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Abstract: Dopamine (DA) is an important catecholamine neurotransmitter in the mammalian cen-
tral nervous system that affects many physiological functions. Hence, a highly sensitive and se-
lective sensing platform is necessary for quantification of DA in the human body. In this study,
ternary transition metal tellurides of CoNiTe2 were successfully synthesized using the hydrothermal
method. The proposed CoNiTe2 nanomaterials were dispersed well in Nafion to form a well-
dispersed suspension and, when dropped on a glassy carbon electrode (GCE) as the working elec-
trode (CoNiTe2/Nafion/GCE) for electrochemical non-enzymatic DA sensing, displayed excellent
electrocatalytic activity for dopamine electrooxidation. The morphology and physical/chemical
properties of CoNiTe2 nanomaterials were characterized using field emission scanning electron
microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray
photoelectron spectroscopy (XPS). In order to obtain the best electrochemical response to DA from the
fabricated CoNiTe2/Nafion/GCE, the experimental conditions of electrochemical sensing, including
the CoNiTe2 loading amounts and pH values of the phosphate buffer solution (PBS), were explored
to achieve the best electrochemical sensing performance. Under optimal conditions (2 mg of CoNiTe2

and pH 6.0 of PBS), the fabricated CoNiTe2/Nafion/GCE showed excellent electrocatalytic activity
of DA electrooxidation. The CoNiTe2/Nafion/GCE sensing platform demonstrated excellent elec-
trochemical performance owing to the optimal structural and electronic characteristics originating
from the synergistic interactions of bimetallic Co and Ni, the low electronegativity of Te atoms,
and the unique morphology of the CoNiTe2 nanorod. It exhibited a wide linear range from 0.05 to
100 µM, a high sensitivity of 1.2880 µA µM−1 cm−2, and a low limit of detection of 0.0380 µM, as
well as acceptable selectivity for DA sensing. Therefore, the proposed CoNiTe2/Nafion/GCE could
be considered a promising electrode material for electrochemical non-enzymatic DA sensing.

Keywords: CoNiTe2 transition metal tellurides; electrochemical non-enzymatic dopamine sensing;
morphology

1. Introduction

Carlsson et al. (1958) reported that dopamine (DA) is a key neurotransmitter in the
brain and is used as an immediate precursor in the biosynthesis of noradrenaline [1].
Current data reveal that DA is the predominant neurotransmitter expressed in the mam-
malian central nervous system (accounting for 80% of the catecholamine content in the
brain) [2]. The amount of DA released correlates exclusively to diverse brain functions
and is expressed specifically in the ventral tegmental area (VTA) of the midbrain, the sub-
stantia nigra pars compacta, and the hypothalamic arcuate nucleus of the human brain [3].
VTA dopaminergic activity controls natural motivation, reward prediction, and contex-
tual learning [4,5]. Parkinson’s disease (PD), one of the most common neurodegenerative
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disorders, is linked to abnormal dopamine release in the substantia nigra pars compacta.
PD is diagnosed by characteristic motor tremors [6,7]. The hypothalamic arcuate nucleus’
dopaminergic neurons are essential in regulating prolactin release. Prolactin is a protein
hormone synthesized and secreted by lactotropic cells in the anterior pituitary gland and is
involved in the prolactin homeostasis of the body [8,9].

Unquestionably, finding a precise and efficient method to quickly detect DA level devi-
ations, thereby mitigating the societal and economic burdens associated with neurological
disorders, is urgent. So far, analytical methods such as fluorescence [10], colorimetry [11],
chemiluminescence [12], high-performance liquid chromatography (HPLC) [13], capillary
electrophoresis (CE) [14], and electrochemistry [15,16] have been used to detect DA. Elec-
trochemical methods stand out among the conventional analytical techniques because
they are affordable, have a short analysis time, give an immediate response, and are user-
friendly [17,18]. Electrochemical analytical methods detect DA using two sensing platforms:
enzymatic and non-enzymatic. Although enzymatic sensors demonstrate high sensitivity
and specificity, they are expensive, are complex to produce, have limited reproducibility,
and are susceptible to environmental factors such as pH and temperature [19]. An electro-
chemical non-enzymatic DA sensor needs to be developed to overcome these drawbacks.

Previous reports reveal that electrochemical DA sensors based on transition metal
chalcogenides (including transition metal sulfides (TMSs) [20], transition metal selenides
(TMSs) [21], and transition metal tellurides (TMTs) [22]) have been successfully used in
the development of electrode materials. Transition metal chalcogenides are a promising
choice for electrode materials because of their excellent conductivity, abundant active
sites, simplified synthesis procedures, and low preparation costs [23]. Furthermore, the
electronegativity of Te (2.1) is low compared to S (2.58) and Se (2.55), resulting in weaker
bonds between transition metals and Te. This facilitates electrochemical redox reactions [24].
These characteristics make TMTs suitable for extensive applications in the electrochemical
field such as in supercapacitors [25], water splitting [26], and CO2 reduction [27]. From the
above-mentioned reports, TMTs have attracted significant attention in the electrochemical
field due to the synergic effect caused by multiple redox-active transition metals, the low
electronegativity of Te, and their unique structural features. In TMTs, the electronegativity
of Te is lower than S and Se, which would tend to weaken covalent bonding between the
transition metal and Te. Electronic structure tuning in transition metal chalcogenides should
facilitate ion insertion/extraction and electron transport to give an excellent electrochemical
performance. Nevertheless, the existing literature provides limited information on TMTs’
use as electrochemical biosensors, especially in DA sensing.

In this study, we prepared CoNiTe2 ternary transition metal telluride nanomaterials
using the hydrothermal method. We fabricated a CoNiTe2/Nafion/glassy carbon electrode
(GCE) sensing platform by drop-casting the prepared CoNiTe2/Nafion nanocomposite on
GCE. The CoNiTe2/Nafion nanocomposite catalyzed DA electrochemical redox to deliver
remarkable electrochemical performance through the synergistic effects of bimetallic Co and
Ni, the relatively low electronegativity of Te, and the unique features of nanorod morphology.

2. Materials and Methods
2.1. Reagents

Cobalt (II) chloride hexahydrate (CoCl2·6H2O), nickel (II) chloride hexahydrate
(NiCl2·6H2O), hydrazine monohydrate (N2H4·H2O), and ethylenediamine were obtained
from Alfa Aesar (Ward Hill, MA, USA). Tellurium powder (~200 mesh), Nafion solution
(5 wt % in mixture of lower aliphatic alcohols and water), sodium phosphate dibasic
(Na2HPO4), sodium phosphate monobasic (NaH2PO4), dopamine hydrochloride (DA), uric
acid (UA), and L-ascorbic acid (AA) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Anhydrous ethanol (C2H5OH, 99.9%) was purchased from J.T. Baker (Phillipsburg,
NJ, USA). The deionized water (DI water) was produced using a Milli-Q water purification
system from Millipore Co. (Bedford, MA, USA). All chemicals were analytical grade and
were used as received without further purification.



Chemosensors 2024, 12, 110 3 of 12

2.2. Synthesis of CoNiTe2 Nanomaterials

The CoNiTe2 transition metal tellurides were successfully synthesized via a facile
hydrothermal method. As is typical, 0.409 g CoCl2·6H2O and 0.411 g NiCl2·6H2O were
precisely weighed and fully dissolved in 30 mL DI water by stirring for 30 min to form
solution (A). At the same time, 0.235 g Te powder was dispersed into 8 mL ethylenediamine
and stirred for 30 min to form solution (B). In the next step, solution (B) was added
dropwise to solution (A) and stirred for 30 min to make sure all the reactants were totally
dissolved. After that, 8 mL N2H4·H2O was selected as the reducing agent and added to the
mixture. The mixture was allowed to stir until a black precipitate appeared. Subsequently,
the obtained black precipitate containing the Ni–Co telluride precursor was transferred
into a 100 mL Teflon-lined stainless autoclave and heated to 180 ◦C for 12 h in an oven.
Under mild hydrothermal conditions, the as-fabricated Ni–Co telluride precursor went
through the amorphous–crystalline phase transformation induced by incorporated metal
ions. Finally, the resulting CoNiTe2 nanomaterials were cleaned by with DI water and
anhydrous ethanol in a centrifuge 3 times, and then dried in the oven overnight. Then, the
dried CoNiTe2 nanomaterials were collected for subsequent characterization. A schematic
illustration of the synthesis of the CoNiTe2 nanomaterials is shown in Figure 1.
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Figure 1. The schematic diagram for the synthesis of CoNiTe2.

2.3. Fabrication of CoNiTe2/Nafion/GCE Working Electrode

To prepare the glassy carbon electrode (GCE, diameter 3 mm, Tokai Carbon, Tokyo,
Japan) for use, a thorough polishing procedure was performed by using 0.3 µm and
0.05 µm alumina slurries. Subsequently, the electrode was subjected to a rapid ultrasonic
cleaning process using deionized (DI) water and anhydrous ethanol, followed by drying
in a 70 ◦C oven. Next, 2 mg CoNiTe2 nanomaterials were weighed and dispersed in 1 mL
0.5 wt % Nafion solution through ultrasonication for 30 min to form a well-distributed
suspension. To fabricate the working electrode, 6 µL of the suspension was dropped on
the precleaned GCE (bare GCE) and dried in the oven at 60 ◦C for 20 min. In this way,
CoNiTe2/Nafion/GCE was obtained for the following electrochemical measurements.

2.4. Characterizations

The morphology was characterized using field emission scanning electron microscopy
(FESEM, JSM-7800F, JEOL, Akishima, Japan) and transmission electron microscopy (TEM,
JEM-2100F, JEOL, Akishima, Japan). The crystal phase was analyzed by using X-ray diffrac-
tion (XRD) (D8 Discover X-ray diffractometer with Cu Kα radiation (Bruker, Karlsruhe,
Germany). The chemical structure and composition were determined by using X-ray
photoelectron spectroscopy (XPS, PHI-5000 Versaprobe, ULVAC-PHI, Chigasaki, Japan).
Electrochemical measurements were performed by using an electrochemical analyzer (Au-
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tolab, model PGSTAT 30, Eco Chemie, Utrecht, The Netherlands) in a three-electrode system
(the as-prepared samples modified with GCE were used as the working electrode, along
with a platinum wire counter electrode and an Ag/AgCl (3 M KCl) reference electrode). All
electrochemical measurements were conducted in 0.1 M phosphate-buffered saline (PBS) as
the supporting electrolyte in the absence or presence of DA. Cyclic voltammetry (CV) and
differential pulse voltammetry (DPV) measurements were taken in the working potential
window of −0.2~1.0 V and 0~0.5 V. The DPV operational parameters (in 0.1 M PBS at
pH 6.0) were optimized as follows: modulation time of 0.050 s, modulation amplitude of
0.050 V, pulse width of 0.050 s, internal time of 0.200 s, and step potential of 0.004 V.

3. Results and Discussion

The FESEM image (Figure 2a) revealed that the CoNiTe2 surface is composed of a
rod-like structure (approximately 700 nm in length) with numerous short nanorods (ap-
proximately several nanometers in length) growing on it. The short nanorods provide
abundant electrochemical active sites and this boosts electronic/ionic transport during the
subsequent electrochemical measurements. The TEM image (Figure 2b) revealed that the
CoNiTe2 nanomaterial’s inner structure concurred with the surface morphology observed
by FESEM. Figure 3a–d show the scanning TEM (STEM) images and their corresponding
EDS mapping for CoNiTe2. These affirm that the CoNiTe2 nanorod structure comprises
well-distributed Co, Ni, and Te elements. The EDS spectrum (Figure 3e) of the CoNiTe2
nanomaterials further revealed that the atomic ratio of Co, Ni, and Te is approximately
0.2:0.2:0.5, which is close to the theoretical atomic ratio of CoNiTe2. The CoNiTe2 nanoma-
terials were then characterized by X-ray diffraction. The standard XRD pattern of CoNiTe2
(JCPDS No. 65-8961) [28] was obtained.

The XRD pattern identified the structure and phase composition of the CoNiTe2
nanomaterials based on the standard patterns in the crystalline phase of CoNiTe2 (JCPDS
No. 65-8961) [28], as shown in Figure 4. In the XRD pattern of the CoNiTe2 nanomaterials,
the diffraction peaks located at 2θ equaling 31.1◦, 43.2◦, 45.9◦, 56.5◦, and 58.9◦ are attributed
to the (101), (102), (110), (201), and (103) planes, respectively (indexed to the crystalline
phase of CoNiTe2). These characterizations confirm that the CoNiTe2 ternary transition
metal tellurides were successfully synthesized via a facile hydrothermal method.
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Figure 3. (a) STEM image of CoNiTe2 nanomaterials and their corresponding element mapping
images for (b) Co, (c) Ni, and (d) Te; (e) EDS spectrum of CoNiTe2 nanomaterials.
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The surface elemental composition and valence states of the CoNiTe2 nanomaterials
were characterized by XPS, as shown in Figure 5. Figure 5a shows the high-resolution Co
2p XPS spectra of the CoNiTe2 nanomaterials. Two spin-orbit doublets corresponding to
Co 2p3/2 and Co 2p1/2 were found. Co2+ was observed at 780.8 eV and 797.2 eV (binding
energies), while Co3+ was observed at 778.8 eV and 796 eV. In addition to the two spin-orbit
doublets, shake-up satellites (marked as Sat.) were observed adjacent to each doublet,
located at 785.4 eV and 802.6 eV, respectively. Figure 5b shows the high-resolution Ni 2p
XPS spectra of the CoNiTe2 nanomaterials. Two spin-orbit doublets were ascribed to Ni
2p3/2 and Ni 2p1/2. Ni3+ was located at binding energies 855.4 eV and 873.4 eV, while
Ni2+ was observed at binding energies 852.4 eV and 870.2 eV. Likewise, two shake-up
satellites (marked as Sat.) were observed adjacent to the two spin-orbit doublets, which
were situated at 861.4 eV and 879.0 eV, respectively. Figure 5c shows the high-resolution Te
3d XPS spectra of the CoNiTe2 nanomaterials. The spin-orbit doublets of Te 3d5/2 and Te
3d3/2 appeared at 573 eV and 583.4 eV, respectively, and are attributable to Te2−. The other
two peaks at 576 eV and 586.4 eV are shake-up satellites (marked as Sat.) [29].
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The electrochemical characteristics of CoNiTe2 nanomaterials for DA detection were
performed by cyclic voltammetry (CV). Figure 6 shows the CV curves of bare GCE (black
lines), Nafion/GCE (blue lines), and CoNiTe2/Nafion/GCE (red lines) in 0.1 M PBS (pH 7.0)
in the absence (dashed lines) and presence (solid lines) of 1 mM DA at a 50 mV s−1 scan
rate within the 0–1.0 V potential window. In the absence of DA, all electrodes show no
redox peaks due to the absence of redox-active species. With the addition of 1 mM DA, all
electrodes exhibited well-defined peaks (especially the CoNiTe2/Nafion/GCE electrode)
related to the electrochemical DA redox reaction mechanism. The possible electrochemical
DA redox reaction mechanism is described in the previous literature [30]. During the elec-
trochemical oxidation process, DA was oxidized to dopaminoquinone (DAQ), and during
the electrochemical reduction process, DAQ was reduced to DA. The electrochemical DA
redox reaction is a reversible process involving two electron/two proton transfers. No-
tably, CoNiTe2/Nafion/GCE possesses the highest electrocatalytic activity in DA sensing.
These results demonstrate that the synergistic interaction of bimetallic Co and Ni, the
low electronegativity of Te, and the unique morphology of CoNiTe2 nanorods improved
electrochemical performance. According to a previous report [31], bimetallic Ni–Co transi-
tion metal chalcogenides generally exhibited satisfactory electrochemical performance. In
Ni–Co tellurides, the electronegativity of Te is lower than those of S and Se. This results
in weakened covalent bonding between the transition metal and Te, further accelerating
electron transfer and modulating electronic structure in the electrochemical process. This
enhanced electrochemical performance.
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To obtain CoNiTe2 nanomaterials with optimal electrochemical performance for DA
sensing, the CoNiTe2 loading amounts and pH values of the phosphate buffer solution
were varied to understand electrochemical parameter optimization. To do this, 1~4 mg of
CoNiTe2 was weighed and dispersed into 1 mL 0.5 wt % Nafion to form a homogenous
dispersion, then immobilized on the surface of GCE by a drop-casting method. Figure 7a
shows the CV curves of CoNiTe2/Nafion/GCE at different CoNiTe2 loading amounts in
0.1 M PBS (pH 7.0) in the presence of 1 mM DA at a scan rate of 50 mV s−1. It was observed
that the oxidation peak current dramatically increased as the CoNiTe2 loading amount
varied from 1 to 2 mg. However, when the CoNiTe2 loading amount exceeded 2 mg,
the oxidation peak current decreased, indicating that the presence of the excess CoNiTe2
hindered the mass transfer of dopamine [32]. Figure 7b displays the CoNiTe2/Nafion/GCE
CV curves at different phosphate buffer solution pH values (from pH 5 to 8) in the presence
of 1 mM DA. The oxidation peak potential (Epa) decreased with increasing pH value from
5 to 8, revealing that DA electrochemical behavior is associated with the pH dependence
of interfacial electron–proton transfer. The corresponding linear relationship between
oxidation peak potential and pH was calculated as follows: Epa (V) = 0.846–0.059 pH
(R2 = 0.9771) (see the inset of Figure 7b). The results indicate a 0.059 V/pH linear slope.
This is close to the theoretical value, implying that the electrochemical DA redox reaction
mechanism involves two electron/two proton transfer steps, as governed by the Nernst
equation [33]. Notably, the oxidation peak current increased slightly as the pH increased
from 5 to 6, and then decreased rapidly from pH 6 to 8. The maximum DA oxidation peak
current was at pH 6. Consequently, 2 mg of CoNiTe2 (loading amount) and a phosphate
buffer solution pH of 6.0 (pH value) were selected as the optimal parameters for DA sensing.
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To further examine the electrochemical behavior of the CoNiTe2 nanomaterials,
CoNiTe2/Nafion/GCE was studied through CV performed in 0.1 M PBS (pH 6.0) in
the presence of 1 mM DA at 50 to 300 mV s−1 scan rates (Figure 8a). It was observed
that the redox peak current increased with increasing scan rate. Figure 8b reveals that
both the oxidation peak current (Ipa) and reduction peak current (Ipc) were linear with
the square root of the scan rate (v1/2). The linear regression equation is expressed as
Ipa (µA) = 34.8800 + 3.2760 v1/2 ((mV s−1)1/2) (R2 = 0.9856) and Ipc (µA) = −22.7890–5.0160
v1/2 ((mV s−1)1/2) (R2 = 0.9897). These results establish that the electrochemical DA redox
reaction is controlled by diffusion according to the Randles–Sevcik equation [34].
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We measured the electrochemical performance of CoNiTe2/Nafion/GCE for DA
electrooxidation using differential pulse voltammetry (DPV) in 0.1 M PBS (pH 6.0) with in-
creasing DA concentrations (0~100 µM) under optimal experimental parameters to evaluate
the feasibility of the proposed electrochemical non-enzymatic DA sensing. Figure 9a shows
the CoNiTe2/Nafion/GCE DPV responses against various DA concentrations from 0 to
100 µM. It was observed that the DPV response increased with increasing DA concentration.
The DPV responses corresponding to DA concentrations ranging from 0.05 to 100 µM were
plotted to obtain the corresponding calibration curve (Figure 9b). The linear regression
equation for the oxidation peak current (Ipa) against the DA concentration is expressed as
Ipa (µA) = 1.0030 + 0.0910 C (µM). The DA sensor calibration curve was linear from 0.05
to 100 µM (R2 = 0.9928), and the slope and intercept were 0.0910 µA µM−1 and 1.0030 µA,
respectively. The sensitivity (according to the geometric area of GCE (0.0707 cm2) and the
slope of the calibration curve), limit of detection (LOD) based on 3 Sb/m, and limit of quan-
tification (LOQ) based on 10 Sb/m (Sb is the blank signal standard deviation for n = 3, and
m is the calibration plot slope) were estimated as 1.2880 µA µM−1 cm−2, 0.0380 µM, and
0.1270 mM, respectively. Table 1 summarizes previous reports regarding electrochemical
non-enzymatic DA sensors based on the different transition metal chalcogenides [21,35–37].
It is noted that the CoNiTe2 electrode material is comparable to the other electrochemical
non-enzymatic DA sensors based on the different transition metal chalcogenides.
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Table 1. Comparison of electrochemical DA sensor performance based on the different transition
metal chalcogenides.

Electrode Materials Linear Range
(mM)

Sensitivity
(µA µM−1 cm−2)

LOD
(µM) Reference

NiCo2S4/NF 0.50~100 14.9920 0.200 [35]
Sb2S3/GO/GCE 1.55~15.55 0.3077 0.800 [36]

fGO-Ga0.7Fe0.3Se2/GCE 2~170 0.2188 0.110 [21]
Bi2Te3/rGO/GCE 10~1000 0.2229 0.060 [37]

CoNiTe2/GCE 0.05~100 1.2880 0.038 This Work

In a physiological environment, the electrochemical similarities between dopamine
(DA), uric acid (UA), and ascorbic acid (AA) biomolecules can cause overlapping detection
signals, potentially impacting DA sensing accuracy and reliability. Therefore, it is necessary
to perform an interference study to evaluate the sensing ability and distinguish the interfer-
ing species. This ensures the accurate determination of the target molecules. To evaluate
the selectivity of the CoNiTe2 nanomaterials in the presence of the interfering molecules for
DA sensing, Figure 10 displays the interference effect results for CoNiTe2/Nafion/GCE
in 0.1 M PBS (pH 6.0) in the presence of 200 µM AA and 10 µM UA (both are reasonable
concentrations in the human body) and various DA concentrations (0.05, 0.5, 1, 3, 5, 7.5,
and 10 µM). As observed, the DPV responses of the interfering molecules AA and UA
were found at 0.15 V and 0.35 V, respectively. However, the DPV response of DA was
observed at about 0.22 V, and its response increased with increasing DA concentration.
In the experimental results, no significant interference effect was observed for DA deter-
mination in the presence of AA and UA. The linear regression equation for the oxidation
peak current (Ipa) against the DA concentration in the presence of AA and UA (interference
effect) is expressed as Ipa (µA) = 2.3262 + 0.1401 C (µM). The calibration curve was linear
from 0.05 to 10 µM (R2 = 0.9946), and the slope and intercept were 0.1401 µA µM−1 and
2.3262 µA, respectively. For interference effect evaluation, a comparison of slope differences
in the solvent and interference addition calibration curves showed that there was a small
increase in slope in the presence of interfering molecules, indicating a slight interference
effect. To minimize interference effects, a quantitative analysis was further performed using
matrix-matched calibration curves to reduce interference-induced effects. As discussed
above, it can be deduced that CoNiTe2/Nafion/GCE has acceptable selectivity at DA con-
centrations ranging from 0.05 to 10 µM when AA and UA were also present, demonstrating
the excellent anti-interference ability of the CoNiTe2 nanomaterials.
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4. Conclusions

In this study, a hydrothermally synthesized CoNiTe2 nanomaterial-fabricated sensing
platform (CoNiTe2/Nafion/GCE) demonstrated prominent electrochemical performance
for DA sensing owing to its excellent properties caused by bimetallic Co and Ni, the
low electronegativity of Te, and its unique structural features (nanorods). In CoNiTe2
nanomaterials, the lower electronegativity of Te leads to a weakened covalent bonding
between transition metals and Te, resulting in the modulation of the electronic structure,
which could propose an effective way to accelerate electron/ion transportation between
the interface of the electroactive materials and electrolyte solution, exhibiting remarkable
electrochemical performance for DA sensing. The electrochemical non-enzymatic DA
sensor based on a CoNiTe2 nanomaterials sensing platform exhibits excellent performance
for the linear range from 0.05 to 100 µM, a sensitivity of 1.2880 µA µM−1 cm−2, and a limit
of detection (LOD) of 0.0380 µM. Furthermore, the acceptable selectivity of the presented
CoNiTe2/Nafion/GCE in the presence of interfering species makes it a promising DA
sensing platform for it practical use.
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