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Abstract: Electrochemical pH sensors have a wide range of industrial applications such as in medicine
due to their fast response and high sensitivity to pH changes. This work focuses on the preparation
of samples based on the nanostructure of TiO2 with potentiostatically deposited particles of iridium
and its oxides (IrO2), using a Ti-6Al-4V alloy as the base material, and subsequent surface characteri-
zation. Transmission electron microscopy and secondary ion mass spectroscopy showed Ir particles
distributed in the nanotubes. Using a potentiostatic method, a stable pH sensor was prepared. By
monitoring the open circuit potential, it was shown that this sensor is usable even without being kept
in a storage medium and does not react to changes in the redox potential of the solution.

Keywords: pH sensor; Ir oxide; implant; electrochemistry; titanium

1. Introduction

Infection is one of the possible causes of implant failure in the human body. As with
all invasive surgical procedures, arthroplasty is not completely risk-free. Medical device-
associated infection is a worldwide health problem because it is very difficult to diagnose,
very difficult to treat and very expensive to treat. The complexity of diagnosing these
infections adds to the challenge, often relying on clinical symptoms reported by patients,
such as pain, swelling, or compromised joint mobility. However, these symptoms can
be non-specific and may overlap with other post-operative complications, necessitating
a comprehensive evaluation for accurate diagnosis. Moreover, infection detection often
relies on non-specific markers such as elevated leukocyte count and heightened C-reactive
protein (CRP) levels, further complicating the diagnostic landscape [1–3]. The efficacy of
antibiotic therapy is also a growing concern, given the emergence of antibiotic-resistant
strains, posing significant challenges in infection management. Despite the administration
of comprehensive treatment, infections often result in surgical removal of the implant. It is
also associated with a high mortality of patients [4–6].

The spread of infection occurs due to the preference of bacteria to exist on the implant
surface in established communities known as biofilms. Biofilm formation occurs by the
attachment and aggregation of free-floating bacteria on the implant surface. The bacteria
that exist in the biofilm are part of a complex multicellular community enclosed in extracel-
lular polymeric substances (EPSs). The EPSs produced by the bacteria form a ‘slime layer’
around the cells, consisting mainly of water and a range of polysaccharides, nucleic acids,
proteins and lipids. Bacterial biofilms can resist antibiotics, disinfectants, phagocytosis and
other components of the host’s innate and adaptive immune system. The main microor-
ganisms that cause infection and subsequent inflammation include Staphylococcus aureus,
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S. epidermidis and S. hominis, among others. Infecting organisms can be implanted with
biomaterials into the body [1,7,8]. These bacteria are known to produce acid metabolites,
including lactic acid, which exert a significant impact on the pH levels of the surrounding
tissue [9,10].

The pH value stands as a pivotal parameter across numerous domains including
industry, agriculture, biology, environment and medicine. Traditionally, pH determination
has relied on the utilization of glass electrodes. However, despite its widespread use, the
glass electrode method presents several drawbacks. High impedance, significant cost, bulky
dimensions, restricted shape versatility and susceptibility to mechanical damage are among
the primary limitations associated with this conventional approach. These constraints not
only impede the widespread deployment of pH measurement systems but also hinder
their adaptability to diverse environmental and operational conditions. Consequently,
the exploration of alternative pH sensing technologies has emerged as a critical endeavor,
aiming to overcome these limitations and deliver more robust, cost-effective and versatile
solutions for pH monitoring across various applications [9,11–14].

Over the past two decades, a primary objective has been the exploration of materials
with the potential to serve as effective pH sensors. Notably, metal oxide (MOx) electrodes
have emerged as promising candidates due to their ability to respond to changes in pH [15].
Unlike traditional glass electrodes, MOx electrodes offer the advantage of adjustability
in dimensions, addressing concerns related to size and shape limitations. Consequently,
researchers have extensively investigated various MOx electrodes, including titanium
dioxide (TiO2), aluminium oxide (Al2O3), platinum dioxide (PtO2), iridium dioxide (IrO2)
and tungsten trioxide (WO3), among others, for their suitability as pH sensors. These
investigations have revealed promising properties of MOx electrodes, including enhanced
sensitivity, improved stability and greater versatility, positioning them as viable alternatives
to conventional pH measurement technologies [16–22].

TiO2 thin film is an n-type semiconductor renowned for its exceptional chemical
stability, rendering it a promising candidate for pH sensing applications, particularly in
highly acidic or alkaline solutions. Its inherent qualities include excellent chemical stability,
making it a sought-after material in various industrial and biomedical contexts. TiO2
boasts a reputation for being non-toxic, environmentally friendly and corrosion-resistant,
further enhancing its appeal for diverse applications. Of particular note is its remarkable
biocompatibility, making it invaluable for medical applications, where materials must
interact safely with biological systems [23,24]. Moreover, TiO2 exhibits unique ionic and
electrical properties, distinguishing it from other oxides and amplifying its utility in sensor
technologies. Multiple fabrication techniques exist for producing TiO2 nanostructures,
among which sol–gel and electrochemical methods are prominent [22,23,25].

IrO2, among the array of metal oxides considered for pH sensing, has emerged as a
standout candidate due to its remarkable stability across a broad pH spectrum, even under
high-pressure conditions and in aggressive environments. Notably, IrO2 exhibits rapid
response characteristics, even in non-aqueous solutions, making it exceptionally versatile
for various pH measurement applications. Crystallizing in a rutile structure akin to that
of ruthenium dioxide (RuO2), IrO2 demonstrates a lower catalytic activity compared to
RuO2. Despite this distinction, IrO2-based electrodes have garnered considerable attention,
particularly in biomedical contexts, owing to their impressive stability and performance
metrics [11,19–21].

In numerous biomedical applications, iridium oxide-based electrodes have proven in-
valuable. Compared to other materials such as antimony, titanium, ruthenium or palladium-
based electrodes, iridium oxide layers offer distinct advantages. These include faster re-
sponse times across a wide pH range and superior biocompatibility, underscoring their
suitability for interfacing with biological systems. The utilization of IrO2 electrodes not
only enhances the precision and reliability of pH measurements but also aligns with the
stringent requirements of biomedical applications, where accuracy and compatibility are
paramount considerations [6,14,16,22,25].
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In this work, the main objective was to reproducibly create a pH sensor based on
TiO2 nanotubes with deposited iridium. This prepared sensor could one day be part of
an implant for the rapid detection of inflammation, and subsequently, its surface could be
characterized and its electrochemical response to pH change could be investigated. The use
of this sensor without the need for a storage medium was also tested. The use of a metal
sensor without a storage medium would reduce two disadvantages of conventional glass
pH electrodes.

2. Materials and Methods

As a base material, the Ti-6Al-4V ELI alloy (extra-low interstitials, Ti grade 23) was
selected. The diameter of the samples was 16 mm and the height was 3 mm. The surface
was ground with a series of abrasive papers up to FEPA 2500 grit. The samples were
then rinsed with distilled water, ethanol and acetone. By anodic oxidation, the surface of
the prepared samples was nanostructured in a solution of 1 mol/L (NH4)2SO4 (Lach:ner,
Neratovice, Czech Republic) and 0.2 wt.% NH4F (Lach:ner) in a PTFE cell. A standard three-
electrode setup consists of a silver/silver chloride electrode (3 mol/L KCl, further labeled
as SSCE), a glassy carbon counter electrode, and the sample as the working electrode. The
nanostructure preparation process consisted of two parts: in the first part, the potential was
increased to 20 V/SSCE at a rate of 100 mV/s, and the second part was potentiostatic for
2200 s. The nanostructured alloy was subsequently cleaned in distilled water and ethanol
in an ultrasonic cleaner and dried with hot air.

For the deposition of iridium oxide on the nanostructured Ti-6Al-4V surface, a solution
of 0.2 mmol/L IrCl3·xH2O (Sigma-Aldrich, St. Louis, MO, USA), 1 mmol/L C2H2O4·2H2O
(oxalic acid, Lach:ner) and 5 mmol/L K2CO3 (Lach:ner) was used. The solution was aged
for 4 days at 37 ◦C and stored at 5 ◦C prior to use. The deposition was carried out using
potentiostatic mode (−0.4 V/SSCE, 7200 s; further labeled as Ir PS) with an exposure area
of 1 cm2, and the three-electrode setup was used. After deposition, the samples were
ultrasonically cleaned in distilled water.

Nanostructured Ti-6Al-4V and Ir PS underwent an oxidation by cyclic polarization
(EOCP = 3400 s, −0.05 V/EOCP to 0.1 V/EOCP and back to 0.01 V/EOCP, 20 cycles) in a
physiological solution (9 g/L NaCl, Lach:ner). These samples will be further labeled as
TiAlV and Ir PS+CP.

Scanning electron microscopy (SEM, TESCAN MIRA 3 LMU with OXFORD INCA
350 EDS analyzer, Brno, Czech Republic) was used for the morphological analysis of
the prepared samples. Further analysis was performed using a transmission electron
microscope (TEM, EFTEM Jeol 2200 FS, Tokyo, Japan). Samples for TEM (lamellas) were
created using SEM (TESCAN LYRA 3, Brno, Czech Republic) and a focused ion beam (FIB)
using gallium ions. Secondary ion mass spectroscopy (SIMS) was measured on the same
SEM. Image analysis was performed manually using Image J 2.15.0 software.

Electrochemical measurements were realized with potentiostat Gamry Instrument
Reference 600 (Warminster, USA) at 37 ◦C, with the same setup as mentioned earlier, with
an exposed area of 1 cm2. For pH changes, a physiological solution (9 g/L NaCl) with
biological buffer TES (N tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid, 5.9 g/L,
Sigma-Aldrich, St. Louis, MO, USA) was used. For pH changes, a scale of 7.6, 7.4, 7.0
and 6.5 was chosen and the pH was adjusted with diluted NaOH. The electrochemical
response of the prepared samples to the pH change was detected using the monitoring of
open circuit potential (EOCP). In order to investigate the effect of the redox potential of the
system on the detection of pH change, measurements were performed with a platinum
electrode as the working electrode and a silver chloride electrode as the reference electrode.
At the same time, a sample was connected in the same cell as the working electrode and
a silver/silver chloride electrode as a reference. During the measurement, the solution at
pH 7.6 and 6.5 was bubbled first with N2 and then with air. The potential recording was
carried out simultaneously on two potentiostats.
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3. Results and Discussion
3.1. Base Material

A nanotubular TiO2 structure was formed on the Ti-6Al-4V surface by anodic oxidation
in a fluoride solution. This procedure was consistent with published procedures [26,27].
The surface morphology is shown in Figure 1. It can be seen that the nanostructure is not
homogenous as dissolved regions of the β-phase are present, which is due to the fact that
this phase is richer in vanadium than the α-phase, which is richer in aluminum [28]. In
a fluoride environment, vanadium dissolves faster than aluminum, this leads to a faster
dissolution of the β-phase and the formation of nanotubes is not uniform.
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Figure 1. Native 20V TiO2 nanotubes on the Ti-6Al-4V alloy.

After surface preparation, the sample was further oxidized by cyclic polarization, the
course of cyclic polarization is shown in Figure 2a. The TiAlV sample was immersed in
the physiological solution at pH 7.6 and the potential course was monitored (Figure 2b).
During this time, the nanotubes were flooded and hydrated compounds formed on their
surface. This process took 6 days, after which the sample was put into solutions of different
pH and the electrochemical response was monitored. The result is shown in Figure 3. TiAlV
exhibited a sub-Nernstian response of 31 ± 1 mV/pH.
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3.2. Sample Preparation and Characterization

The fresh solution of Ir was yellow, but after 4 days of aging at 37 ◦C, the color changed
to blue, still having pH 10. This corresponded to the formation of iridium complexes in
the solution, which are in line with the outcomes of Cruz et al. [21]. In their work, they
reported that deposited iridium most likely consists of mixed oxides and hydroxides, such
as IrO1.1(OH)2.7·0.4H2O and IrO2. Taking into account the possibility of the presence of
IrO2, there are two possible mechanisms of redox reaction when the pH changes.

IrO2 + 4 H+ + 4 e− ↔ Ir + 2 H2O

2 IrO2 + 2 H+ + 2 e− ↔ Ir2O3 + H2O

Ir2O3 + 6 H+ + 6 e− ↔ 2 Ir + 3 H2O

This leads to the redox potential according to Equation (1) and subsequently results in
a Nernstian response of 59 mV/pH:

E = E0 − 2.303
(

RT
nF

)
pH = E0 − 0.059 pH (1)

where E is the redox potential (in mV), E0 is the standard electrode potential (in mV), R
is the universal gas constant (8.314 JK−1mol−1), T is the absolute temperature (in K), F is
the Faraday constant (96,485 Cmol−1) and n is the number of electrons transferred in the
reaction [16,29].

In the presence of oxohydroxides, the following reactions are possible:

Ir(OH)3 → Ir(OH)2O− + H+

Ir2O(OH)6 → Ir2O(OH)3O3−
3 + 3 H+

2 Ir(OH)3 + H2O ↔ Ir2O(OH)6 + 2 H+ + 2 e−

2 Ir(OH)2O− + H2O ↔ Ir2O(OH)3O3−
3 + 3 H+ + 2 e−

In this case, the response is equal to 88.5 mV/pH [30].
The current and potential dependency of the potentiostatic deposition is shown in

Figure 4a. A blank measurement was carried out using a solution with the same pH as the
Ir solution, and equal amounts of C2H2O4·2H2O, K2CO3 and Cl− ions using NaCl. From
the blank measurements, the total charge of the blank experiment was calculated. That
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charge is equivalent to the charge of the electrolyte reaction. The total amount of deposited
Ir particles was calculated by Faraday’s law from the total charge minus the charge from
the blank measurement. It was found that the total amount of Ir present on the surface
of the samples averaged 0.015 ± 0.007 mg. Figure 2b shows the oxidation process in the
physiological solution, which was carried out to oxidize Ir particles on the TiAlV surface.
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Figure 5a shows Ir PS and Figure 5b displays Ir PS+CP samples. IrO2 particles were
deposited on the samples at the edges of the β-phase cavities and nanotube edges. The
diameter of the nanotubes and the width of their walls are summarized in Table 1. The
length of the nanotubes was then determined from the TEM image (Figure 5c). These
results correspond with those of previously published works [27,31].

Table 1. Diameter, length and wall thickness of nanotube samples Ir PS and Ir PS+CP.

Nanotube Diameter (nm) Wall Thickness (nm) Length (nm)

Ir PS 97.1 ± 7.1 20.9 ± 2.4 429 ± 19

Ir PS+CP 91.0 ± 5.7 19.5 ± 2.5 363.3 ± 8.8

Figure 6 shows the TEM-EDS map of the iridium distribution in the lamella obtained
from the (a) Ir PS and (b) Ir PS+CP samples. According to this map, deposited iridium
was mainly concentrated on top of the nanotubes in both cases. Only small amounts were
detected on the bottom. The main difference between these samples was the amount
of Ir detected. Further analyses were subsequently performed to better determine the
distribution and the amount of Ir particles.

Figures 7 and 8 show TEM-EDS images with the analyzed areas marked. To confirm
the assumption that the deposited Ir occurred predominantly at the tops of the nanotubes,
analyses were performed here and at the base of the nanotubes. The results of the analyses
are summarized in Tables 2 and 3. The EDS results confirmed that the highest concentration
of Ir particles is at the surface of the nanotubes on both samples, while at the same time,
the distribution occurs at the bottom of the nanotubes. Platinum was found on the samples
from the TEM lamella preparation process, where the surface of the sample is covered with
a thin layer of Pt before the lamella is formed and removed, thus protecting the lamella and
surrounding area from Ga ions. After the cyclic polarization step, the iridium concentration
was reduced as some of it dissolved back into the solution.
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Table 2. Results (wt.%) of TEM-EDS analysis of Ir PS.

Base of Nanotubes
(Spectrum 1)

Top of Nanotubes
(Spectrum 2)

Ti 84.6 ± 1.2 39.9 ± 0.8

Al 7.0 ± 0.4 3.2 ± 0.2

V 3.4 ± 0.5 1.7 ± 0.3

Ir 4.8 ± 0.9 8.7 ± 0.9

Pt 0.9 ± 0.8 46.6 ± 1.0

Table 3. Results (wt.%) of TEM-EDS analysis of Ir PS+CP.

Base of Nanotubes
(Spectrum 1)

Top of Nanotubes
(Spectrum 2)

Ti 85.6 ± 1.3 47.3 ± 1.6

Al 7.9 ± 0.5 4.6 ± 0.5

V 4.4 ± 0.6 2.1 ± 0.5

Ir 2.1 ± 1.3 3.6 ± 1.9

Pt - 42.3 ± 1.7

Figure 9 displays the iridium distribution profiles obtained by SIMS for both Ir PS
and Ir PS+CP samples. The data unequivocally verify that the highest concentration of
iridium is localized on the surface of the nanotubes. Remarkably, the iridium content
within the remainder of the nanotube structure is nearly identical for both samples. This
intentional distribution of iridium throughout the nanotube architecture is crucial for
achieving a pH-sensitive surface, as it ensures a uniform exposure of the sensing material
to the surrounding environment. This strategic design not only enhances the sensitivity of
the sensor but also promotes consistent and reliable pH measurements across the sensor’s
surface. Compared to previously published works [11,17–19,25,29,30], our presented IrO2
deposition procedure achieves a reproducible and uniform distribution of particles on
the surface of the titanium substrate. By not sealing the nanotubes with Ir particles, the
purpose of nanotube formation is preserved, namely to increase the real area compared to
the geometric one and maintain the ability to direct biofilm formation detection [27].
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3.3. Electrochemical Response to pH Change

To study the electrochemical response of the sample to the pH change, Ir PS+CP was
chosen. The pH range from 6.5 to 7.6 was chosen to reflect the physiological environment
with and without inflammation [7]. The first measurements were carried out with the
sample, which, after preparation and cleaning, was only kept in a sterile container. The
results presented in Figure 10 show that the Ir PS+CP surface responded to the change in
pH with a sensitivity of 37 ± 3 mV/pH when the first recorded potential data were taken
immediately as the pH decreased. When the data were taken after 5 min, the sensitivity was
already 43 ± 3 mV/pH. In order to verify the reliability and stability of the measurements,
the experiment was continued with a backward pH increase with the same sample. During
the experiment, the hydration of the surface was achieved and the resulting sensitivity was
55 ± 2 mV/pH when the pH was increased.
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Figure 10. The electrochemical response of Ir PS+CP without initial stabilization.

As the storage medium, the physiological solution with pH 7.6 was chosen. The
sample Ir PS+CP was placed in this solution and the potential course was monitored for 40 h
(Figure 11). After this time, the surface response to pH change was observed again. Leaving
the sample in the storage medium resulted in the hydration of the surface and a more stable
response, which was around 45 ± 2 mV/pH for both decreasing and increasing pH values.
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The change in pH was recorded by the change in potential immediately after immersion in
the solution. However, a better and more stable recording of the electrochemical response
was made after 90 s. These data are summarized in Figure 12.
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Figure 12. The electrochemical response of Ir PS+CP after 40 h of stabilization.

Another sample was left in the storage medium for 5 days. During that time, the
potential course was monitored as an indicator of surface stability (Figure 13). After this
time, the electrochemical response was again measured over the selected pH range, as
shown in Figure 14. From the first recorded potential value, it was already possible to
recognize a change in the pH of the solution. In this case, the surface showed a response
of 50 ± 2 mV/pH. If the potential value after 5 min was taken into account, the recording
was already stable and the response was 55 ± 1 mV/pH. The electrochemical response
analysis of both TiAlV and Ir PS+CP samples reveals intriguing insights into the Nernstian
behavior observed in the prepared system. Beyond the contribution of iridium oxides,
it becomes apparent that titanium oxides also play a significant role in facilitating the
Nernstian response exhibited by the Ir PS+CP sample.
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Figure 14. The electrochemical response of Ir PS+CP after 5 days of stabilization.

All previous tests were performed in a 200 mL solution. In the work of Prats-Alfonso
et al. [20], the influence of the size of the pH electrode with IrO2 and their sensitivity was
tested. Their work concluded that its size has no effect. On the other hand, the effect of the
volume of the tested solution on the sensor response was not tested. In the case of synovial
fluid collection in patients with suspected infectious inflammation, specific treatment
should be administered. However, in this case, a culture is also needed to determine which
bacteria are causing the inflammation around the implant. In this regard, an attempt was
made to determine the electrochemical response of the TiO2-IrO2 system to a change in pH
in a volume of 100 µL. The sample had been in storage solution for a week prior to this
experiment. For the detection of pH change, pH values of 7.6 and 6.5 were chosen. Between
each measurement, the sample surface was meticulously rinsed with distilled water to
mitigate potential contamination and ensure the integrity of subsequent readings, and an
SSCE microreference electrode was used as a reference electrode. Remarkably, even within
this microvolume setting, the TiO2-IrO2 system exhibited remarkable sensitivity to pH
changes, with a recorded sensitivity of 55 ± 1 mV/pH. The resulting potential response is
shown in Table 4. These results are very positive in view of the intended use in medicine. As
discussed in the work of Taheri et al. [16], for pH sensors used in biological environments,
rapid response and high sensitivity are very important. An acceptable response to pH
change was achieved even in a small volume and short time. Compared to published
procedures, potentiostatic deposition appears to be more controllable and economically
less demanding [32,33].
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Table 4. Results of the pH change monitoring in the microvolume on the surface of Ir PS+CP.

pH E (mV/SSCE)

7.6 144

6.5 205

7.6 145

6.5 208

Prior to conducting the experiment on the effect of redox potential on the response, the
Ir PS+CP sample underwent a preconditioning phase where it was immersed in a storage
solution for a week to ensure its stability and consistency. The actual measurement started
in a solution of pH 7.6. At the moment when the bubbling of nitrogen started, a potential
change was immediately detected at the platinum electrode. In contrast, the prepared Ir
PS+CP surface showed no noticeable response to this environmental change. Subsequently,
after an hour, when air was reintroduced into the solution, the electrochemical response
of Ir PS+CP remained unaffected, contrasting with the detectable changes observed at the
platinum electrode. Following this phase, the solution’s pH was adjusted to 6.5, prompt-
ing an immediate response from the Ir PS+CP sample in accordance with its previously
determined sensitivity of 55 ± 1 mV/pH. Approximately 400 s after the pH adjustment,
nitrogen bubbling was reintroduced into the solution. Notably, while the platinum elec-
trode exhibited a corresponding change in potential, indicative of its responsiveness to
redox fluctuations, no such change was observed for the Ir PS+CP sample. Once the air was
reintroduced into the solution, a potential shift was once again recorded for the platinum
electrode, while the Ir PS+CP surface maintained its steady electrochemical response. This
whole process is summarized in Figure 15.
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From the result of the EDS before and after the exposition (Table 5) of the Ir PS+CP
sample, it was proven that there was no dissolution of IrO2 into the solution during the pH
changes. The fluoride listed in the table was a residue from the nanotube preparation that
did not affect the sample response. This finding emphasizes the robustness and stability of
the IrO2-based pH sensor and confirms its suitability for prolonged exposure to varying
pH conditions without compromising its structural integrity or performance. The absence
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of IrO2 dissolution further supports confidence in the sensor’s reliability and longevity,
offering valuable insights for its potential applications in diverse environments and sce-
narios requiring precise pH monitoring capabilities. At the same time, when compared to
the work of Liu et al. [17] where both iridium and ruthenium oxides were deposited on
a polished titanium substrate, simpler fabrication was achieved with comparable results.
At the same time, the preparation of the nanostructure resulted in a much larger real
surface area compared to the geometric one, and hence the gain of a larger pH-sensitive
surface. The same conclusion was reached in the work by Mingels et al. [19], but here, the
iridium oxides were deposited on a platinum electrode with a gold interlayer. The novel
potentiostatic process used here for depositing IrO2 on a titanium substrate without a gold
interlayer reduces the fabrication cost without losing the positive properties.

Table 5. Results of EDS analysis (wt.%) of Ir PS+CP before and after exposition in the whole pH range.

Ti Al V Ir F

Ir PS+CP before 87.4 ± 1.3 6.1 ± 0.4 4.1 ± 1.4 1.3 ± 0.3 1.1 ± 0.1

Ir PS+CP after 87.3 ± 0.3 6.1 ± 0.3 3.9 ± 0.1 1.3 ± 0.1 1.4 ± 0.2

4. Conclusions

In this work, nanostructured TiAlV alloy samples were successfully prepared. Accord-
ing to the results of the analyses, reproducible potentiostatic deposition of Ir particles was
achieved. During oxidation by cyclic polarization in the physiological solution, more stable
iridium oxides were obtained on the surface of the Ir PS+CP sample. Based on the SIM and
TEM-EDS data, it was found that IrO2 particles were concentrated on the surface of the
nanotubes but also distributed to the bottom of the nanotubes.

Due to the possibility of using the surface immediately after production, our prepared
surface is suitable as a pH electrode. During our experiments, the sensitivity of the surface
was shown to be 37 ± 3 mV/pH when the surface was used without the storage solution.
If the measurement lasted 5 min, the sensitivity was already 43 ± 3 mV/pH. By keeping
the sample in the storage solution for 40 h or five days, the surface sensitivity was already
55 ± 1 mV/pH. The electrochemical response in microvolume was measured on another
prepared surface which was kept in the physiological solution at pH 7.6 before the ex-
periment. Again, the pH change was successfully detected with the Nernstian sensitivity
of 55 ± 1 mV/pH. It was further shown that the mixed surface of TiO2 and IrO2 did not
respond to the change in the redox potential of the environment. Our experiments showed
that the most accurate measurements were obtained when the sensor was kept in a storage
solution and readings were taken at least 90 s after immersion. However, it was also
possible to use the sensor without a storage medium. This surface with its properties would
be suitable for use in medicine, especially for the rapid detection of inflammation in the
surrounding area of the implant, when the punctate would be tested.
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