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Abstract: Proton conductors are ceramic materials with a crystalline or amorphous structure, which
allow the passage of an electrical current through them exclusively by the movement of protons:
H+. Recent developments in proton-conducting ceramics present considerable promise for obtaining
economic and sustainable energy conversion and storage devices, electrolysis cells, gas purification,
and sensing applications. So, proton-conducting ceramics that combine sensitivity, stability, and the
ability to operate at low temperatures are particularly attractive. In this article, the authors start by
presenting a brief historical resume of proton conductors and by exploring their properties, such
as structure and microstructure, and their correlation with conductivity. A perspective regarding
applications of these materials on low-temperature energy-related devices, electrochemical and
moisture sensors, is presented. Finally, the authors’ efforts on the usage of a proton-conducting
ceramic, polyantimonic acid (PAA), to develop humidity sensors, are looked into.

Keywords: ceramics; hydrogen bonding; protonic conductors; inorganics; humidity sensing;
electrical properties

1. Introduction

R&D, as shown in recent years, has demonstrated rising interest in proton-conducting
materials due to their usage in energy conversion, storage applications, and electrochemical
sensors, to mention a couple. Proton-conducting materials that can operate at low tem-
peratures (i.e., that operate without showing behavior degradation at temperatures below
400 ◦C) and are simultaneously efficient and stable are particularly attractive.

Ceramic semiconductor materials are the first choice for the development of proton
conduction devices due to their chemical and structural stability; possibility of use as
nanoparticle and nanopore structures, with mixed components and doping; high specific
surface area; and high reactivity with the environment and other functional materials.

The conduction mechanism in protonic conductors involves the hopping of H+ protons
through the crystalline structure of the material; the ions’ mobility is dominant for the
conduction process since H+ species, due to their small radius, require lower activation
energies to move through the atomic structure and existing interfaces [1].

As stated, one of the areas where interest has increased in proton-conducting semicon-
ductors is in energy. The more traditional materials used in developing solid oxide fuel
cell electrolytes are oxygen-ion-based and operated in high-temperature ranges between
700 and 1000 ◦C. At those temperatures, ceramic degradation is one of the main reasons for
the limited use of solid oxide fuel cells. Consequently, materials that operate and display
structural stability at low or intermediate temperatures (below 400–500 ◦C) are needed. In
addition, water role must also be considered.
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Typically, protonic conduction is supported by OH− or H3O+ ions migrating in an
aqueous environment. However, this limits the operating temperature to around 100 ◦C [2].
The goal is instead to achieve conduction by free protons, H+, between stationary host
anions. This diminishes the need for molecular water in the structure and allows it to raise
the temperature, improve kinetics, and avoid liquid water handling. Consequently, the pro-
tons have roles as charge carriers and defect terminators. Actual proton conductors utilize
a stationary host structure upon which protons jump from site to site. High-temperature
proton-conducting polymers may utilize nitrogen as a proton host. Protons are added by
sulfonation or phosphonation, and the materials can operate at temperatures higher than
100 ◦C as they do not depend on water as a proton mediator, unlike standard polymer
H3O+ conductors such as Nafion. Another challenge regarding proton transportation is
the strong O–H bond. At high temperatures, protons migrate by repeatedly breaking and
making bonds. The host oxide ion lattice must possess sufficient dynamics to temporarily
bring the proton of one host close enough to the neighboring one and allow the proton
to jump or tunnel over. For this reason, the activation energies of proton and oxide ion
conduction in oxides are often similar. Proton-free oxidic materials can also display at
high temperatures proton conduction: for this, acceptor-doped oxides, which are charge
compensated by oxygen vacancies in the dry state, must be protonated (hydrated).

However, if, due to the availability of a wider range of material candidates, a re-
duction in the operating temperature is successfully attained, system costs can also be
reduced, along with the improvement in long-term durability. In recent years, new proton-
conducting materials with enhanced properties at temperatures lower than 400 ◦C (some
at room temperature) have been reported in the literature. In this sense, polymer-based
protonic solids represent an alternative for the development of new functional hybrid ma-
terials that respond to current demands for sensing performance, flexibility, and protonic
conduction at temperatures below 100 ◦C. In solid proton conductors with a polymeric
matrix, processes involving the production of mixed polymeric membranes and/or the
incorporation of metal nanoparticles, mixed metal oxides, carbon nanomaterials, and selec-
tive salts and acids can significantly increase the proton conductivity of the membrane to
electrochemical applications, such as fuel cells and sensors [3,4]. In these cases, interfacial
effects are notable for the improvement in the proton transport process due to the interac-
tion of these materials with water molecules in the environment [4]. A limiting parameter
to the use of these polymer matrix devices is the operating temperature, generally <100 ◦C.

A common thread tying together these reports on low-temperature proton conduction
ceramics is the existence of an enhanced grain boundary interfacial area due to the usage
of nanometer-sized materials. For instance, the authors of [5] prepared nanostructured
yttrium-doped barium zirconate and evaluated its grain and grain boundary protonic
conductivity for temperatures between 0 and 400 ◦C; their most important finding was the
high protonic conduction observed at temperatures below 100 ◦C. Enhanced interfacial
proton conductivity at low temperatures was also reported by Miyoshi et al. [6] for yttria-
stabilized zirconia. They observed that interfacial protonic conduction was noticeably
higher for grain sizes smaller than 100 nm, which they attributed to the absorbed water at
the grain boundary interfaces, which increased dramatically with decreasing grain size;
the same was found by Gregori and co-workers [7] and by Takamura and colleagues [8],
for ceria, and by Maglia and his team [9], for titania (which did not show bulk proton
conductivity in the intermediate level range). Liu et al. [10] picked a lithium conductor and
converted it into a proton conductor by ion exchange at low temperatures. At the same
time, Zhou and his equals [11] developed a new electron doping stratagem to produce
high-performance SmNiO3 perovskite proton conductors for use in low-temperature solid
oxide fuel cells.

However, it must be stated that introducing new materials with enhanced proton
conductivity also results in the advent of new or enhanced fabrication methods. Room-
temperature high-pressure compaction, ultraviolet (UV) laser irradiation, hot pressing, and
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high-pressure field-assisted sintering/spark plasma sintering (FAST/SPS) are some of the
methods successfully used to produce proton conduction materials [12].

The advantages of high-pressure sintering at room temperature involve fast com-
paction using low temperatures, grain size stability, and low processing cost [13]. On
the other hand, monitoring of the synthesis is required to avoid the phenomenon of cold
welding of particles when they are subjected to high pressures [14]. Syntheses with UV
radiation and plasma can be used for the rapid formation of active sites in the polymeric
matrix. UV radiation can provide subsurface modifications of the material due to its
ability to penetrate the bulk, but it can require high energy for the process. Alternatively,
plasma-induced polymerization is applicable only for modifications on the surface of the
material [15]. Hot pressing is characterized as an environmentally friendly to manufacture
protonic conductors Still, it has the limitation of manufacturing simple shapes with low
productivity and high cost [16]. The FAST/SPS process promotes good homogeneity of the
grain-size distribution and porosity dependent on the applied pressure [9,16].

Demanding material processing conditions, such as high sintering temperatures and
stable atmospheric exposure, prevent proton conductors’ large-scale use. Macroscopically,
grain boundary impedance in proton conductors can be cut by employing nanosized mate-
rials that are easier to sinter or sintered using additives. Consequently, proton conductors’
production still imposes solving diverse challenges. Depending on the desired application,
they should exhibit some of the following requisites [17]: (a) full gas tightness—to avoid
any non-electrochemical gas mixing of anode and cathode atmospheres, the ceramic elec-
trolytes need to be densified at relatively low sintering temperatures. This becomes a critical
factor in the co-sintering of two (or more) different functional materials. High sintering
temperatures lead to undesirable facilitated migration of cations from one phase to another;
(b) high ionic conductivity—the performance of proton conductors is regulated by the
Ohmic resistance contribution, which can be minimized either by reducing the thickness of
the solid material or by using highly conductive ones; (c) low electronic conductivity—the
solid materials should exhibit a wide electrolytic domain boundary with negligible elec-
tronic conductivity in both oxidizing and reducing atmospheres. High electronic con-
ductivities originate current flows through the material, causing internal short circuits.
This results in considerable efficiency decrease, even for devices yielding superior per-
formance; (d) good thermomechanical compatibility—all materials display dimensional
temperature response variation. Therefore, the materials should present thermomechanical
compatibility with the joining materials.

So, as is being discussed, proton mobility is highly conditioned by grain boundaries
and, consequently, by discontinuities in the hopping trajectories in the vicinity of the grain
boundaries, which may increase the overall enthalpy of mobility. The distribution of charge
across the grain boundary and the enrichment of effectively positive oxygen vacancies at
the intercept between two grains—the grain boundary core—creates a potential relative to
the grain interior (known as Schottky Barrier Height). To compensate for this deviation
in the charge relative to grain interior and retain electroneutrality, the concentration of
other positively charged defects decreases, and negative defects are enriched, originating
different conductivities along the grains and grain boundaries (and consequently on their
respective activation energies). This was verified by Kjølseth et al. [18], which investigated
the specific grain and grain boundary conductivities of BaZr0.9Y0.1O3−δ function of oxygen
partial pressure and temperature, by impedance spectroscopy combined with the bricklayer
model: they have shown that oxygen partial pressure dependencies were indicative of
dominating ionic and p-type electronic conduction for the grain interior under reducing
and oxidizing conditions, respectively, while the grain boundaries showed an additional
n-type electronic contribution under reducing conditions. They established a formulation
relating grain and grain boundary conductivities with their respective activation energies,
which allowed for the assessment of the space charge layer from the specific grain boundary
and grain interior conductivity as a function of temperature.
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In general, the mechanisms of interfacial conduction that have been used to de-
scribe low-temperature conduction on nanomaterials-based protonic conductors are re-
lated to proton transport along the nanostructure. The nanostructure is usually com-
posed of nanograins connected to a hydrated layer, in which interface a pathway for
protonic conduction arises (instead of bulk transportation typical of intermediate and
high-temperature systems).

The role of interfaces in blocking or enhancing ionic conduction in various solid mate-
rials is critical. The two most important interfacial phenomena effects that either enhance
or block ionic conduction are the formation of space charges and two-dimensional (2-D)
interfacial phases [19]. The first interfacial effect conditioning proton conduction is the
formation of space charges, the origin of which is like that of electrical double layers at
interfaces between metal electrodes and aqueous electrolytes (similar phenomena have
also been discussed and modeled in semiconductor physics for modeling Schottky barriers
and p-n junctions). The formation of a space-charge region is caused by the accumulation
of net charges at the interface due to the different adsorption enthalpies of the positively
and negatively charged defects. The charges in the interface are generally assumed to
become adsorbed, which may often have different states or even different effective charges,
when compared with their counterparts inside the bulk: once those become chemically
connected to the materials, they are assumed to be immobile, even if their counterparts in
the bulk and the space-charge zones are mobile carriers, and consequently, the materials
exhibit low conductivity. The second major interfacial effect that significantly impacts
proton conductivity is represented by the formation and transition of 2-D interfacial phases.
The scientific community has recognized the broad existence of a class of impurity-based,
nanometer-thick, intergranular films, IGFs, in various oxide and non-oxide ceramic ma-
terials. Initially, it was proposed that these IGFs adopt an equilibrium thickness on the
order of 1 nm in response to a balance among several attractive and repulsive interfacial
forces. Thermodynamically, these nanoscale IGFs can be alternatively considered a class
of multilayer adsorbates or one special type of 2-D interfacial phases, which can exhibit
atomic structures and compositions that are neither observed nor necessarily stable as
bulk phases.

All the now-mentioned factors determine the overall protonic conduction of the materials.
In protonic conduction, four charge transport paths are usually considered [7] trans-

portation along grain boundaries, transportation along the surface (due to the proton-
enriched layer formed between the pore/oxide interface), transport along the open pores
surface covered by a water layer or by open pores filled with water, and proton transfer
along the bulk. For high temperatures, i.e., above 500 ◦C, water absorption is limited near
the grain boundaries, so proton conduction occurs mainly by diffusion through the bulk,
which displays smaller resistance than the found for grain boundaries.

Below 100 ◦C, open porosity is a decisive factor regulating protonic conduction due
to the possibility of physiosorbed water layers formation (on top of the chemisorbed one),
which originates additional paths for ions transfer in the system. In resume, protonic con-
duction at low temperatures depends mainly on the nanostructure (grain size, porosity, etc.)
and humidity concentration. Based on these aspects, this work presents a review of proton
conductors’ principles and applications in low-temperature conditions. In the last section,
particular focus is given to humidity sensing applications, where the authors have also
been working, reporting their recent efforts.

2. Proton Conductors
2.1. Origin

The beginning of the academic and industrial attention directed to advanced batteries
based on solid electrolyte membranes started with the patent submitted by Dzieciuch and
Weber in 1967 [20], associated with a paper of Yao and Kummer [21] (all from Ford Motor
Co., Dearborn, MI, USA); in it, the ion exchange properties and high conductivity of beta
(β) alumina ceramics were demonstrated, and they built a Na(Li)/β alumina/Na(Li)Sx
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battery, which displayed very-high-density and volume energy, making it possible to power
a vehicle electrically.

The first published works on proton conductors date back to 1972 [22] and 1975 [23].
It can be stated that the first steps by the academic community devoted to ion- and proton-
conductivity in solid-state materials were due to the first oil crisis in 1973; by then, addi-
tional funds were given and used in fundamental research on new solid electrolytes and
electrodes for advanced energy conversion and storage devices. The first international
conference on fast ion conductors was held at Belgirate (Italy) in 1972 [24,25] in the form of
a NATO Advanced Study Institute on ‘Fast Ion Transport in Solids, Solid State Batteries
and Devices’. Other conferences and meetings were held during the following years. In
1977, Roth and colleagues [26] measured the conductivity of pelletized β alumina samples
on H3O+, while Colomban et al. [27] measured it on H3O+, H+(H2O)n, and NH+

4 . Later,
the conductivities of β and β” alumina with different non-stoichiometry and cations were
also measured on single crystals and ceramics [27–30].

Attention was focused on improving the physicochemical and conductivity prop-
erties of β alumina ceramics with the incorporation of sodium and lithium cations for
the construction of electric batteries. These materials were known for their high energy
density capacity, which would later enable the development of electric cars. Research at
the time also demonstrated the ability of these latter materials to sense hydrogen species
concentration (both in water and gas) [31,32]. The studies of improved conductivity of β
alumina matrix materials returned values of the order of 2 × 10−3 S/m at room temperature.
Nevertheless, the area still had a modest number of related studies; attesting to this is the
fact that in a book published in 1978 by Hagenmuller and Van Gool [33], among more than
500 pages, only in 4 pages was H diffusion/conductivity addressed.

The second oil crisis in 1979 (when the price of an oil barrel rose from 14 to 40 US dollars)
was a relevant global event that boosted the evolution of research on solid-state protonic
conductors for electrochemical applications. In 1980, the journal Solid State Ionics was
created, but the attention given to proton conductors was still short at those times. In
1980 and 1981 were published in the Journal the first reports on proton conductors which
dealt with potassium hydroxide [34] and with β alumina single crystal conductivity [28].
It must be stated that β alumina usage is very open once ions can diffuse in almost free
form along the packed planes in the dense spinel structure [35–37]. Focus was, by that
time, given to sodium, lithium, and silver ion conductors; while lithium was considered
based on its light weight, sodium was selected due to its good compromise between
large availability and electrochemical characteristics, quite like those displayed by lithium.
Their potential use in developing energy storage devices and fuel cells was immediately
perceived. However, fuel cells were not the pioneer materials used and tested. In 1955,
Grubb [38,39] developed polymer membrane-based fuel cells. Later, Forrat et al. [40] tested
a perovskite AlLaO3 ceramic membrane-based H2/O2 fuel cell. Already in the 1980s, E.I.
DuPont de Nemours & Company started to develop fuel cells for trucks and buses based on
a sulfonated tetrafluoroethylene-based fluoropolymer-copolymer [41], commonly known
nowadays as Nafion®. The National Aeronautics and Space Administration (NASA) of the
US government was also another important agency that endorsed the use of Nafion as a
polymer–electrolyte fuel cell based on its applications for generating energy in aerospace
technologies [42]. Takahashi and colleagues [43] conducted the first systematic investigation
of ionic conduction in perovskite ceramics (published in 1980); they evaluated the proton
conductivity of lanthanum–yttrium oxide and strontium zirconate.

Presently, their relevance is noticeable once many of the on-market polymer–electrolyte
fuel cells for automotive applications are based on perfluorosulfonic acid polymers [42,44–48].
Nevertheless, their development is still ongoing. In general, the increasing demands in
this area of research, which include possibilities for the next generation of proton devices,
involve the development of miniaturized devices, with low thickness, high chemical and
structural stability, and high energy storage and conversion capacities.
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2.2. Further Impulses

During the last two decades of the 20th century, diverse research communities dedi-
cated more time to proton and ion conductors [49]. Their work on diverse domains, such
as those relating to hydrogen bonding, selective ceramics, ion exchangers, and mixed
conductors, allowed for further and faster advances in R&D regarding protonic conduction
in the first two decades of the 21st century. Figure 1 shows the temporal evolution of
scientific publications involving solid-state protonic conductors in the 2010–2023 period.
From it, it is possible to observe a transition from the importance given to polymeric elec-
trolytes in the early 2010s to the exploration of solid-state electrolytes from 2015 onwards,
with particular attention dedicated to the study of the electrical properties of ceramics. In
addition, perovskites were widely cited by the end of the 2010s as potential materials for
developing solid-state electrolytes [50].
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2.2.1. Hydrogen Bonding

Hydrogen bonds represent a crucial factor at the molecular level so that the transfer of
protons (H+ ions) can occur in a given system. This mobility can promote the conduction
of protons throughout the bulk and surface of the material and is directly related to the
amount of hydrogen bonds due to the interaction with the environment.

Regarding hydrogen bonding, the first works related to their subject were published
earlier in the 20th century; however, the ones that started to correlate it with the use and
properties of solid proton conductors appeared during the 1980s and 1990s. The book
edited by Colomban [51] and the work from Hadzi [52] were somehow precursors of
the creation of a conference series entitled ‘Horizons in Hydrogen Bond Research’. By
their side, Nagle and Tristram’s investigation was one of the first to focus on the study of
hydrogen bonds and the consequent explanation of how protons are transferred across
protein membranes in solid/liquid bioenergetic processes [53]. In 1984, Subramanian et al.
published the article entitled ‘On the proton conductor (H3O)Zr2(PO4)3

′ [54] and used
the concept of hydrogen bonds to discuss the conduction properties of this chemical
substance in the 25–150 ◦C temperature range. In 1988, two major contributions to the
subject mentioning solid proton conductors were published, one by Kreuer [55] and a
second by Novak et al. [56]. In the second, a comprehensive classification of solid-state
proton conductors was proposed for the first time. In the 1990s, the work by Kreuer and
collaborators focused on presenting inorganic compounds, such as phosphates, sulfates,
and ceramic oxides, as potential materials for proton conductivity applications [57–59].

From the 2010s onwards, a growing number of publications focusing on hydro-
gen bonds to explain conduction by protons in solid-state ceramic materials was noted
(Figure 2), following the temporal evolution of solid electrolyte research already high-
lighted (Figure 1). The depicted data confirms the topic’s importance for advancing related
areas for developing new electrolytes for applications in sensors, photocatalysts, fuel cells,
batteries, electrochromic devices, and CO2 converters. In summary, the main characteristic
of these solid electrolytes is the conduction of electricity through the diffusion of ions.
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2.2.2. Ceramic Oxides

Ceramics researchers also paid great attention to the diffusion of protonic species in
oxides, which started mainly in the middle of the 20th century. However, the number of
studies increased by the end of the century, with the development of technology and conse-
quently on the analysis and measuring equipment. Many aimed to evaluate metal corrosion
by water or hydrogen [60,61], while others focused on studying the corrosion of oxides by
water or hydrogen [62–64]. Besides being the smallest existing atom, hydrogen can gain or
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lose one electron, forming the proton or the hydride ion; consequently, proton detection is
complex, and the determination of how they are present in the compound’s formula is still
often unknown [65]. Nowadays, there are diverse techniques that can be used to detect
protons, including direct methods (such as neutron scattering [66], nuclear magnetic reso-
nance [67], and gas chromatography [68]) or indirect ones (like thermogravimetry [69]). All
of them are supported by an initial hypothesis regarding the formed/evolved species [70].

Ceramic oxides are widely used as proton conductors due to their properties of high
chemical and structural stabilities, porosity, and contact area at the nanometric scale, in
addition to high bulk and surface reactivity with selective molecules in the environment,
all promoting proton conduction [71]. In addition to the characteristics already mentioned,
ceramics such as metals, perovskite, and garnet oxides are widely used in emerging
applications of solid-state electrolytes due to their wide electrochemical window, superior
safety, and high bulk conductivity at low temperatures [72–74].

Metal oxides are considered crucial because they exhibit excellent electrical/electronic
properties, the possibility of being doped with selective donors and acceptors ions using
conventional methods, and adjustable band gap; the synthesis of mixed metal oxides
with different crystalline conformations may improve proton transport in the resulting
systems [74]. Metal oxides synthesized from different combinations of titanium, zinc,
aluminum, niobium, vanadium, molybdenum, indium, tin, copper, barium, tantalum, and
strontium oxides (and/or with selective dopants) have been used in protonic conductor
applications [74–79].

Perovskite oxide solid-state electrolytes, known as garnet oxides, stand out for their
excellent optical, electrical, and magnetic properties [80]. A vital characteristic of these
oxides, with the general formula A1−xA′

xB1−yB′
yO3+δ (x and y ≤ 1), is their ability to

partially replace cations A and B by metals with varying levels of oxidation (δ indicates an
additional or missing number of oxygen atoms). This replacement provides vacancies of
anions or cations in the crystalline structure of the material, which are directly related to
the improvement in proton transport in the system [81]. In addition, garnet oxides present
an attractive bright color, good chemical stability, and excellent mechanical and optical
absorption properties. They are currently considered as potential replacement materials
for liquid electrolytes in lithium batteries, as they enable improved energy density and
higher stability of charging and recharging cycles [82,83]; in particular, efforts have been
devoted to decreasing the electrical resistance of the lithium/oxide interface [83]. The
bibliometric study performed and depicted in Section 2.2, also showed the emergence of
the scientific community’s interest in BaCe0.7Zr0.1Y0.2O3−δ (BCZY) oxide as a protonic
conductor in recent years. BCZY is an oxide that can be synthesized by conventional
sintering methods, with pre-defined and controlled proportions of its constituent chemical
elements, with or without selective additives. The material has high chemical and structural
stability and excellent electrical properties, with potential application as an electrolyte in
solid-state fuel cells [84–86]. Most recently, Lu et al. [87] reported a novel perovskite oxide
(SrFe0.3TiO3) with high conductivity and structural stabilities (at a working temperature
range of 420–520 ◦C) for fuel cell applications. The device showed an energy density
greater than 650 mW/cm2 and stability for more than 12 h, maintaining around 90% of the
initial performance in chemical-to-electrical energy conversion tests. In the same direction,
the work of Duan et al. highlighted rare earth-doped protonic ceramic electrolytes with
high specific surface area and reactivity, capable of maintaining H2/electricity round trip
converter performance stabilized above 70%, with 1000 h of operating cycles [88]. In
fuel cells area, performance advances have been represented by the development of low-
thickness protonic ceramic electrolytes (in units of µm), structurally dense, chemically
stable, and with a high energy density capacity that can reach above 1 W/cm−2 [89].

A common aspect in these recent studies is the search for viable materials and methods
for the scalability of these devices for large-scale applications. A notable example of
these advances is found in the work of Le et al. [90], where the authors developed a
high-performance and scalable bifunctional device, with electrodes and electrolyte (with
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20 µm-thick) composed of complex oxides, an extremely high charge density capacity
of 2 Wcm−2 in fuel cell mode, and with 98% Faradic efficiency in electrolysis mode. After
1000 working hours, it was possible to verify very low degradation rates, <4% in the
first case, and ~2% under electrolyte mode.

2.2.3. Proton Exchangers Membranes

Inorganic proton exchange membranes, such as beta alumina, are one of the most
explored solid-state protonic conductors [91]. These membranes are typically semiper-
meable and designed to act concomitantly as barriers for reactants, such as oxygen and
hydrogen molecules. Presently, other ion exchangers are being considered. For instance,
zirconium phosphates (ZrP) with diverse structures (amorphous or crystalline) are known
for their thermal and hydrophilic stability, ability to incorporate selective ions to improve
functionality, and present low production costs while displaying exceptional charge ex-
change properties [92]. These characteristics are recognized to support the formation of
three-dimensional hydrogen bond networks or to permit the inclusion of proton carri-
ers throughout the material structure. Zirconium phosphates can be found in the forms
α, γ and λ. Proton conductivity is most studied in the α-ZrP form due to its higher
stability and reactivity. Generally, the conductivity in these materials is on the order
of 10−4–10−6 S/cm at room temperature and high relative humidity. This behavior is
directly related to the strong interaction between P-OH bonds and water molecules at
the material’s surface, which generates a high density of hydrogen bond networks and,
consequently, facilitates pathways for proton transfer [93]. Some tin derivates have also
been reported to display excellent ionic conduction properties [94]. Clays like silicon
dioxide (silica) and aluminosilicate porous structures exhibit similar behavior, particularly
those prepared by the sol–gel method [95,96]. Between silica crystalline and amorphous
phases, the latter is highly chosen to produce inorganic membranes due to the possibility of
forming structures with mesopores and micropores, whose size distribution can be tuned,
for instance, using the parameters of the sol–gel process [97]. Other materials that accom-
modate hydrates and possess high proton conductivity were also investigated to imitate
polymeric membranes, such as Nafion, that present good conductivity at room tempera-
ture [43,98]. Actually, one of the main applications for these semipermeable membranes is
in the development of energy-related devices such as full cells.

2.2.4. Mixed Conductors

Composites that display electronic and ionic conductivity have been evaluated for use
as energy device electrodes [24]. Compounds containing hydrogen of the type HxMOn
(being M metal elements atoms) have been more intensively evaluated in the last two
decades of the 20th century and along the 21st century [99–105]. Besides the compounds
mentioned, ferrites and other mixed compounds have also received significant attention
during the last decade [106,107]. Nevertheless, electron–insulator polymer membranes are
not the only ones to display protonic conduction.

Polyaniline (PANI) is one of the most relevant conducting polymers that have been
widely studied due to its unique electrochemical behavior and environmental
stability [108–112]; however, relatively low notice was given to its proton conductivity.
PANI-based polymers and PANI polymeric salts can be used to form powders, fibers,
etc. [113]. Structured layered materials (known as intercalation materials due to the re-
versible inclusion or insertion of a molecule or an ion into their layered structure) often
exhibit proton and electronic conductivity. For instance, carbon can be used to develop
advanced capacitors with graphene [114], with a very high surface area per mass unit.

2.3. Protonic Conduction
2.3.1. Conduction Mechanisms

As already described, under humid conditions, there are four possible proton transport
pathways in proton-conducting ceramics [115,116]. For temperatures above 500 ◦C, water
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absorption near the grain boundaries is residual; consequently, once the bulky grain
structure possesses smaller resistance than the displayed by the grain boundaries, proton
conduction occurs mainly by diffusion through the bulk. Below 100 ◦C, open porosity is a
crucial issue regarding the amplitude of protonic conduction contribution to the overall
conduction of the material due to the enhanced physisorption reactions of water that take
place along the open pores surface.

In wet environments, proton conduction displays dependency on the working tem-
perature for ceramic materials consisting of simple oxides, fluorite-type or perovskite-type
oxides. Three distinct contributions to protonic conduction can be identified (each cor-
responds to predominant proton conduction), each one tied to the differences observed
regarding the form water molecules are chemically and physically adsorbed and conse-
quently become bound to the surface of the oxides [12]; (1) the first contribution takes
place for temperatures below 50 ◦C, and is originated by water molecules physical ad-
sorption; (2) the second contribution is originated when hydrogen bonding competes with
water physisorption, in the temperature range in between 50 and 150 ◦C; (3) the third
contribution arises from the moment chemical adsorption prevails, and for temperatures
between 150 and 400 ◦C [117]. Due to the apparent negative activation energy, the first two
mentioned contributions are due to the compelling correlation between water adsorption
and temperature in the ranges mentioned.

The third contribution, which, as stated, only occurs for temperatures higher than
150 ◦C, is described by the Grotthuss chain mechanism [118], in which the protons strongly
interact with nearby electrons possessing electronegativity like the observed for oxygen
ions. Proton transport is an energy-activated hopping process that requires breaking and
restoring oxygen/ hydrogen, O–H, bonds. However, the materials’ total conductivities also
strongly depend on their microstructure, which determines charge transport characteristics
of bulk and grain boundaries and conduction through interfaces, such as the ones between
the material and measuring electrodes.

Following this mechanism, water molecules dissociate into hydroxyl groups (OH−)
and protons (H+); while hydroxyl groups are incorporated into oxygen vacancies, protons
form covalent bonds with lattice oxygen.

Regarding proton hopping, not only the Grotthuss mechanism but also the vehicle one
is involved in the charge transfer process; see Figure 3 [119]. In this mechanism, protons do
not migrate as H+ but as H3O+, NH+

4 , etc., bonded to a “vehicle” such as H2O, NH3, etc.
The “uncharged” vehicles move in the opposite direction. Hopping of proton arises from
one H3O+ to quickly rotating nearest water molecules. This mechanism is not in favor of
the fact that H2O is not a free rotator, but it has tetrahedral hydrogen bond involvement.
Nevertheless, the overall proton conductivity due to this mechanism is strongly dependent
on the vehicle diffusion rate.
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Improved protonic conduction can be achieved by increasing the number of proton
carriers on a material that can be regulated by interacting counterions, such as H3O+ or
NH+

4 , with the compound structure: these counterions will form additional hydrogen
bonds with the water or other constituents of the compound, creating proton-conducting
pathways composed of hydrogen-bond networks. Regarding the Grotthuss conduction
mechanism contribution, typically, the ion produced by oxidation in the anode adheres
to a water molecule and provisionally creates an H3O+ ion: then, another proton from
the same ion moves to another water molecule, originating one more H3O+ ion. So,
this “continuous” movement of H3O+ ions contributes significantly to the overall pro-
tonic conduction. For vehicular contribution, anion mobility depends on the dissociation
of the cationic group: so, higher dissociation rates lead to increased ion mobility and
greater conductivity. Consequently crystalline NH+

4 interactions (ionization) augment the
overall conduction.

2.3.2. Interfacial Conduction Mechanism

Lately, large amounts of time and effort have been allocated to developing materials
possessing high protonic conductivity, particularly nanostructured ones [120].

The crystal structure is regarded by many as the most important parameter in ionic
motion, including both mobility and concentration of ionic charge carriers. Accordingly,
the structural effects in the grain boundaries are readily considered since uncompensated
bonds in the grain boundaries core cause the electrochemical potential of the ions to result
in different defects from the bulk and offer a more open structure between the misaligned
adjacent grains. Thus, grain boundaries conduction of ionic charge carriers can be greater
than the bulk diffusion through the grains. Regarding the space charge effect, it has been
demonstrated that the ionic charge carrier depletes and accumulates in the vicinity of the
grain boundaries cores (also named structural transitions), which structurally differs from
the bulk: such depletion or accumulation is attributed to the existence of excess charge
in the core, which is inevitably formed due to thermodynamic differences between it and
the bulk.

Several nanostructured materials have been investigated to enhance protonic conduc-
tion at low temperatures [117,121–123]. However, the differences between the conductivity
in simple oxides and the complex nanostructured materials are low at low temperatures.
Nevertheless, nanocrystalline materials display a high hydration behavior at those lower
temperatures (below 50 ◦C); consequently, adsorbed water molecules at the material surface
and the grain boundaries form physiosorbed water layers that become paths for proton
transport [5]. Therefore, the transition of the conduction mechanism around is correlated
with the capillary condensation of water molecules.

Besides the overall interfacial contact area increase, surface terminations and structural
features are also important factors to consider regarding proton conduction enhancement.
Taking Yttria Stabilized Zirconia, YSZ, as an example, for temperatures below 50 ◦C, zir-
conium and oxygen atoms act as Lewis acid and base sites, respectively [124]. Adsorbed
water dissociates on the surface of the zirconium-containing structures and forms hydroxyl
groups on the surface, which favor proton transport (it was demonstrated that the (111)
surface of YSZ enhances dissociative adsorption of water [125]). So, the features of hy-
droxyl and H2O molecules interacting with the surface of zirconium nanostructured oxides
facilitate proton conduction. Also, in opposition to micrometric-sized grains, nanosized
ones tend to enhance water absorption and dissociation processes due to the participa-
tion of disordered surface bonds, which leads to the increase in proton conduction at
room temperature.

Raz et al. [126] also reported protonic conduction in porous YSZ with a surface-
conduction mechanism. They demonstrated that the physisorption reaction dominantly
takes place at low temperatures (<100 ◦C), and the chemisorption reaction dominantly takes
place at high temperatures (>100 ◦C). In the literature, other metal oxides were reported
to display similar behavior by forming single or multi-observed water layers, including
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Al2O3, TiO2, α-Fe2O3, and SiO2 [127–129]. Anderson and Parks [129] discussed protonic
conduction on silica surfaces; they stated that it was due to adsorption isotherms that are
formed by freely vibrating hydroxyl groups offering the strongest surface adsorption sites.

2.3.3. Structure Influence

Malavasi et al. [130] stated that nanoscale materials exhibit enhanced properties,
where grain boundary interfaces dominate, correlated with the short diffusion lengths and
high-density interfaces due to size effects. It is recognized that both bulk and grain bound-
aries contribute to the total protonic conductivity; consequently, materials’ microstructure
considerably impacts their electrical properties.

Ionic charge transportation in protonic conducting ceramic materials exhibiting micron-
size grains is regulated by the grain boundaries, which act as a barrier opposing the trans-
port of ions in polycrystalline materials. However, the size and structure of the grain
boundaries can be tailored, and consequently, the way protons are transported at and
through the interfaces, especially at low temperatures. Indeed, the controlled fabrication
of nanodomains in the materials allows them to possess a high density of interfaces with
short diffusion lengths, giving origin to enhanced conduction characteristics [130,131]. In
the literature, there are several examples of the assessment of nanostructured materials that
might exhibit enhanced low-temperature protonic conduction. Miyoshi et al. [6] reported
the fabrication of nanostructured YSZ with grain sizes smaller than 100 nm, exhibiting
remarkable interfacial protonic conduction that increased with the decrease in grain size.
Haile and colleagues [132] investigated samples of BaCe0.85Gd0.15O3-δ and used the sin-
tering temperature to control the grain size; they looked for the influence of grain size
on grain boundary electrical properties. They used a ‘brick layer model’ to estimate the
grain and grain boundary conductivities; the obtained results indicated that the grain
boundaries are significantly more resistive than the bulk in barium cerate. Kim et al. [133]
investigated the resistivity of nano YSZ with different grain sizes in a fully wet atmosphere.
For temperatures higher than 200 ◦C, the proton transport was insignificant compared
to oxygen-ion transport; however, they observed that the nano-Yttria Stabilized Zirconia
becomes a proton conductor below 120 ◦C. They observed that the total resistance decreases
significantly as grain size decreases, confirming the grain boundary interface’s importance
in enhancing proton conduction at low temperatures in the nano-YSZ.

2.4. Proton Conductors Applications

Solid-state proton conductors are vital in many technological domains and applica-
tions, including hydrogen and humidity sensors, membranes for water electrolyzers, and
energy-related devices such as fuel cells. In the following sections, the authors provide
an overview of the efforts carried out by researchers in the more relevant domains of
application of solid proton conductors and summarize their work in the last couple of years
regarding moisture sensing using polyantimonic acid (PAA).

2.4.1. Energy-Related Devices

The technology of fuel cells that use hydrogen as fuel, operating at temperatures below
100 ◦C, is nowadays well developed [43,134,135]. The protonic conducting membrane
that separates the electrodes must be very thin but hydrogen impermeable for efficient
fuel cells. The membranes must also display conductivities above 10−2 S/cm and resist
oxidation reactions.

Most fuel cells are based on Nafion or Nafion-like membranes; they exhibit high
chemical stability and proton conductivity. Concerning the fuel used in the cells, for
temperatures below 100 ◦C, hydrogen is a common choice. However, methanol is a very
promising and appealing choice, envisaging fuel cell usage in electric cars. In recent years,
efforts have been committed to developing less expensive membranes than Nafion-based
ones. However, once high protonic conduction, as well as a low level of chemical instability
to oxidation reactions, are required, the advances have been small; nevertheless, promising
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results have been obtained with non-fluorinated polymers [136–139], with zirconium
sulfophenyl phosphonates [140,141], and with polyantimonic acid (PAA) [142,143].

Some researchers have been working on proton-conducting membranes but following
a parallel approach, and they have evaluated perfluorinated ion exchange membranes.
These membranes are different from conventional ion-exchange ones once they are ther-
moplastic polymer-based. Perfluorinated ionomer membranes take advantage of their
crystalline domains to avoid dissolution; so, the variation in the temperature and water con-
tent of the polymers is likely to cause the variation in the proton’s transportation (already
observed experimentally). It is presently recognized that the dispersion of hydrophilic
nanoparticles in the polymers alters the size of the ionic clusters and their hydrophilic
interconnections. Consequently, the interest in hybrid membranes has been extended to
systems based on other ionomers such as silica, titania, or antimonic acid [41,144].

Debbarma and collaborators [145] developed a flexible polyelectrolyte of Polyvinyli-
dene fluoride (PVDF) and poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS)
as a protonic conducting membrane. The authors showed that the conductivity of the
composite increases (because of the increase in proton mobility) with increasing excitation
frequency and the proportion of PAMPS in the final material, in the range of 20 Hz to
20 MHz. The best proton conductivity results (0.238 mS/cm) and sensing properties (varia-
tions in applied force, pressure, or stress) were obtained for the 40/60 bulk PVDF/PAMPS
composite. Other work has focused on the study of proton-conducting electrolytes based
on poly(ethylene oxide) (PEO) and poly(methylmethacrylate) (PMMA) under the inclusion
of salts and acids for the development of electrochemical cells operating at room temper-
ature [3] Another example involves a composite electrolyte of polystyrene sulfonic acid
(PSSA), zirconium (IV) tungstophosphate (ZWP), and sulfonated poly(vinylidene fluoride)
(SPVDF), SPVDF-ZWP-PSSA, was produced as a protonic exchange membrane fuel cell.
The nanocomposite showed a proton conductivity of ~3.9 mS/cm. In addition, tests using
direct methanol fuel cells showed that the best performance of the SPVDF-ZWP-PSSA
membrane was obtained at an operating temperature of 60 ◦C, with a power density
of ~20.0 mW/cm2 [146]. The use of proton-conducting ceramics in energy conversion
and storage applications represents a significant segment of the advances in the domain
of solid-state protonic conductors [88,89,147,148]. In the literature, it is possible to find
representative studies on the advancement of the use of proton-conducting fuel cells. In
2019, an electrochemical cell for reversible hydrogen (H2)-electricity-H2 conversion (in
which the reaction occurs in both directions) was developed using a solid solution of
barium kerate-zirconate co-doped with yttrium (Y) and ytterbium (Yb) as an electrolyte,
and metal oxide electrodes [88]. The novel system provided a Faradaic efficiency greater
than 90%, with an overall electricity-to-H2 conversion efficiency greater than 97% at 600 ◦C.
H2–electricity–H2 cycles showed stabilized conversion efficiency at approximately 75%
even after 1000 operating hours.

Protonic materials also have the potential for energy storage applications as they can
be developed with high energy density capabilities in their bulk. Thus, they can convert
surplus electricity into chemical energy or vice versa. Another positive characteristic of
this type of electrochemical cell is that the storage capacity does not depend only on its
dimensions since the chemical fuel can have its volume reduced by pressure for adequate
storage in external tanks for an indefinite time. In this perspective, Ann’s group manu-
factured protonic conducting fuel cells with one of the highest energy density capabilities
ever obtained up to that time [89]. The authors recorded values around 1.30 W/cm2 and
0.53 W/cm2 for temperatures of 600 and 500 ◦C, respectively, using a BaCe0.55Zr0.3Y0.15O3–δ
(BCZY3) ceramic film (5 × 5 cm2 in area, and <5 µm in thickness) as electrolyte. The system
exhibited a surface area ohmic resistance of 0.09 Ω/cm-2, delivering power of up to ~21 W
in each cell.

In addition, Xing et al. [149] reported the enhancement of proton conduction of the
widely known BaZr0.8Y0.2O3 (BZY) (generally below 0.1 S/cm) from the formation of
semiconductor–ionic heteronanostructures from Ceria (CeO2−δ/BZY) for applications
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as an electrolyte in solid oxide fuel cells. The authors verified much higher values of
proton conductivity (0.23 S/cm) and power (0.845 W/cm2) at ~500 ◦C for the CeO2−δ/BZY
structure compared to the BZY sample under the same conditions. At a similar working
temperature, a SrFe0.3TiO3 (SFT) protonic fuel cell was obtained with energy density
capabilities of 0.65 W/cm2 and current density of 1.14 A/cm2 as a potential material for
the conversion of chemical energy to electricity [87].

In 2017, Gao et al. [4] developed BaCe0.7Zr0.1Y0.1Yb0.1O3−δ (BCZYYb) nanocrystalline
mixed oxide membranes as new materials with improved proton conductivity at working
temperatures ≤300 ◦C. The results indicated excellent surface mobility of protons in the
membrane as a combined result of its interfacial (surface and grain boundaries) and
bulk effects. At low temperatures, this membrane interface was hydrated with water
chemisorbed and physiosorbed layers, including free H2O, hydronium ions (H3O+), and
surface hydroxyl species. This behavior differs from the usual interfacial blocking effect
observed in ionic conductors at high temperatures. Thus, the authors concluded the
study by indicating that, at 300 ◦C, this projected interface is an additional means for
proton transport, which indicates the material’s better performance for applications such
as low-temperature protonic fuel cells.

In another relevant study, Jensen et al. [147] developed a new large-scale storage
method combining the use of reversible electrochemical cells based on protonic oxides
and the use of subterraneous storage tanks for carbon dioxide and methane gases. The
authors noted a high efficiency of electrical energy storage and a kW/h cost similar to
that required by pumped hydro technologies. Tarasova and collaborators [148,150,151]
produced layered perovskites based on rare-earth-doped BaLaInO4, using barium carbonate
(BaCO3), indium(III) oxide (In2O3) and lanthanum(III) oxide (La2O3) as primary reactants.
The novel proton-conducting materials, neodymium (Nd)-, praseodymium (Pr)-, and
gadolinium (Gd)-doped BaLaInO4 are presented as potential proton-conducting fuel cells.
It was shown that the production of these nanomaterials by calcination above 1000 ◦C was
essential for obtaining stable crystalline organizations that favored the proton concentration
and mobility under humid air at low temperatures (below 400 ◦C), with proton conductivity
values higher than those obtained for samples without the use of dopants (about 18 times
higher for Pr-doped BaLaInO4). From the observed results, the authors concluded the
potential of these novel electrolytic materials for converting the chemical energy of H2 to
electrical energy.

2.4.2. Sensor Devices

Developing sensing devices with increased sensing capabilities (sensitivity, selectivity,
limit of detection, repeatability, etc.) is vital in many private, public, commercial, and
industrial domains (such as houses, public buildings, shops, and factories).

Detecting and monitoring air-containing species (for instance, pollution for health
control purposes) is common to all locations mentioned, displaying an increasing and
urgent search for improved solutions. So, the demand for specific gas sensors is huge.
Today, it is common knowledge that protonic conductor membranes that are highly per-
meable to hydrogen can be used to fabricate sensors. For instance, pellicular zirconium
phosphates are good proton conductor candidates for usage in some types of sensors; they
display good thermal stability up to 350 ◦C. Pellicular zirconium phosphate-based sensors
can detect hydrogen in the air at low concentrations (up to 10−6 ppm) [152]. However,
using proton conductor materials for sensing applications is typically limited to hydrogen
detection/measuring applications. Regardless, highly sensitive amperometric sensors for
O2 [153], CO [154], NO, and NO2 [155] have been developed.

In the last decade, studies on using proton-based conducting materials for sensing
purposes have accelerated and have been reported in the literature. Zhao et al. [156]
developed a humidity-assisted sensor for ammonia detection in exhaled air based on
hydrophilic polymers. They used as a starting point their previous studies [157] and Li
and colleagues’ [158] work; in both, it was observed that adsorbed water molecules could
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form proton-conductive paths that allowed ion migration and that species and the content
of the ionizable group influenced the conductivity of the humidity-sensitive gel. Their
explanation for the humidity-enhanced effect in ammonia is as follows: (1) the gas-sensitive
films start by physically adsorbing a layer of water molecules; (2) then, due to interactions
between water and ammonia molecules, strong hydrogen bonds are formed, resulting in
increased ammonia adsorption by the previous physiosorbed water layer; (3) subsequently,
the adsorbed ammonia dissolves and ionizes into NH+

4 and OH−; (4) last, the migration of
NH+

4 and OH− along the physiosorbed water layer leads to a decrease in resistance.
In 1991, Iwahara et al. [159] developed the first hydrogen sensor based on proton-

conducting ceramic materials. For their work, a BaCe0.9Nd0.1O3–δ composition was eval-
uated in an H2, Pt|SCY|Pt, H2 + Ar concentration cell type. The obtained experimental
data indicated that unipolar proton transport in reducing atmospheres occurred for tem-
peratures below 200 ◦C and above 1000 ◦C. Using a Pt reference electrode, the sensor was
characterized in atmospheres where a wide range of H2 partial pressures (10−2 to 1 atm)
were set; it showed good accuracy and high-speed response.

More recently, Okuyama et al. [160] evaluated as a hydrogen sensor an Mn-doped
CaZrO3-based galvanic cell; they tested wet H2/Ar mixtures using humidified air as a refer-
ence atmosphere. They began by investigating the transport nature of CaZr0.995Mn0.005O3–δ
and CaZr0.95Mn0.05O3–δ electrolytes, and they found that in wet oxidizing atmospheres,
Mn-doped zirconates display mixed proton–electron transport, while in reducing atmo-
spheres, nearly pure proton transport is observed. Based on those observations, they
evaluated the possibility of using CaZr0.95Mn0.05O3–δ to develop a hydrogen sensor: the
obtained experimental results were quite promising.

In their work, Luoa and co-workers [161] developed a platform for real-time monitor-
ing of dissolved oxygen in a flowing microfluidic environment. The fabricated Clark-type
oxygen sensor used a solid-state proton conductive Nafion matrix combined with poly-
dimethylsiloxane as an oxygen-permeable membrane; cyclic voltammetry and chronoam-
perometry showed a linear reduction in the sensor current in direct relation with the dis-
solved oxygen concentration under different flow conditions. Furthermore, they claimed
that the improved Clark-type oxygen sensor possessed advantages, such as easy fabrication,
flexible configuration, fast response time, and real-time detection capabilities.

For their part, using a simple aqueous solution method, Wang et al. [162] devel-
oped a cost-effective proton-conducting material, a water-stable 3D Eu-MOF, and metal–
organic framework material, [Me2NH2][Eu(ox)2(H2O)]·3H2O, which exhibits an exten-
sive hydrogen-bonded network and high proton conductivity of 2.73 × 10−3 S cm−1 at
55 ◦C and 95% relative humidity. In the case of more recent studies using solid protonic
conductors as electrochemical sensors, it is possible to highlight potential systems for envi-
ronmental and healthcare applications, such as hybrid membranes of amino-functionalized
cuprum encapsulating Brönsted acid doped with chitosan for dopamine detection [163];
metal NPs@MOFs nanocomposite electrodes for simultaneous detection of dopamine and
uric acid [164]; perovskite membranes as high-stability hydrogen isotope sensors [165];
composite electrodes of metal nanoparticles (NPs)-decorated reduced graphene oxide (rGO)
and chitosan for sensing of usual drugs (such as paracetamol) [166]; and graphene oxide
matrix nanohybrid electrodes for sensing pesticide concentrations [167].

2.4.3. Protonic Humidity Sensors (Including Authors’ Recent Efforts)

One of the first works on using proton-conducting materials in humidity sensors was
carried out by Iwahara’s group [168]. They built a galvanic cell of Pt|SrCe0.95Yb0.05O3–δ|Pt
to mimic the operation mode of a potentiometric humidity sensor. The sensor displayed a
linear electrical response function of partial water pressure. Katahira et al. [169] fabricated
a humidity sensor with an original design; it consisted of two discs of SrCe0.95Yb0.05O3−δ

protonic electrolyte glued together by the aid of a high-temperature glass sealant. The
sensor was able to estimate water vapor partial pressure. Cobb and colleagues [170]
also developed a cell with reversible and blocking electrodes for humidity measurement,
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which exhibited a substantial electrical response to moisture at low working temper-
atures. Miao et al. [171] reported the fabrication of hybrid polymer films of polypyr-
role/polyoxometalate (a proton-conducting polyoxometalate) with different thicknesses,
prepared via the co-electrodeposition of free pyrrole monomers with metal oxide clusters;
the observed response and recovery times of 1.9 and 1.1 s, respectively, were determined
in the 11−98% relative humidity interval. Based on the performed evaluation after two
months, for which the determined response and recovery times were still good, they con-
cluded that the sensor also showed good repeatability. They ascribed the outstanding
sensing of the polypyrrole to the synergistic effect of the proton acid doping structure and
its oxidation. Zou and colleagues [172] used a natural biopolymer, chitosan, with a unique
protonic conductivity. The developed sensor exhibited four orders of magnitude variation
in the output when relative humidity increased from 10% to 90%; however, and even more
significant, the sensor displayed high stability, repeatability, recoverability, and selectivity
to water vapor over ethanol, acetone, and toluene vapors.

Farahani and his team [173] fabricated an innovative self-designed perovskite-based
bulk humidity sensor with ceramic support, which they evaluated at room temperature
using electrochemical impedance spectroscopy. They observed a direct correlation between
the open cavities and the material’s conduction; the higher the open porosity, the greater
the conduction. By means of electrical impedance tomography, they found that at room
temperature, the proton transfer mechanism is dominant and responsible for both charge
transfer resistance and kinetically controlled charge transfer (diffusive species) from low
and middle to high RH transition. Kalyakin et al. [174,175] fabricated a solid-state ampero-
metric sensor that they evaluated as a moisture sensor under humidified nitrogen and air
atmospheres; it was composed of two electrochemical cells based on proton-conducting
electrolytes, being one of the cells made of Sc-doped calcium zirconate, while the other is
made of Sc-doped barium stannate. Several water vapor partial pressures were used to
test the sensor at 500 ◦C, and volt–ampere relation and calibration curves were obtained.
They determined that in nitrogen-humidified atmospheres, the limiting current varied
linearly with water vapor partial pressure change, while in humidified air atmosphere, the
limiting current could not be reached; however, in humidified conditions, an exception was
observed, regarding the limiting current, when they used the Sc-doped barium stannate
cell for water vapor partial pressures lower than 0.043 atm.

Medvedev and collaborators [175] also fabricated and characterized a new intermediate-
temperature electrochemical cell for examining moisture concentration in gas mixtures.
The fabricated electrochemical cell consisted of a diffusion barrier and two electrolytes,
one of yttria-stabilized zirconia, with unipolar oxygen ion conductivity, and the other of
Sr-doped lanthanum yttrate, with proton transport properties. The tests were performed
using the sensor in amperometric mode, and it was able to analyze water vapor par-
tial pressures in gas atmospheres (from 0.001 to 0.1 atm) at intermediate temperatures
(400–700 ◦C). Contrasting with graphene and reduced graphene oxide, graphene ox-
ide, due to its oxygen functional groups, displays proton conductivity and is highly
hydrophilic [176]. Guo et al. [177] produced graphene oxide using Hummers’ method
from natural graphite and prepared moisture sensing films on poly(ethylene terephthalate)
substrates employing spin-coating technique. The obtained sensor displayed a decreas-
ing resistance of more than two orders of magnitude when relative humidity increased
from 11 to 95%; it showed good linearity and limited hysteresis (around 6%).

The authors of this work have also been studying the usage of protonic conducting
materials for humidity-sensing applications. They fabricated pellets of polyantimonic acid
(PAA) using different binders and analyzed different compositions; part of the findings have
been recently published in the literature [123,178,179]. They started by using as binder a
fluoroplastic (grade F-23) and produced and analyzed by electrical impedance spectroscopy
(EIS) pellets with 10 and 20% content of binder (designating the samples obtained using
PAA and binder in the proportions of 90/10 and 80/20 (wt/wt%), respectively, of 90PAA
and 80PAA) [123,178].
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The pelletized sensors presented an excellent linear electric response over the RH
range, namely the 90PAA sample; see Figure 4, where results obtained for 90PAA response
to humidity variation are shown (including the evaluation carried along one year); it was
also reported that the sensor displayed almost no hysteresis, a highly satisfactory decline
in time response due to aging, and a low fabrication cost. The authors compared samples
of pure PAA with those containing the fluoroplastic binder and registered that mixing with
the binder enhances the sensitivity of the PAA to humidity [178].
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concentrations (×, first measures; -, measures one year after) [178].

More recently, the authors used another binder, polyvinyl alcohol (PVA), to produce
PAA pellets with three different ratios known as PP10 (90% of PAA and 10% PVA), PP15
(85% of PAA and 15% of PVA), and PP20 (80% of PAA and 20% of PVA) [179]. Based on
the EIS data obtained, they concluded that PP20 displayed the best electrical response to
relative humidity variations, as presented in Figure 5a,b, which display the low and high
humidity ranges, respectively).
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PP20 was also evaluated after three months, demonstrating no appreciable variations
in the electrical response to humidity due to sensor aging. Using the impedance data,
the authors developed for interpreting that sample electrical response an electrical circuit
equivalent model (Figure 6 [179]). The model considered several contributions, where
the most relevant contribution, completely visible by looking at the Nyquist plots, is the
high ionic contribution (protonic conduction); indeed, the well-defined straight line at high
frequencies does not leave space for misinterpretation regarding the proton conduction
contribution, which originated by proton hopping resulting from the interaction of the
material with water molecules, embodied in the model by a Warburg term.
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Figure 7 depicts plots of one example of the experimental and respective model
data [179], confirming the model’s adequacy to the electrical response of the PP20 sensor
(Nyquist and Bode representation).
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Presently, once the composition that displayed the best relative humidity sensitivity,
combined with low hysteresis, was decided to be sample PP20 (the ones fabricated using
fluoroplastic as binder exhibited lower RH sensitivity but almost no hysteresis), the authors
decided to further study the PP15 sample; their intents were not only to validate the model
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circuit to interpret EIS data but also to perform PP15 evaluation over time and see if it
exhibited lower aging than the one shown by PP20 (even if PP20 was the one presenting
higher RH sensitivity).

The time evaluation is still not concluded; however, the already-characterized data
obtained allowed us to verify that sample PP15; even if it displays lower sensitivity than
sample PP20, its stability over time is higher, as can be seen in Figure 8, where time stability
for both samples is compared.
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Figure 9 displays examples, using Nyquist representations, of the obtained data and
respective fits for RH concentrations of 0%, 20%, 40%, 60%, 80%, and 100%. From them, it
can be confirmed that the circuit fits the behavior of the PP15 pelletized sensor well in the
same way it fitted the remaining fabricated and characterized ones. The most important
conclusions were that besides the model’s suitability, the Warburg term remains a funda-
mental element in equivalent electric circuits; indeed, the proton conduction contribution
is still dominant and confirmed by the visible straight line in the Nyquist diagrams.

As discussed in the Introduction Section, the conduction mechanism in protonic
conductors involves the hopping of H+ protons through the crystalline structure of the
material; this ion mobility is dominant for the conduction process since H+ species, due to
the small radius, require lower activation energies to move through the atomic structure
and existing interfaces. In the present ceramic material, as water vapor increases near
the material, molecules become chemisorbed and physiosorbed; the easy dissociation of
physiosorbed water produces groups. Charge transport occurs when it releases a proton to
a nearby molecule, ionizing it and forming another, resulting in the hopping of protons
from one water molecule to another, a process known as the Grotthuss chain reaction;
so protonic conductivity is one of the contributions for the overall conductivity of PAA,
regarding its usage for moisture detection.
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3. Conclusions

Proton-conducting ceramic materials, possessing crystalline or amorphous structures,
which can combine sensitivity, stability, and the ability to operate at low temperatures are
particularly attractive and can be used in applications such as energy conversion and stor-
age applications, sensors, to mention two. In this work, the authors gave a brief historical
overview of proton conductors, their structure and microstructure, and their correlation
with conductivity. A perspective regarding the usage of these materials on low-temperature
energy-related devices and sensors, among others, was given. Lastly, the authors empha-
sized the usage of proton conductors for humidity sensing applications and presented a
resume of their efforts in developing humidity sensors using polyantimonic acid, a proton
conductor. Their approach for enhancing the response is based on manipulating the type
of binder and amount, from which they already obtained an almost linear response to
humidity, with low aging and hysteresis.
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