti3C2–MoS² MXene Composite for the Detection of Toxic Gases. *Chemosphere* **2022**, *291*, 133025. [\[CrossRef\]](https://doi.org/10.1016/j.chemosphere.2021.133025) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/34848226)
- 24. Singh, S.; Sattigeri, R.M.; Kumar, S.; Jha, P.K.; Sharma, S. Superior Room-Temperature Ammonia Sensing Using a Hydrothermally Synthesized MoS2/SnO² Composite. *ACS Omega* **2021**, *6*, 11602–11613. [\[CrossRef\]](https://doi.org/10.1021/acsomega.1c00805) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/34056316)
- 25. Miller, D.R.; Akbar, S.A.; Morris, P.A. Nanoscale Metal Oxide-Based Heterojunctions for Gas Sensing: A Review. *Sens. Actuators B Chem.* **2014**, *204*, 250–272. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2014.07.074)
- 26. Hassun, H.K.; Hussein, B.H.; Salman, E.M.T.; Shaban, A.H. Photoelectric Properties of SnO₂: Ag/P–Si Heterojunction Photodetector. *Energy Rep.* **2020**, *6*, 46–54. [\[CrossRef\]](https://doi.org/10.1016/j.egyr.2019.10.017)
- 27. Yamazoe, N.; Sakai, G.; Shimanoe, K. Oxide Semiconductor Gas Sensors. *Catal. Surv. Asia* **2003**, *7*, 63–75. [\[CrossRef\]](https://doi.org/10.1023/A:1023436725457)
- 28. Kong, Y.; Li, Y.; Cui, X.; Su, L.; Ma, D.; Lai, T.; Yao, L.; Xiao, X.; Wang, Y. SnO₂ Nanostructured Materials Used as Gas Sensors for the Detection of Hazardous and Flammable Gases: A Review. *Nano Mater. Sci.* **2022**, *4*, 339–350. [\[CrossRef\]](https://doi.org/10.1016/j.nanoms.2021.05.006)
- 29. Meng, X.; Bi, M.; Xiao, Q.; Gao, W. Ultra-Fast Response and Highly Selectivity Hydrogen Gas Sensor Based on Pd/SnO₂ Nanoparticles. *Int. J. Hydrogen Energy* **2022**, *47*, 3157–3169. [\[CrossRef\]](https://doi.org/10.1016/j.ijhydene.2021.10.201)
- 30. Lee, J.H.; Park, M.S.; Jung, H.; Choe, Y.-S.; Kim, W.; Song, Y.G.; Kang, C.-Y.; Lee, H.-S.; Lee, W. Selective C2H² Detection with High Sensitivity Using SnO² Nanorod Based Gas Sensors Integrated with a Gas Chromatography. *Sens. Actuators B Chem.* **2020**, *307*, 127598. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2019.127598)
- 31. Tan, Y.; Zhang, J. Highly Sensitive Ethanol Gas Sensors Based on Co-Doped SnO₂ Nanobelts and Pure SnO₂ Nanobelts. *Phys. E Low-Dimens. Syst. Nanostructures* **2023**, *147*, 115604. [\[CrossRef\]](https://doi.org/10.1016/j.physe.2022.115604)
- 32. Su, P.; Li, W.; Zhang, J.; Xie, X. Chemiresistive Gas Sensor Based on Electrospun Hollow SnO₂ Nanotubes for Detecting NO at the Ppb Level. *Vacuum* **2022**, *199*, 110961. [\[CrossRef\]](https://doi.org/10.1016/j.vacuum.2022.110961)
- 33. Phuoc, P.H.; Hung, C.M.; Toan, N.V.; Duy, N.V.; Hoa, N.D.; Hieu, N.V. One-Step Fabrication of SnO₂ Porous Nanofiber Gas Sensors for Sub-Ppm H2S Detection. *Sens. Actuators Phys.* **2020**, *303*, 111722. [\[CrossRef\]](https://doi.org/10.1016/j.sna.2019.111722)
- 34. Domènech-Gil, G.; Samà, J.; Fàbrega, C.; Gràcia, I.; Cané, C.; Barth, S.; Romano-Rodríguez, A. Highly Sensitive SnO₂ Nanowire Network Gas Sensors. *Sens. Actuators B Chem.* **2023**, *383*, 133545. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2023.133545)
- 35. Zhang, Y.; Jiang, Y.; Yuan, Z.; Liu, B.; Zhao, Q.; Huang, Q.; Li, Z.; Zeng, W.; Duan, Z.; Tai, H. Synergistic Effect of Electron Scattering and Space Charge Transfer Enabled Unprecedented Room Temperature NO² Sensing Response of SnO² . *Small* **2023**, *19*, 2303631. [\[CrossRef\]](https://doi.org/10.1002/smll.202303631) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/37403282)
- 36. Yang, Y.; Gong, W.; Li, X.; Liu, Y.; Liang, Y.; Chen, B.; Yang, Y.; Luo, X.; Xu, K.; Yuan, C. Light-Assisted Room Temperature Gas Sensing Performance and Mechanism of Direct Z-Scheme MoS2/SnO² Crystal Faceted Heterojunctions. *J. Hazard. Mater.* **2022**, *436*, 129246. [\[CrossRef\]](https://doi.org/10.1016/j.jhazmat.2022.129246) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/35739765)
- 37. Yan, H.; Song, P.; Zhang, S.; Yang, Z.; Wang, Q. Dispersed SnO₂ Nanoparticles on MoS₂ Nanosheets for Superior Gas-Sensing Performances to Ethanol. *RSC Adv.* **2015**, *5*, 79593–79599. [\[CrossRef\]](https://doi.org/10.1039/C5RA15019A)
- 38. Wang, F.; Liu, H.; Hu, K.; Li, Y.; Zeng, W.; Zeng, L. Hierarchical Composites of MoS₂ Nanoflower Anchored on SnO₂ Nanofiber for Methane Sensing. *Ceram. Int.* **2019**, *45*, 22981–22986. [\[CrossRef\]](https://doi.org/10.1016/j.ceramint.2019.07.342)
- 39. Bai, J.; Shen, Y.; Zhao, S.; Chen, Y.; Li, G.; Han, C.; Wei, D.; Yuan, Z.; Meng, F. Flower-like MoS₂ Hierarchical Architectures Assembled by 2D Nanosheets Sensitized with SnO₂ Quantum Dots for High-Performance NH₃ Sensing at Room Temperature. *Sens. Actuators B Chem.* **2022**, *353*, 131191. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2021.131191)
- 40. Bai, X.; Lv, H.; Liu, Z.; Chen, J.; Wang, J.; Sun, B.; Zhang, Y.; Wang, R.; Shi, K. Thin-Layered MoS₂ Nanoflakes Vertically Grown on SnO² Nanotubes as Highly Effective Room-Temperature NO² Gas Sensor. *J. Hazard. Mater.* **2021**, *416*, 125830. [\[CrossRef\]](https://doi.org/10.1016/j.jhazmat.2021.125830)
- 41. Liu, A.; Lv, S.; Jiang, L.; Liu, F.; Zhao, L.; Wang, J.; Hu, X.; Yang, Z.; He, J.; Wang, C.; et al. The Gas Sensor Utilizing Polyaniline/ MoS² Nanosheets/SnO² Nanotubes for the Room Temperature Detection of Ammonia. *Sens. Actuators B Chem.* **2021**, *332*, 129444. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2021.129444)
- 42. Wang, W.; Zhen, Y.; Zhang, J.; Li, Y.; Zhong, H.; Jia, Z.; Xiong, Y.; Xue, Q.; Yan, Y.; Alharbi, N.S.; et al. SnO₂ Nanoparticles-Modified 3D-Multilayer MoS² Nanosheets for Ammonia Gas Sensing at Room Temperature. *Sens. Actuators B Chem.* **2020**, *321*, 128471. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2020.128471)
- 43. Viet, N.N.; Thong, L.V.; Dang, T.K.; Phuoc, P.H.; Chien, N.H.; Hung, C.M.; Hoa, N.D.; Duy, N.V.; Toan, N.V.; Son, N.T.; et al. MoS₂ Nanosheets-Decorated SnO₂ Nanofibers for Enhanced SO₂ Gas Sensing Performance and Classification of CO, NH₃ and H₂ Gases. *Anal. Chim. Acta* **2021**, *1167*, 338576. [\[CrossRef\]](https://doi.org/10.1016/j.aca.2021.338576) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/34049621)
- 44. Xu, X.; Liu, W.; Chen, Y.; Wang, S.; Wang, X.; Jiang, H.; Ma, S.; Yuan, F.; Zhang, Q. N-n Heterogeneous MoS₂/SnO₂ Nanotubes and The Excellent Triethylamine (TEA) Sensing Performances. *Mater. Lett.* **2022**, *311*, 131522. [\[CrossRef\]](https://doi.org/10.1016/j.matlet.2021.131522)
- 45. Han, Y.; Ma, Y.; Liu, Y.; Xu, S.; Chen, X.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Yang, Z. Construction of MoS₂/SnO₂ Heterostructures for Sensitive NO² Detection at Room Temperature. *Appl. Surf. Sci.* **2019**, *493*, 613–619. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2019.07.052)
- 46. Mirzaei, A.; Lee, M.H.; Pawar, K.K.; Bharath, S.P.; Kim, T.-U.; Kim, J.-Y.; Kim, S.S.; Kim, H.W. Metal Oxide Nanowires Grown by a Vapor–Liquid–Solid Growth Mechanism for Resistive Gas-Sensing Applications: An Overview. *Materials* **2023**, *16*, 6233. [\[CrossRef\]](https://doi.org/10.3390/ma16186233)
- 47. Kim, J.-H.; Mirzaei, A.; Kim, S.S.; Park, C. Pt Nanoparticle Decoration on Femtosecond Laser-Irradiated SnO₂ Nanowires for Enhancing C7H⁸ Gas Sensing. *Sens. Actuators B Chem.* **2023**, *379*, 133279. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2022.133279)
- 48. Li, Y.; Zhang, B.; Li, J.; Duan, Z.; Yang, Y.; Yuan, Z.; Jiang, Y.; Tai, H. Pd-Decorated ZnO Hexagonal Microdiscs for NH₃ Sensor. *Chemosensors* **2024**, *12*, 43. [\[CrossRef\]](https://doi.org/10.3390/chemosensors12030043)
- 49. Shi, L.; Xu, Y.; Li, Q. Controlled Fabrication of SnO² Arrays of Well-Aligned Nanotubes and Nanowires. *Nanoscale* **2010**, *2*, 2104–2108. [\[CrossRef\]](https://doi.org/10.1039/C0NR00279H)
- 50. Mao, H.; Fu, Y.; Yang, H.; Deng, Z.; Sun, Y.; Liu, D.; Wu, Q.; Ma, T.; Song, X.-M. Ultrathin 1T-MoS₂ Nanoplates Induced by Quaternary Ammonium-Type Ionic Liquids on Polypyrrole/Graphene Oxide Nanosheets and Its Irreversible Crystal Phase Transition during Electrocatalytic Nitrogen Reduction. *ACS Appl. Mater. Interfaces* **2020**, *12*, 25189–25199. [\[CrossRef\]](https://doi.org/10.1021/acsami.0c05204)
- 51. Wang, X.X.; Li, Z.; Yang, Y.; Tang, T.; Cheng, Y.F.; Xu, K.; Xie, H.G.; Chen, Y.L.; Cheng, L.; Tao, X.W.; et al. 3D Substoichiometric MoO3−x/EGaln Framework for Room Temperature NH³ Gas Sensing. *J. Alloys Compd.* **2023**, *939*, 168690. [\[CrossRef\]](https://doi.org/10.1016/j.jallcom.2022.168690)
- 52. Hingangavkar, G.M.; Kadam, S.A.; Ma, Y.-R.; Bandgar, S.S.; Mulik, R.N.; Patil, V.B. MoS₂-GO Hybrid Sensor: A Discerning Approach for Detecting Harmful H2S Gas at Room Temperature. *Chem. Eng. J.* **2023**, *472*, 144789. [\[CrossRef\]](https://doi.org/10.1016/j.cej.2023.144789)
- 53. Rodrigues, J.; Jain, S.; Shimpi, N.G. Performance of 1D Tin (Sn) Decorated Spherical Shape ZnO Nanostructures as an Acetone Gas Sensor for Room and High Temperature. *Mater. Sci. Eng. B* **2023**, *288*, 116199. [\[CrossRef\]](https://doi.org/10.1016/j.mseb.2022.116199)
- 54. Kim, H.W.; Kwon, Y.J.; Mirzaei, A.; Kang, S.Y.; Choi, M.S.; Bang, J.H.; Kim, S.S. Synthesis of Zinc Oxide Semiconductors-Graphene Nanocomposites by Microwave Irradiation for Application to Gas Sensors. *Sens. Actuators B Chem.* **2017**, *249*, 590–601. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2017.03.149)
- 55. Ma, X.; Cai, X.; Yuan, M.; Qu, Y.; Tan, Y.; Chen, F. Self-Powered and Flexible Gas Sensor Using Defect-Engineered WS2/G Heterostructure. *Sens. Actuators B Chem.* **2022**, *371*, 132523. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2022.132523)
- 56. Choi, S.Y.; Kim, Y.; Chung, H.-S.; Kim, A.R.; Kwon, J.-D.; Park, J.; Kim, Y.L.; Kwon, S.-H.; Hahm, M.G.; Cho, B. Effect of Nb Doping on Chemical Sensing Performance of Two-Dimensional Layered MoSe² . *ACS Appl. Mater. Interfaces* **2017**, *9*, 3817–3823. [\[CrossRef\]](https://doi.org/10.1021/acsami.6b14551)
- 57. Guo, R.; Han, Y.; Su, C.; Chen, X.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; Yang, Z. Ultrasensitive Room Temperature NO₂ Sensors Based on Liquid Phase Exfoliated WSe₂ Nanosheets. *Sens. Actuators B Chem.* 2019, 300, 127013. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2019.127013)
- 58. Wang, Z.; Zhang, T.; Zhao, C.; Han, T.; Fei, T.; Liu, S.; Lu, G. Rational Synthesis of Molybdenum Disulfide Nanoparticles Decorated Reduced Graphene Oxide Hybrids and Their Application for High-Performance NO² Sensing. *Sens. Actuators B Chem.* **2018**, *260*, 508–518. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2017.12.181)
- 59. Ko, K.Y.; Park, K.; Lee, S.; Kim, Y.; Woo, W.J.; Kim, D.; Song, J.-G.; Park, J.; Kim, H. Recovery Improvement for Large-Area Tungsten Diselenide Gas Sensors. *ACS Appl. Mater. Interfaces* **2018**, *10*, 23910–23917. [\[CrossRef\]](https://doi.org/10.1021/acsami.8b07034)
- 60. Chen, Z.; Wang, J.; Umar, A.; Wang, Y.; Li, H.; Zhou, G. Three-Dimensional Crumpled Graphene-Based Nanosheets with Ultrahigh NO² Gas Sensibility. *ACS Appl. Mater. Interfaces* **2017**, *9*, 11819–11827. [\[CrossRef\]](https://doi.org/10.1021/acsami.7b01229)
- 61. Zhang, H.; Feng, J.; Fei, T.; Liu, S.; Zhang, T. SnO² Nanoparticles-Reduced Graphene Oxide Nanocomposites for NO² Sensing at Low Operating Temperature. *Sens. Actuators B Chem.* **2014**, *190*, 472–478. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2013.08.067)
- 62. Liu, X.; Zhang, H.; Shen, T.; Sun, J. Flexible Resistive NO₂ Gas Sensor of SnO₂@T_{i3}C₂T_x MXene for Room Temperature Application. *Ceram. Int.* **2024**, *50*, 2459–2466. [\[CrossRef\]](https://doi.org/10.1016/j.ceramint.2023.11.032)
- 63. Liu, X.; Zhang, H.; Song, Y.; Shen, T.; Sun, J. Facile Solvothermal Synthesis of $ZnO/T_3C_2T_X$ MXene Nanocomposites for NO₂ Detection at Low Working Temperature. *Sens. Actuators B Chem.* **2022**, *367*, 132025. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2022.132025)
- 64. Yan, H.; Chu, L.; Li, Z.; Sun, C.; Shi, Y.; Ma, J. 2H-MoS₂/Ti₃C₂T_x MXene Composites for Enhanced NO₂ Gas Sensing Properties at Room Temperature. *Sens. Actuators Rep.* **2022**, *4*, 100103. [\[CrossRef\]](https://doi.org/10.1016/j.snr.2022.100103)
- 65. Ta, Q.T.H.; Tri, N.N.; Noh, J.S. Improved NO² Gas Sensing Performance of 2D MoS2/Ti3C2T^x MXene Nanocomposite. *Appl. Surf. Sci.* **2022**, *604*, 154624. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2022.154624)
- 66. Guo, F.; Feng, C.; Zhang, Z.; Zhang, L.; Xu, C.; Zhang, C.; Lin, S.; Wu, H.; Zhang, B.; Tabusi, A.; et al. A Room-Temperature NO² Sensor Based on Ti3C2T^X MXene Modified with Sphere-Like CuO. *Sens. Actuators B Chem.* **2023**, *375*, 132885. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2022.132885)
- 67. Premkumar, V.K.; Vishnuraj, R.; Sheena, T.S.; Yang, X.; Pullithadathil, B.; Zhang, C.; Wu, Z. Influence of ZnO Hexagonal Pyramid Nanostructures for Highly Sensitive and Selective NO² Gas Sensor. *J. Alloys Compd.* **2024**, *994*, 174625. [\[CrossRef\]](https://doi.org/10.1016/j.jallcom.2024.174625)
- 68. Kim, J.-H.; Mirzaei, A.; Kim, H.W.; Kim, S.S. Low Power-Consumption CO Gas Sensors Based on Au-Functionalized SnO₂-ZnO Core-Shell Nanowires. *Sens. Actuators B Chem.* **2018**, *267*, 597–607. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2018.04.079)
- 69. Babar, B.M.; Pisal, K.B.; Mujawar, S.H.; Patil, V.L.; Kadam, L.D.; Pawar, U.T.; Kadam, P.M.; Patil, P.S. Concentration Modulated Vanadium Oxide Nanostructures for NO² Gas Sensing. *Sens. Actuators B Chem.* **2022**, *351*, 130947. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2021.130947)
- 70. Sharma, A.; Tomar, M.; Gupta, V. A Low Temperature Operated NO₂ Gas Sensor Based on TeO₂/SnO₂ p-n Heterointerface. Sens. *Actuators B Chem.* **2013**, *176*, 875–883. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2012.09.029)
- 71. Bang, J.H.; Choi, M.S.; Mirzaei, A.; Kwon, Y.J.; Kim, S.S.; Kim, T.W.; Kim, H.W. Selective NO₂ Sensor Based on Bi₂O₃ Branched SnO² Nanowires. *Sens. Actuators B Chem.* **2018**, *274*, 356–369. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2018.07.158)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.