

Article **CoNiTe² Nanomaterials as an Efficient Non-Enzymatic Electrochemical Sensing Platform for Detecting Dopamine**

Zhi-Yuan Wang ¹ , Chi-Hung Shen ¹ , Shih-Hao Yang ¹ , Han-Wei Chang 2,3,[*](https://orcid.org/0000-0003-3457-6975) and Yu-Chen Tsai 1,*

- ¹ Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan; dog987784@gmail.com (Z.-Y.W.); glun25@gmail.com (C.-H.S.); g112065059@mail.nchu.edu.tw (S.-H.Y.)
- ² Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan³ Bestiaids Apelvais Center, National United University, Miaoli 260202, Taiwan
	- ³ Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
- ***** Correspondence: hwchang@nuu.edu.tw (H.-W.C.); yctsai@dragon.nchu.edu.tw (Y.-C.T.); Tel.: +886-37-382216 (H.-W.C.); +886-4-22857257 (Y.-C.T.)

Abstract: Dopamine (DA) is an important catecholamine neurotransmitter in the mammalian central nervous system that affects many physiological functions. Hence, a highly sensitive and selective sensing platform is necessary for quantification of DA in the human body. In this study, ternary transition metal tellurides of CoNiTe₂ were successfully synthesized using the hydrothermal method. The proposed $CoNiTe₂$ nanomaterials were dispersed well in Nafion to form a welldispersed suspension and, when dropped on a glassy carbon electrode (GCE) as the working electrode (CoNiTe₂/Nafion/GCE) for electrochemical non-enzymatic DA sensing, displayed excellent electrocatalytic activity for dopamine electrooxidation. The morphology and physical/chemical properties of CoNiTe² nanomaterials were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In order to obtain the best electrochemical response to DA from the fabricated CoNiTe₂/Nafion/GCE, the experimental conditions of electrochemical sensing, including the CoNiTe₂ loading amounts and pH values of the phosphate buffer solution (PBS), were explored to achieve the best electrochemical sensing performance. Under optimal conditions (2 mg of CoNiTe₂ and pH 6.0 of PBS), the fabricated CoNiTe₂/Nafion/GCE showed excellent electrocatalytic activity of DA electrooxidation. The CoNiTe₂/Nafion/GCE sensing platform demonstrated excellent electrochemical performance owing to the optimal structural and electronic characteristics originating from the synergistic interactions of bimetallic Co and Ni, the low electronegativity of Te atoms, and the unique morphology of the CoNiTe₂ nanorod. It exhibited a wide linear range from 0.05 to 100 μM, a high sensitivity of 1.2880 μA μM⁻¹ cm⁻², and a low limit of detection of 0.0380 μM, as well as acceptable selectivity for DA sensing. Therefore, the proposed $CoNiTe₂/Nafion/GCE$ could be considered a promising electrode material for electrochemical non-enzymatic DA sensing.

Keywords: CoNiTe₂ transition metal tellurides; electrochemical non-enzymatic dopamine sensing; morphology

1. Introduction

Carlsson et al. (1958) reported that dopamine (DA) is a key neurotransmitter in the brain and is used as an immediate precursor in the biosynthesis of noradrenaline [\[1\]](#page-9-0). Current data reveal that DA is the predominant neurotransmitter expressed in the mammalian central nervous system (accounting for 80% of the catecholamine content in the brain) [\[2\]](#page-9-1). The amount of DA released correlates exclusively to diverse brain functions and is expressed specifically in the ventral tegmental area (VTA) of the midbrain, the substantia nigra pars compacta, and the hypothalamic arcuate nucleus of the human brain [\[3\]](#page-9-2). VTA dopaminergic activity controls natural motivation, reward prediction, and contextual learning [\[4,](#page-9-3)[5\]](#page-9-4). Parkinson's disease (PD), one of the most common neurodegenerative

Citation: Wang, Z.-Y.; Shen, C.-H.; Yang, S.-H.; Chang, H.-W.; Tsai, Y.-C. CoNiTe² Nanomaterials as an Efficient Non-Enzymatic Electrochemical Sensing Platform for Detecting Dopamine. *Chemosensors* **2024**, *12*, 110. [https://doi.org/10.3390/](https://doi.org/10.3390/chemosensors12060110) [chemosensors12060110](https://doi.org/10.3390/chemosensors12060110)

Received: 17 May 2024 Revised: 7 June 2024 Accepted: 11 June 2024 Published: 13 June 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license [\(https://](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

disorders, is linked to abnormal dopamine release in the substantia nigra pars compacta. PD is diagnosed by characteristic motor tremors [\[6,](#page-9-5)[7\]](#page-9-6). The hypothalamic arcuate nucleus' dopaminergic neurons are essential in regulating prolactin release. Prolactin is a protein hormone synthesized and secreted by lactotropic cells in the anterior pituitary gland and is involved in the prolactin homeostasis of the body $[8,9]$ $[8,9]$.

Unquestionably, finding a precise and efficient method to quickly detect DA level deviations, thereby mitigating the societal and economic burdens associated with neurological disorders, is urgent. So far, analytical methods such as fluorescence [\[10\]](#page-10-2), colorimetry [\[11\]](#page-10-3), chemiluminescence [\[12\]](#page-10-4), high-performance liquid chromatography (HPLC) [\[13\]](#page-10-5), capillary electrophoresis (CE) [\[14\]](#page-10-6), and electrochemistry [\[15](#page-10-7)[,16\]](#page-10-8) have been used to detect DA. Electrochemical methods stand out among the conventional analytical techniques because they are affordable, have a short analysis time, give an immediate response, and are userfriendly [\[17,](#page-10-9)[18\]](#page-10-10). Electrochemical analytical methods detect DA using two sensing platforms: enzymatic and non-enzymatic. Although enzymatic sensors demonstrate high sensitivity and specificity, they are expensive, are complex to produce, have limited reproducibility, and are susceptible to environmental factors such as pH and temperature [\[19\]](#page-10-11). An electrochemical non-enzymatic DA sensor needs to be developed to overcome these drawbacks.

Previous reports reveal that electrochemical DA sensors based on transition metal chalcogenides (including transition metal sulfides (TMSs) [\[20\]](#page-10-12), transition metal selenides (TMSs) [\[21\]](#page-10-13), and transition metal tellurides (TMTs) [\[22\]](#page-10-14)) have been successfully used in the development of electrode materials. Transition metal chalcogenides are a promising choice for electrode materials because of their excellent conductivity, abundant active sites, simplified synthesis procedures, and low preparation costs [\[23\]](#page-10-15). Furthermore, the electronegativity of Te (2.1) is low compared to S (2.58) and Se (2.55), resulting in weaker bonds between transition metals and Te. This facilitates electrochemical redox reactions [\[24\]](#page-10-16). These characteristics make TMTs suitable for extensive applications in the electrochemical field such as in supercapacitors [\[25\]](#page-10-17), water splitting [\[26\]](#page-10-18), and $CO₂$ reduction [\[27\]](#page-10-19). From the above-mentioned reports, TMTs have attracted significant attention in the electrochemical field due to the synergic effect caused by multiple redox-active transition metals, the low electronegativity of Te, and their unique structural features. In TMTs, the electronegativity of Te is lower than S and Se, which would tend to weaken covalent bonding between the transition metal and Te. Electronic structure tuning in transition metal chalcogenides should facilitate ion insertion/extraction and electron transport to give an excellent electrochemical performance. Nevertheless, the existing literature provides limited information on TMTs' use as electrochemical biosensors, especially in DA sensing.

In this study, we prepared $CoNiTe₂$ ternary transition metal telluride nanomaterials using the hydrothermal method. We fabricated a CoNiTe₂/Nafion/glassy carbon electrode (GCE) sensing platform by drop-casting the prepared CoNiTe2/Nafion nanocomposite on GCE. The CoNiTe₂/Nafion nanocomposite catalyzed DA electrochemical redox to deliver remarkable electrochemical performance through the synergistic effects of bimetallic Co and Ni, the relatively low electronegativity of Te, and the unique features of nanorod morphology.

2. Materials and Methods

2.1. Reagents

Cobalt (II) chloride hexahydrate (CoCl₂·6H₂O), nickel (II) chloride hexahydrate (NiCl₂·6H₂O), hydrazine monohydrate (N₂H₄·H₂O), and ethylenediamine were obtained from Alfa Aesar (Ward Hill, MA, USA). Tellurium powder (~200 mesh), Nafion solution (5 wt % in mixture of lower aliphatic alcohols and water), sodium phosphate dibasic (Na_2HPO_4) , sodium phosphate monobasic (NaH_2PO_4) , dopamine hydrochloride (DA), uric acid (UA), and L-ascorbic acid (AA) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Anhydrous ethanol (C_2H_5OH , 99.9%) was purchased from J.T. Baker (Phillipsburg, NJ, USA). The deionized water (DI water) was produced using a Milli-Q water purification system from Millipore Co. (Bedford, MA, USA). All chemicals were analytical grade and were used as received without further purification.

2.2. Synthesis of CoNiTe₂ Nanomaterials

The CoNiTe₂ transition metal tellurides were successfully synthesized via a facile hydrothermal method. As is typical, 0.409 g CoCl₂·6H₂O and 0.411 g NiCl₂·6H₂O were precisely weighed and fully dissolved in 30 mL DI water by stirring for 30 min to form
dispersed into 8 at the same time, 0.235 g Te power was dispersed in the same time was dispersed in the same t solution (A). At the same time, 0.235 g Te powder was dispersed into 8 mL ethylenediamine and stirred for 30 min to form solution (B). In the next step, solution (B) was added dropand stirred for 30 min to form solution (B). In the next step, solution (B) was added dropwise to solution (A) and stirred for 30 min to make sure all the reactants were totally dissolved. After that, 8 mL N_2 H₄·H₂O was selected as the reducing agent and added to the mixture. The mixture was allowed to stir until a black precipitate appeared. Subsequently, mixture. The mixture was allowed to stir until a black precipitate appeared. Subsequently, the obtained black precipitate containing the Ni–Co telluride precursor was transferred the obtained black precipitate containing the Ni–Co telluride precursor was transferred into a 100 mL Teflon-lined stainless autoclave and heated to 180 ◦C for 12 h in an oven. into a 100 mL Teflon-lined stainless autoclave and heated to 180 °C for 12 h in an oven. Under mild hydrothermal conditions, the as-fabricated Ni–Co telluride precursor went Under mild hydrothermal conditions, the as-fabricated Ni–Co telluride precursor went through the amorphous–crystalline phase transformation induced by incorporated metal through the amorphous–crystalline phase transformation induced by incorporated metal ions. Finally, the resulting CoNiTe₂ nanomaterials were cleaned by with DI water and anhydrous ethanol in a centrifuge 3 times, and then dried in the oven overnight. Then, the hydrous ethanol in a centrifuge 3 times, and then dried in the oven overnight. Then, the dried CoNiTe₂ nanomaterials were collected for subsequent characterization. A schematic illustration of the synthesis of the CoNiTe $_2$ nanomaterials is shown in Fi[gu](#page-2-0)re 1.

Figure 1. The schematic diagram for the synthesis of CoNiTe₂.

2.3. Fabrication of CoNiTe2/Nafion/GCE Working Electrode

2.3. Fabrication of CoNiTe2/Nafion/GCE Working Electrode To prepare the glassy carbon electrode (GCE, diameter 3 mm, Tokai Carbon, Tokyo, Japan) for use, a thorough polishing procedure was performed by using 0.3 µm and 0.05 μm alumina slurries. Subsequently, the electrode was subjected to a rapid ultrasonic cleaning process using deionized (DI) water and anhydrous ethanol, followed by drying in a 70 °C oven. Next, 2 mg CoNiTe₂ nanomaterials were weighed and dispersed in 1 mL 0.5 wt % Nafion solution through ultrasonication for 30 min to form a well-distributed suspension. To fabricate the working electrode, 6 μ L of the suspension was dropped on the precleaned GCE (bare GCE) and dried in the oven at 60 °C for 20 min. In this way, CoNiTe₂/Nafion/GCE was obtained for the following electrochemical measurements.

Ω . Characterizations. *2.4. Characterizations*

2.4. The morphology was characterized using field emission scanning electron microscopy JEM-2100F, JEOL, Akishima, Japan). The crystal phase was analyzed by using X-ray diffraction (XRD) (D8 Discover X-ray diffractometer with Cu Kα radiation (Bruker, Karlsruhe, (FESEM, JSM-7800F, JEOL, Akishima, Japan) and transmission electron microscopy (TEM, Germany). The chemical structure and composition were determined by using X-ray photoelectron spectroscopy (XPS, PHI-5000 Versaprobe, ULVAC-PHI, Chigasaki, Japan). Electrochemical measurements were performed by using an electrochemical analyzer (Autolab, model PGSTAT 30, Eco Chemie, Utrecht, The Netherlands) in a three-electrode system (the as-prepared samples modified with GCE were used as the working electrode, along with a platinum wire counter electrode and an Ag/AgCl (3 M KCl) reference electrode). All electrochemical measurements were conducted in 0.1 M phosphate-buffered saline (PBS) as the supporting electrolyte in the absence or presence of DA. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements were taken in the working potential window of -0.2 ~1.0 V and 0~0.5 V. The DPV operational parameters (in 0.1 M PBS at pH 6.0) were optimized as follows: modulation time of 0.050 s, modulation amplitude of 0.050 V, pulse width of 0.050 s, internal time of 0.200 s, and step potential of 0.004 V.

3. Results and Discussion **voltammetry (CV) and and differential pulse voltaments** were taken were ta

The FESEM image (Figure [2a](#page-3-0)) revealed that the CoNiTe₂ surface is composed of a rod-like structure (approximately 700 nm in length) with numerous short nanorods (approximately several nanometers in length) growing on it. The short nanorods provide proximately several nanometers in length) growing on it. The short nanorods provide abundant electrochemical active sites and this boosts electronic/ionic transport during the subsequent electrochemical measurements. The TEM image (Figure [2b](#page-3-0)) revealed that the CoNiTe₂ nanomaterial's inner structure concurred with the surface morphology observed by FESEM. Figure 3a–d show the scanning TEM (STEM) [im](#page-4-0)ages and their corresponding EDS mapping for $CoNiTe₂$. These affirm that the $CoNiTe₂$ nanorod structure comprises well-distributed Co, Ni, and Te elements. The EDS spectrum (Figure 3e) of the CoNiTe $_2$ nanomaterials further revealed that the atomic ratio of Co, Ni, and Te is approximately 0.2:0.2:0.5, which is close to the theoretical atomic ratio of CoNiTe_2 . The CoNiTe_2 nanomaterials were then characterized by X-ray diffraction. The standard XRD pattern of CoNiTe₂
CONDO Nano Co⁰⁰⁴ 1581 (JCPDS No. 65-8961) [\[28\]](#page-10-20) was obtained. \overline{m} the working potential window of \overline{m} . The DPV operational parameters operational parameters operational parameters of \overline{m}

The XRD pattern identified the structure and phase composition of the CoNiTe₂ nanomaterials based on the standard patterns in the crystalline phase of CoNiTe₂ (JCPDS) No. $65-8961$ [\[28\]](#page-10-20), as shown in Figure [4.](#page-4-1) In the XRD pattern of the CoNiTe₂ nanomaterials, the diffraction peaks located at 2 θ equaling 31.1°, 43.2°, 45.9°, 56.5°, and 58.9° are attributed to the (101) , (102) , (110) , (201) , and (103) planes, respectively (indexed to the crystalline phase of CoNiTe₂). These characterizations confirm that the CoNiTe₂ ternary transition metal tellurides were successfully synthesized via a facile hydrothermal method.

Figure 2. (a) FESEM image and (b) TEM image of CoNiTe₂ nanomaterials.

 $_{\rm Cu}$

 $\overline{\mathbf{C}}$

 50.3

 22.5

Figure 3. (a) STEM image of CoNiTe₂ nanomaterials and their corresponding element mapping images for (**b**) Co, (**c**) Ni, and (**d**) Te; (**e**) EDS spectrum of CoNiTe₂ nanomaterials.

Figure 4. XRD patterns of CoNiTe₂ nanomaterials.

(e)

The surface elemental composition and valence states of the CoNiTe₂ nanomaterials were characterized by XPS, as shown in Figure 5. Figure 5a shows the high-resolution Co were characterized by XPS, as shown in Figure [5.](#page-5-0) Figure [5a](#page-5-0) shows the high-resolution Co 2p XPS spectra of the CoNiTe2 nanomaterials. Two spin-orbit doublets corresponding to 2p XPS spectra of the CoNiTe² nanomaterials. Two spin-orbit doublets corresponding to Co 2p_{3/2} and Co 2p_{1/2} were found. Co²⁺ was observed at 780.8 eV and 797.2 eV (binding energies), while Co^{3+} was observed at 778.8 eV and 796 eV. In addition to the two spin-orbit doublets, shake-up satellites (marked as Sat.) were observed adjacent to each doublet, blet, located at 785.4 eV and 802.6 eV, respectively. Figure 5b shows the high-resolution Ni located at 785.4 eV and 802.6 eV, respectively. Figure [5b](#page-5-0) shows the high-resolution Ni 2p XPS spectra of the CoNiTe₂ nanomaterials. Two spin-orbit doublets were ascribed to Ni $2p_{3/2}$ and Ni $2p_{1/2}$. Ni³⁺ was located at binding energies 855.4 eV and 873.4 eV, while $Ni²⁺$ was observed at binding energies 852.4 eV and 870.2 eV. Likewise, two shake-up satellites (marked as Sat.) were observed adjacent to the two spin-orbit doublets, which were situated at 861.4 eV and 879.0 eV, respectively. Figure [5c](#page-5-0) shows the high-resolution Te 3d XPS spectra of the CoNiTe₂ nanomaterials. The spin-orbit doublets of Te $3d_{5/2}$ and Te $3d_{3/2}$ appeared at 573 eV and 583.4 eV, respectively, and are attributable to Te^{2−}. The other two peaks at 576 eV and 586.4 eV are shake-up satellites (marked as Sat.) [\[29\]](#page-10-21).

Figure 5. (**a**) Co 2p, (**b**) Ni 2p, and (**c**) Te 3d XPS spectra of CoNiTe2 nanomaterials. **Figure 5.** (**a**) Co 2p, (**b**) Ni 2p, and (**c**) Te 3d XPS spectra of CoNiTe² nanomaterials.

The electrochemical characteristics of $CoNiTe₂$ nanomaterials for DA detection were performed by cyclic voltammetry [\(C](#page-5-1)V). Figure 6 shows the CV curves of bare GCE (black performed by cyclic voltammetry (CV). Figure 6 shows the CV curves of bare GCE (black lines), Nafion/GCE (blue lines), and CoNiTe₂/Nafion/GCE (red lines) in 0.1 M PBS (pH 7.0) $\frac{1}{1}$ in the absence (dashed lines) and presence (solid lines) of 1 mM DA at a 50 mV s^{−1} scan rate within the 0–1.0 V potential window. In the absence of DA, all electrodes show no rate within the 0–1.0 V potential window. In the absence of DA, all electrodes show no redox peaks due to the absence of redox-active species. With the addition of 1 mM DA, all \sim 1.1 m \sim 1.1 m electrodes exhibited well-defined peaks (especially the CoNiTe2/Nafion/GCE electrode) electrodes exhibited well-defined peaks (especially the CoNiTe2/Nafion/GCE electrode) related to the electrochemical DA redox reaction mechanism. The possible electrochemical
DA related to the electrochemical DA redox reaction mechanism. The possible electrochemical DA redox reaction mechanism is described in the previous literature [30]. During the elec-trochemical oxidation process, DA was oxidized to dopaminoquinone (DAQ), and during trochemical oxidation process, DA was oxidized to dopaminoquinone (DAQ), and during the electrochemical reduction process, DAQ was reduced to DA. The electrochemical DA the electrochemical reduction process, DAQ was reduced to DA. The electrochemical DA redox reaction is a reversible process involving two electron/two proton transfers. Noreaction is a reversible process involving two electron, two proton transfers. Nota-
tably, CoNiTe₂/Nafion/GCE possesses the highest electrocatalytic activity in DA sensing. These results demonstrate that the synergistic interaction of bimetallic Co and Ni, the These results demonstrate that the synergistic interaction of bimetallic Co and Ni, the low electronegativity of Te, and the unique morphology of CoNiTe₂ nanorods improved electrochemical performance. According to a previous report [\[31\]](#page-10-23), bimetallic Ni–Co transition metal chalcogenides generally exhibited satisfactory electrochemical performance. In Ni–Co tellurides, the electronegativity of Te is lower than those of S and Se. This results in weakened covalent bonding between the transition metal and Te, further accelerating electron transfer and modulating electronic structure in the electrochemical process. This enhanced electrochemical performance. DA redox reaction mechanism is described in the previous literature [\[30\]](#page-10-22). During the elec-

Figure 6. CV curves of bare GCE (blue line), Nafion/GCE (pink line), and CoNiTe₂/Nafion/GCE (green line) in 0.1 M PBS (pH 7.0) in the absence (dashed line) and presence (solid line) of 1 mM DA (green line) in 0.1 M PBS (pH 7.0) in the absence (dashed line) and presence (solid line) of 1 mM DA at a scan rate of 50 mV s^{-1} .

To obtain CoNiTe₂ nanomaterials with optimal electrochemical performance for DA sensing, the CoNiTe₂ loading amounts and pH values of the phosphate buffer solution were varied to understand electrochemical parameter optimization. To do this, $1~4$ mg of CoNiTe₂ was weighed and dispersed into 1 mL 0.5 wt % Nafion to form a homogenous dispersion, then immobilized on the surface of GCE by a drop-casting method. Figure [7a](#page-6-0) shows the CV curves of $\text{CoNiTe}_{2}/\text{Nafion}/\text{GCE}$ at different CoNiTe_{2} loading amounts in 0.1 M PBS (pH 7.0) in the presence of 1 mM DA at a scan rate of 50 mV s⁻¹. It was observed that the oxidation peak current dramatically increased as the CoNiTe_2 loading amount varied from 1 to 2 mg. However, when the CoNiTe₂ loading amount exceeded 2 mg, the oxidation peak current decreased, indicating that the presence of the excess CoNiTe₂ hindered the mass transfer of dopamine [\[32\]](#page-10-24). Figure [7b](#page-6-0) displays the CoNiTe₂/Nafion/GCE CV curves at different phosphate buffer solution pH values (from pH 5 to 8) in the presence of 1 mM DA. The oxidation peak potential (E_{pa}) decreased with increasing pH value from 5 to 8, revealing that DA electrochemical behavior is associated with the pH dependence of interfacial electron–proton transfer. The corresponding linear relationship between oxidation peak potential and pH was calculated as follows: E_{pa} (V) = 0.846–0.059 pH $(R^2 = 0.9771)$ (see the inset of Figure [7b](#page-6-0)). The results indicate a 0.059 V/pH linear slope. This is close to the theoretical value, implying that the electrochemical DA redox reaction mechanism involves two electron/two proton transfer steps, as governed by the Nernst equation [\[33\]](#page-10-25). Notably, the oxidation peak current increased slightly as the pH increased from 5 to 6, and then decreased rapidly from pH 6 to 8. The maximum DA oxidation peak current was at pH 6. Consequently, 2 mg of $CoNiTe₂$ (loading amount) and a phosphate buffer solution pH of 6.0 (pH value) were selected as the optimal parameters for DA sensing.

Figure 7. **Figure 7. CONITE2. FIGURE 7. CONITE2** loading amounts (1~4 mg) and (**b**) pH values of phosphate buffer solution (pH 5.0~8.0) in 0.1 M PBS in the presence of 1 mM and (**b**) pH values of phosphate buffer solution (pH 5.0~8.0) in 0.1 M PBS in the presence of 1 mM DA at a scan rate of 50 mV s^{−1}. Inset of (**a**): plot of the oxidation peak current (I_{pa}) vs. different CoNiTe₂ loading amounts. Bottom right inset of (**b**): plot of the oxidation peak current (I_{pa}) vs. pH. Bottom left inset of (**b**): plot of the oxidation peak potential (Epa) vs. pH. (The error bars stand for Bottom left inset of (**b**): plot of the oxidation peak potential (Epa) vs. pH. (The error bars stand for the standard deviation of 3 repeat measurements). **Figure 7.** CV curves of CoNiTe₂/Nafion/GCE with different (**a**) CoNiTe₂ loading amounts (1~4 mg)

To further examine the electrochemical behavior of the CoNiTe₂ nanomaterials, CoNiTe $_2$ /Nafion/GCE was studied through CV performed in 0.1 M PBS (pH 6.0) in the presence of 1 mM DA at 50 to 300 mV s⁻¹ scan rates (Fig[ure](#page-7-0) 8a). It was observed that the redox peak current increased with increasing scan rate. Figure [8b](#page-7-0) reveals that both the oxidation peak current (I_{pa}) and reduction peak current (I_{pc}) were linear with the square root of the scan rate $(v^{1/2})$. The linear regression equation is expressed as I_{pa} (μA) = 34.8800 + 3.2760 $v^{1/2}$ ((mV s^{−1})^{1/2}) (R² = 0.9856) and I_{pc} (μA) = −22.7890−5.0160 $v^{1/2}$ ((mV s⁻¹)^{1/2}) (R² = 0.9897). These results establish that the electrochemical DA redox reaction is controlled by diffusion according to the Randles–Sevcik equation [\[34\]](#page-11-0).

sion according to the Randles–Sevcik equation [34].

Figure 8. α carves of Contrez/Nation/GCE in 0.1 M PBS (pH 6.0) in the presence of 1 man. DA at different scan rates from 50 mV s⁻¹ to 300 mV s⁻¹. (**b**) The plot of the oxidation peak current (I_{pa}) and reduction peak current (I_{pc}) vs. square root of scan rate ($v^{1/2}$) (the error bars stand for the ard deviation of 3 repeat measurements). standard deviation of 3 repeat measurements). **Figure 8.** (a) CV curves of CoNiTe₂/Nafion/GCE in 0.1 M PBS (pH 6.0) in the presence of 1 mM

We measured the electrochemical performance of CoNiTe₂/Nafion/GCE for DA electrochemical performance of CoNiTe₂/Nafion/GCE for DA electrooxidation using differential pulse voltammetry (DPV) in 0.1 M PBS (pH 6.0) with increasing DA concentrations (0~100 μM) under optimal experimental parameters to evalu-creasing DA concentrations (0~100 µM) under optimal experimental parameters to evaluate the feasibility of the proposed electrochemical non-enzymatic DA sensing. Figure [9a](#page-7-1) shows $\mathcal{L} = \mathcal{L} \times \mathcal{L} = \mathcal$ the CoNiTe₂/Nafion/GCE DPV responses against various DA concentrations from 0 to $100 \, \text{M}$ L 100 μM. It was observed that the DPV response increased with increasing DA concentration.
He lines by a corresponding the linear re-tal the corresponding calibration curve 9.95 to 100 eM responding to The DPV responses corresponding to DA concentrations ranging from 0.05 to 100 μ M were plotted to obtain the corresponding to BA concentrations ranging from 0.05 to 100 μ M were
plotted to obtain the corresponding calibration curve (Figure [9b](#page-7-1)). The linear regression P_{total} (Figure 50). The finder regression equation for the oxidation peak current (I_{pa}) against the DA concentration is expressed as $I_{pa} (\mu A) = 1.0030 + 0.0910 \text{ C } (\mu M)$. The DA sensor calibration curve was linear from 0.05 $t_{\rm pd}$ (μ. 1) 1.0000 + 0.0910 C (μ. 11). The B11 sensor cancration car ve was linear from 0.000 to 100 μM (R² = 0.9928), and the slope and intercept were 0.0910 μA μM⁻¹ and 1.0030 μA, respectively. The sensitivity (according to the geometric area of GCE (0.0707 cm^2) and the slope of the calibration curve), limit of detection (LOD) based on $3 S_b/m$, and limit of quantification (LOQ) based on 10 S_b/m (S_b is the blank signal standard deviation for *n* = 3, and m is the calibration plot slope) were estimated as 1.2880 μA μM⁻¹ cm⁻², 0.0380 μM, and 0.[1](#page-8-0)270 mM, respectively. Table 1 summarizes previous reports regarding electrochemical non-enzymatic DA sensors based on the different transition metal chalcogenides [\[21,](#page-10-13)[35](#page-11-1)[–37\]](#page-11-2). It is noted that the CoNiTe₂ electrode material is comparable to the other electrochemical non-enzymatic DA sensors based on the different transition metal chalcogenides.

Figure 9. (a) DPV response of CoNiTe₂/Nafion/GCE in 0.1 M PBS (pH 6.0) with the successive addition of various DA concentrations from 0 to 100 μM. (**b**) The plot of DPV response vs. DA concentration.

Electrode Materials	Linear Range (mM)	Sensitivity $(\mu A \mu M^{-1} cm^{-2})$	LOD (μM)	Reference
NiCo ₂ S ₄ /NF	$0.50 - 100$	14.9920	0.200	[35]
$Sb_2S_3/GO/GCE$	$1.55 - 15.55$	0.3077	0.800	[36]
$fGO-Ga0.7Fe0.3Se2/GCE$	$2 \sim 170$	0.2188	0.110	[21]
Bi ₂ Te ₃ /rGO/GCE	$10 - 1000$	0.2229	0.060	[37]
CoNiTe ₂ /GCE	$0.05 - 100$	1.2880	0.038	This Work

Table 1. Comparison of electrochemical DA sensor performance based on the different transition metal chalcogenides.

In a physiological environment, the electrochemical similarities between dopamine (DA), uric acid (UA), and ascorbic acid (AA) biomolecules can cause overlapping detection signals, potentially impacting DA sensing accuracy and reliability. Therefore, it is necessary to perform an interference study to evaluate the sensing ability and distinguish the interfering species. This ensures the accurate determination of the target molecules. To evaluate the selectivity of the CoNiTe₂ nanomaterials in the presence of the interfering molecules for DA sensing, Figure [10](#page-8-1) displays the interference effect results for $CoNiTe₂/Nafion/GCE$ in 0.1 M PBS (pH 6.0) in the presence of 200 μ M AA and 10 μ M UA (both are reasonable concentrations in the human body) and various DA concentrations (0.05, 0.5, 1, 3, 5, 7.5, and 10 µM). As observed, the DPV responses of the interfering molecules AA and UA were found at 0.15 V and 0.35 V, respectively. However, the DPV response of DA was observed at about 0.22 V, and its response increased with increasing DA concentration. In the experimental results, no significant interference effect was observed for DA determination in the presence of AA and UA. The linear regression equation for the oxidation peak current (I_{pa}) against the DA concentration in the presence of AA and UA (interference effect) is expressed as I_{pa} (μ A) = 2.3262 + 0.1401 C (μ M). The calibration curve was linear from 0.05 to 10 μ M (R² = 0.9946), and the slope and intercept were 0.1401 μ A μ M⁻¹ and 2.3262 μA, respectively. For interference effect evaluation, a comparison of slope differences $\frac{218262}{101}$ for solvent and interference addition calibration curves showed that there was a small increase in slope in the presence of interfering molecules, indicating a slight interference effect. To minimize interference effects, a quantitative analysis was further performed using matrix-matched calibration curves to reduce interference-induced effects. As discussed above, it can be deduced that $CoNiTe₂/Nafion/GCE$ has acceptable selectivity at DA concentrations ranging from 0.05 to 10 μ M when AA and UA were also present, demonstrating the excellent anti-interference ability of the CoNiTe₂ nanomaterials. there solvent and interfering addition cannation carves showed that there was

Figure 10. Interference study of CoNiTe₂/Nafion/GCE in 0.1 M PBS (pH 6.0) with the various DA concentration (0.05, 0.5, 1, 3, 5, 7.5, and 10 μM), as well as 200 μM AA and 10 μM UA.

4. Conclusions

In this study, a hydrothermally synthesized CoNiTe₂ nanomaterial-fabricated sensing platform (CoNiTe₂/Nafion/GCE) demonstrated prominent electrochemical performance for DA sensing owing to its excellent properties caused by bimetallic Co and Ni, the low electronegativity of Te, and its unique structural features (nanorods). In CoNiTe₂ nanomaterials, the lower electronegativity of Te leads to a weakened covalent bonding between transition metals and Te, resulting in the modulation of the electronic structure, which could propose an effective way to accelerate electron/ion transportation between the interface of the electroactive materials and electrolyte solution, exhibiting remarkable electrochemical performance for DA sensing. The electrochemical non-enzymatic DA sensor based on a CoNiTe₂ nanomaterials sensing platform exhibits excellent performance for the linear range from 0.05 to 100 µM, a sensitivity of 1.2880 µA µM $^{-1}$ cm $^{-2}$, and a limit of detection (LOD) of $0.0380 \mu M$. Furthermore, the acceptable selectivity of the presented CoNiTe₂/Nafion/GCE in the presence of interfering species makes it a promising DA sensing platform for it practical use.

Author Contributions: Conceptualization, H.-W.C. and Y.-C.T.; methodology, H.-W.C., Z.-Y.W., C.-H.S. and S.-H.Y.; software, Z.-Y.W., C.-H.S. and S.-H.Y.; formal analysis, H.-W.C., Z.-Y.W., C.-H.S. and S.-H.Y.; investigation, H.-W.C., Z.-Y.W., C.-H.S., S.-H.Y. and Y.-C.T.; data curation, H.-W.C., Z.-Y.W., C.-H.S. and S.-H.Y.; writing—original draft preparation, H.-W.C., Z.-Y.W. and Y.-C.T.; writing—review and editing, H.-W.C. and Y.-C.T.; visualization, H.-W.C.; supervision, H.-W.C. and Y.-C.T.; project administration, H.-W.C. and Y.-C.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Science and Technology Council (NSTC), Taichung Veterans General Hospital (TCVGH), and National United University (NUU), Taiwan (NSTC 112-2221-E-239-001-MY3, NSTC 112-2221-E-005-007-MY3, TCVGH-NUU1128901, TCVGH-NUU1138902, and SE113002).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy.

Acknowledgments: The authors are grateful to the NSTC and NUU for the financial assistance granted in support of this work. For instrumentation support, we thank the NSTC and the Instrument Center of National Chung Hsing University, Taiwan, for help with FESEM, HRTEM, and XPS measurements (NSTC 112-2740-M-005-001).

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Carlsson, A. Evidence for a role of dopamine in extrapyramidal functions. *Acta Neuroveg.* **1964**, *26*, 484–493. [\[CrossRef\]](https://doi.org/10.1007/BF01252144) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/14317354)
- 2. Thomas, R.; Pooventhiran, T.; Bakht, M.A.; Alzahrani, A.Y.; Salem, M.A. Study of interaction between different solvents and neurotransmitters dopamine, l-adrenaline, and l-noradrenaline using LED, QTAIM and AIMD. *J. Mol. Liq.* **2022**, *368*, 120708. [\[CrossRef\]](https://doi.org/10.1016/j.molliq.2022.120708)
- 3. Gaskill, P.J.; Khoshbouei, H. Dopamine and norepinephrine are embracing their immune side and so should we. *Curr. Opin. Neurobiol.* **2022**, *77*, 102626. [\[CrossRef\]](https://doi.org/10.1016/j.conb.2022.102626) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/36058009)
- 4. Jo, Y.S.; Lee, J.; Mizumori, S.J. Effects of prefrontal cortical inactivation on neural activity in the ventral tegmental area. *J. Neurosci.* **2013**, *33*, 8159–8171. [\[CrossRef\]](https://doi.org/10.1523/JNEUROSCI.0118-13.2013) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/23658156)
- 5. Douma, E.H.; de Kloet, E.R. Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. *Neurosci. Biobehav. Rev.* **2020**, *108*, 48–77. [\[CrossRef\]](https://doi.org/10.1016/j.neubiorev.2019.10.015) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/31666179)
- 6. Surmeier, D.J.; Guzman, J.N.; Sanchez-Padilla, J.; Schumacker, P.T. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease. *Neuroscience* **2011**, *198*, 221–231. [\[CrossRef\]](https://doi.org/10.1016/j.neuroscience.2011.08.045) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/21884755)
- 7. Wegrzynowicz, M.; Bar-On, D.; Calo', L.; Anichtchik, O.; Iovino, M.; Xia, J.; Ryazanov, S.; Leonov, A.; Giese, A.; Dalley, J.W. Depopulation of dense α -synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson's disease model. *Acta Neuroveg.* **2019**, *138*, 575–595. [\[CrossRef\]](https://doi.org/10.1007/s00401-019-02023-x) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/31165254)
- 8. Ayano, G. Dopamine: Receptors, functions, synthesis, pathways, locations and mental disorders: Review of literatures. *J. Ment. Disord. Treat.* **2016**, *2*, 2. [\[CrossRef\]](https://doi.org/10.4172/2471-271X.1000120)
- 9. Blum, T.; Moreno-Pérez, A.; Pyrski, M.; Bufe, B.; Arifovic, A.; Weissgerber, P.; Freichel, M.; Zufall, F.; Leinders-Zufall, T. Trpc5 deficiency causes hypoprolactinemia and altered function of oscillatory dopamine neurons in the arcuate nucleus. *Proc. Natl. Acad. Sci. USA* **2019**, *116*, 15236–15243. [\[CrossRef\]](https://doi.org/10.1073/pnas.1905705116)
- 10. Zhuo, S.; Guan, Y.; Li, H.; Fang, J.; Zhang, P.; Du, J.; Zhu, C. Facile fabrication of fluorescent Fe-doped carbon quantum dots for dopamine sensing and bioimaging application. *Analyst* **2019**, *144*, 656–662. [\[CrossRef\]](https://doi.org/10.1039/C8AN01741G)
- 11. Liu, X.; He, F.; Zhang, F.; Zhang, Z.; Huang, Z.; Liu, J. Dopamine and melamine binding to gold nanoparticles dominates their aptamer-based label-free colorimetric sensing. *Anal. Chem.* **2020**, *92*, 9370–9378. [\[CrossRef\]](https://doi.org/10.1021/acs.analchem.0c01773)
- 12. Zhang, L.; Tang, Z.; Dong, Y. Silicon quantum dot involved luminol chemiluminescence and its sensitive detection of dopamine. *Anal. Methods* **2018**, *10*, 4129–4135. [\[CrossRef\]](https://doi.org/10.1039/C8AY01211C)
- 13. De Benedetto, G.E.; Fico, D.; Pennetta, A.; Malitesta, C.; Nicolardi, G.; Lofrumento, D.D.; De Nuccio, F.; La Pesa, V. A rapid and simple method for the determination of 3, 4-dihydroxyphenylacetic acid, norepinephrine, dopamine, and serotonin in mouse brain homogenate by HPLC with fluorimetric detection. *J. Pharm. Biomed. Anal.* **2014**, *98*, 266–270. [\[CrossRef\]](https://doi.org/10.1016/j.jpba.2014.05.039) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/24971521)
- 14. Zhao, Y.; Zhao, S.; Huang, J.; Ye, F. Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis. *Talanta* **2011**, *85*, 2650–2654. [\[CrossRef\]](https://doi.org/10.1016/j.talanta.2011.08.032) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/21962697)
- 15. Shahzad, F.; Iqbal, A.; Zaidi, S.A.; Hwang, S.-W.; Koo, C.M. Nafion-stabilized two-dimensional transition metal carbide (Ti3C2T_x MXene) as a high-performance electrochemical sensor for neurotransmitter. *J. Ind. Eng. Chem.* **2019**, *79*, 338–344. [\[CrossRef\]](https://doi.org/10.1016/j.jiec.2019.03.061)
- 16. Dong, Y.; Liu, J.; Zheng, J. A sensitive dopamine electrochemical sensor based on hollow zeolitic imidazolate framework. *Colloids Surf. A Physicochem. Eng. Asp.* **2021**, *608*, 125617. [\[CrossRef\]](https://doi.org/10.1016/j.colsurfa.2020.125617)
- 17. Xie, F.; Yang, M.; Jiang, M.; Huang, X.-J.; Liu, W.-Q.; Xie, P.-H. Carbon-based nanomaterials–a promising electrochemical sensor toward persistent toxic substance. *TrAC Trends Anal. Chem.* **2019**, *119*, 115624. [\[CrossRef\]](https://doi.org/10.1016/j.trac.2019.115624)
- 18. Ahammad, A.S.; Akter, T.; Al Mamun, A.; Islam, T.; Hasan, M.M.; Mamun, M.; Faraezi, S.; Monira, F.; Saha, J.K. Cost-effective electrochemical sensor based on carbon nanotube modified-pencil electrode for the simultaneous determination of hydroquinone and catechol. *J. Electrochem. Soc.* **2018**, *165*, B390. [\[CrossRef\]](https://doi.org/10.1149/2.1341809jes)
- 19. Nair, J.A.; Saisree, S.; Aswathi, R.; Sandhya, K. Ultra-selective and real-time detection of dopamine using molybdenum disulphide decorated graphene-based electrochemical biosensor. *Sens. Actuators B Chem.* **2022**, *354*, 131254. [\[CrossRef\]](https://doi.org/10.1016/j.snb.2021.131254)
- 20. Sakthivel, R.; Kubendhiran, S.; Chen, S.-M.; Kumar, J.V. Rational design and facile synthesis of binary metal sulfides VS $_2$ -SnS $_2$ hybrid with functionalized multiwalled carbon nanotube for the selective detection of neurotransmitter dopamine. *Anal. Chim. Acta* **2019**, *1071*, 98–108. [\[CrossRef\]](https://doi.org/10.1016/j.aca.2019.04.058)
- 21. Baye, A.F.; Appiah-Ntiamoah, R.; Amalraj, J.; Reddy, K.K.; Kim, H. Graphene oxide interlayered Ga-doped FeSe₂ nanorod: A robust nanocomposite with ideal electronic structure for electrochemical dopamine detection. *Electrochim. Acta* **2020**, *363*, 137245. [\[CrossRef\]](https://doi.org/10.1016/j.electacta.2020.137245)
- 22. Padmanaban, A.; Padmanathan, N.; Dhanasekaran, T.; Manigandan, R.; Srinandhini, S.; Sivaprakash, P.; Arumugam, S.; Narayanan, V. Hexagonal phase Pt-doped cobalt telluride magnetic semiconductor nanoflakes for electrochemical sensing of dopamine. *J. Electroanal. Chem.* **2020**, *877*, 114658. [\[CrossRef\]](https://doi.org/10.1016/j.jelechem.2020.114658)
- 23. Yadav, S.; Yashas, S.R.; Shivaraju, H.P. Transitional metal chalcogenide nanostructures for remediation and energy: A review. *Environ. Chem. Lett.* **2021**, *19*, 3683–3700. [\[CrossRef\]](https://doi.org/10.1007/s10311-021-01269-w)
- 24. Zhou, J.; Liu, F.; Lin, J.; Huang, X.; Xia, J.; Zhang, B.; Zeng, Q.; Wang, H.; Zhu, C.; Niu, L. Large-area and high-quality 2D transition metal telluride. *Adv. Mater.* **2017**, *29*, 1603471. [\[CrossRef\]](https://doi.org/10.1002/adma.201603471) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/27859781)
- 25. Zaw, N.Y.W.; Jo, S.; Park, J.; Kitchamsetti, N.; Jayababu, N.; Kim, D. Clay-assisted hierarchical growth of metal-telluride nanostructures as an anode material for hybrid supercapacitors. *Appl. Clay Sci.* **2022**, *225*, 106539. [\[CrossRef\]](https://doi.org/10.1016/j.clay.2022.106539)
- 26. De Silva, U.; Masud, J.; Zhang, N.; Hong, Y.; Liyanage, W.P.; Zaeem, M.A.; Nath, M. Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium. *J. Mater. Chem. A* **2018**, *6*, 7608–7622. [\[CrossRef\]](https://doi.org/10.1039/C8TA01760C)
- 27. Brea, C.; Hu, G. Shifting and breaking scaling relations at transition metal telluride edges for selective electrochemical $CO₂$ reduction. *J. Mater. Chem. A* **2022**, *10*, 10162–10170. [\[CrossRef\]](https://doi.org/10.1039/D2TA00950A)
- 28. Qian, G.; Mo, Y.; Yu, C.; Zhang, H.; Yu, T.; Luo, L.; Yin, S. Free-standing bimetallic CoNiTe₂ nanosheets as efficient catalysts with high stability at large current density for oxygen evolution reaction. *Renew. Energy* **2020**, *162*, 2190–2196. [\[CrossRef\]](https://doi.org/10.1016/j.renene.2020.10.028)
- 29. Yang, F.; Yang, M.; Zhang, J.; Guo, H.; Zhang, T.; Yang, W. High-efficiency hybrid supercapacitor based on three-dimensional interconnected nitrogen-rich caCTF-1@ pC-C3N⁴ network and NiCoTe² . *J. Alloys Compd.* **2022**, *911*, 164782. [\[CrossRef\]](https://doi.org/10.1016/j.jallcom.2022.164782)
- 30. Wang, L.; Wang, J.; Yan, L.; Ding, Y.; Wang, X.; Liu, X.; Li, L.; Ju, J.; Zhan, T. Prussian Blue Analogue-Derived Iron Sulfide–Cobalt Sulfide Nanoparticle-Decorated Hollow Nitrogen-Doped Carbon Nanocubes for the Selective Electrochemical Detection of Dopamine. *ACS Sustain. Chem. Eng.* **2022**, *10*, 17230–17240. [\[CrossRef\]](https://doi.org/10.1021/acssuschemeng.2c05158)
- 31. Zhang, S.; Yang, D.; Zhang, M.; Liu, Y.; Xu, T.; Yang, J.; Yu, Z.-Z. Synthesis of novel bimetallic nickel cobalt telluride nanotubes on nickel foam for high-performance hybrid supercapacitors. *Inorg. Chem. Front.* **2020**, *7*, 477–486. [\[CrossRef\]](https://doi.org/10.1039/C9QI01395D)
- 32. Deng, Z.-P.; Sun, Y.; Wang, Y.-C.; Gao, J.-D. A NiFe alloy reduced on graphene oxide for electrochemical nonenzymatic glucose sensing. *Sensors* **2018**, *18*, 3972. [\[CrossRef\]](https://doi.org/10.3390/s18113972) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/30445786)
- 33. Li, F.; Ni, B.; Zheng, Y.; Huang, Y.; Li, G. A simple and efficient voltammetric sensor for dopamine determination based on ZnO nanorods/electro-reduced graphene oxide composite. *Surf. Interfaces* **2021**, *26*, 101375. [\[CrossRef\]](https://doi.org/10.1016/j.surfin.2021.101375)
- high performance electrochemical sensors. *Appl. Surf. Sci.* **2021**, *541*, 148270. [\[CrossRef\]](https://doi.org/10.1016/j.apsusc.2020.148270) 35. Dai, H.; Chen, D.; Li, Y.; Cao, P.; Wang, N.; Lin, M. Voltammetric sensing of dopamine based on a nanoneedle array consisting of NiCo2S⁴ hollow core-shells on a nickel foam. *Mikrochim. Acta* **2018**, *185*, 157. [\[CrossRef\]](https://doi.org/10.1007/s00604-018-2718-5) [\[PubMed\]](https://www.ncbi.nlm.nih.gov/pubmed/29594550)
- 36. Gao, L.; Ma, J.; Zheng, J. Solvothermal synthesis of Sb₂S₃-graphene oxide nanocomposite for electrochemical detection of dopamine. *J. Electrochem. Soc.* **2020**, *167*, 107503. [\[CrossRef\]](https://doi.org/10.1149/1945-7111/ab82fc)
- 37. Shen, H.; Jang, B.; Park, J.; Mun, H.-J.; Cho, H.-B.; Choa, Y.-H. In situ synthesis of a Bi $_2$ Te $_3$ -nanosheet/reduced-graphene-oxide nanocomposite for non-enzymatic electrochemical dopamine sensing. *Nanomaterials* **2022**, *12*, 2009. [\[CrossRef\]](https://doi.org/10.3390/nano12122009)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.