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Abstract: Detecting pathogenic bacteria and their phenotypes including microbial resistance is
crucial for preventing infection, ensuring food safety, and promoting environmental protection.
Raman spectroscopy offers rapid, seamless, and label-free identification, rendering it superior to
gold-standard detection techniques such as culture-based assays and polymerase chain reactions.
However, its practical adoption is hindered by issues related to weak signals, complex spectra,
limited datasets, and a lack of adaptability for detection and characterization of bacterial pathogens.
This review focuses on addressing these issues with recent Raman spectroscopy breakthroughs
enabled by machine learning (ML), particularly deep learning methods. Given the regulatory
requirements, consumer demand for safe food products, and growing awareness of risks with
environmental pathogens, this study emphasizes addressing pathogen detection in clinical, food
safety, and environmental settings. Here, we highlight the use of convolutional neural networks for
analyzing complex clinical data and surface enhanced Raman spectroscopy for sensitizing early and
rapid detection of pathogens and analyzing food safety and potential environmental risks. Deep
learning methods can tackle issues with the lack of adequate Raman datasets and adaptability across
diverse bacterial samples. We highlight pending issues and future research directions needed for
accelerating real-world impacts of ML-enabled Raman diagnostics for rapid and accurate diagnosis
and surveillance of pathogens across critical fields.

Keywords: machine learning; Raman spectroscopy; bacterial identification; convolutional neural
networks (CNNs); surface-enhanced Raman spectroscopy (SERS); antimicrobial resistance (AMR);
deep learning

1. Introduction

Bacterial infections claim millions of lives annually, aggravated by the increasing
threat of antibiotic-resistant strains. These infections worsen due to delays in diagnosis and
ineffective treatment. In developed and developing nations, bacterial infections result in
over 6.7 million deaths annually, while foodborne illnesses caused by microbial pathogens
contribute to 420,000 deaths worldwide each year [1–3]. In the United States alone, treat-
ing bacterial infections costs an estimated USD 33 billion annually [4]. Antibiotic misuse
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and overuse accelerate the rise of dangerous antimicrobial resistance (AMR) [5]. Projec-
tions indicate that bacterial infections could become a leading cause of death, claiming
10 million lives annually by 2050 [6].

Traditional diagnostic methods face significant limitations. The time-consuming na-
ture of culture-based techniques can prompt empirical broad-spectrum antibiotic use while
awaiting results, potentially contributing to AMR when overused [7]. Popular molecular
techniques like polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay
(ELISA) require complex sample preparation, specialized expertise, and expensive reagents,
limiting their widespread deployment, particularly in resource-limited settings [8–11].
Phenotypic antibiotic susceptibility testing (AST) adds further delays, hindering effective
treatment [12]. Even advanced tools like matrix-assisted laser desorption ionization–time
of flight mass spectrometry (MALDI-TOF MS) may struggle to distinguish closely related
bacterial species or accurately identify antibiotic-resistant strains [13,14]. Further challenges
include the inability of many of these techniques to analyze individual cells within mixed
populations, identify pathogens directly in their natural environments (like food or complex
ecosystems), and reliably detect the unique pathogens present in marine environments.
Other challenges with traditional methods include lack of speed, sensitivity, and adaptabil-
ity. To combat bacterial infections and improve patient outcomes, safeguard food safety,
and improve environmental monitoring, there is an urgent need for rapid, culture-free,
accurate, and cost-effective diagnostic tools for detecting bacterial pathogens.

Raman spectroscopy can address these challenges by providing rapid, label-free bac-
terial detection based on the unique vibrational “fingerprints” of biomolecules within
cells, offering a wealth of information on their molecular composition [15–17]. The Ra-
man spectrum of a bacterial cell provides a detailed fingerprint of its key biomolecules,
such as nucleic acids, proteins, lipids, carbohydrates, metabolites, and pigments. By an-
alyzing the unique patterns (e.g., Raman shift, cm−1) and intensities of Raman peaks
associated with these biomolecules, researchers can gain valuable information about the
composition and structure of the microbial cells, aiding in various applications, including
bacterial identification, characterization, differentiation of different strains and phenotypes,
and monitoring of metabolic activities.Its rapid response, easier sample preparation, sensi-
tivity, effectiveness across large scan areas, and non-destructive nature surpass traditional
methods, enabling real-time analysis in both natural and engineered settings [18–20]. As ex-
plained in subsequent paragraphs, the emerging ML-based Raman spectroscopy serves as a
powerful tool for the rapid detection of microorganisms. This allows for studying complex
communities, identifying low bacterial loads, and maximizing information from a single
sample. Figure 1A illustrates a typical workflow for Raman/SERS-based bacterial detection.
For bacterial samples with weak Raman signals, nanoparticles are added to create a SERS
effect, significantly amplifying the signal for improved detection.The process involves
Raman/SERS analysis of processed bacterial samples transferred to suitable substrates
such as aluminum, calcium fluoride (CaF2), Teflon, or silicon. Raman detection considers
parameters like laser settings, grate size, acquisition time, power, and background subtrac-
tion to optimize signal quality and analysis speed. Machine learning models (unsupervised
or supervised) are then employed for rapid and seamless bacterial detection at different
levels of resolution, including genus, species, strain, and phenotypic response (Figure 1B).
ML tackles data complexities for high-resolution bacterial identification in clinical, food
safety, and environmental monitoring. Relevant case studies are provided in latter sections
to discuss the key challenges addressed in the three key target areas (Figure 1B).

Emerging ML methods, along with new algorithms, large datasets, and increased
computational power, have been successfully leveraged in diverse research fields [21–24].
Currently, they are being explored for enabling next-generation Raman/SERS methods for
bacterial identification [17,25–38],including image analysis and ML-assisted MALDI-TOF
MS [39–48]. This review article highlights the convergence of machine learning with Raman
spectroscopy as a pivotal area for detecting bacteria including pathogens. These ML models
have the potential to address some critical challenges, including (i) an inherently weak
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Raman signal, which leads to low signal-to-noise ratios (SNRs) [18,49] and hinders the
ability to extract subtle spectral differences crucial for distinguishing unique phenotypes
(e.g., antibiotic resistance) [18,50,51], (ii) convoluted and long peaks of varying widths,
intensities, and positions, and (iii) the complexity of signals typical of surface-enhanced
Raman spectroscopy (SERS), a powerful tool for amplifying the Raman signals based on
trace amounts of pathogens [52–58]. ML methods can transform Raman-based bacterial
detection processes by addressing issues with a typical need for experts trained in the
meticulous preparation of samples and analyzing weak and complex signals. ML-based
SERS can be used to analyze real-world clinical samples which contain complex mixtures
of bacteria, body fluids, and other contaminants that obscure spectral information. Recent
studies demonstrate its exceptional sensitivity towards subtle biomarkers for species and
antibiotic resistance classification [59–64].

Figure 1. Workflowfor Raman/SERS-based bacterial detection and machine learning applications.
(A) Raman/SERS analysis of processed bacterial samples from diverse settings (clinical, environ-
mental, food) followed by optional SERS modification. (B) Utilization of ML models for rapid and
seamless detection of unique Raman signatures for target pathogens. The graphic highlights typical
challenges “(a)–(d)”, typical unsupervised and supervised models, three case studies focused on in
this article (1–3), and the envisioned resolution of Raman signatures at the genus, species, strain,
and phenotype levels.

The convergence of machine learning and Raman spectroscopy within the past five
years has unleashed a new era for rapid, label-free bacterial pathogen detection. While these
convergent ML/Raman tools have been explored in certain branches [65–71], a focused
review on their specific applications for bacterial detection, specifically to discriminate
friends (beneficial bacteria) from foes (pathogens) is still needed. Based on the above
background, this review article focuses on addressing key challenges with Raman-based
bacterial detection; they include (a) weak Raman signals, (b) complex Raman spectra,
(c) limited Raman datasets, and (d) lack of adaptability across diverse datasets. We will
discuss the ML-based approaches for addressing these issues using three in-depth case
studies. As mentioned earlier, this study focuses on fundamental aspects of ML-enabled
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Raman analysis for bacterial pathogen detection for clinical diagnostics, food safety, and
environmental monitoring.

2. Raman and SERS: Fundamentals and Signal Enhancement

Raman spectroscopy is a non-invasive, label-free method for studying a bacterial
cell’s interior by analyzing how its biomolecules’ unique structures vibrate in response
to light. In other words, it works by analyzing how biomolecules scatter light, revealing
their vibrational “fingerprint”. The incoming near-infrared (NIR) laser light bathes the
microbial cell. The spectral wavelength, typically between 532 and 1064 nm, is chosen to
achieve a good penetration depth within the cell (typically a few micrometers in size) and
minimize damage to the cell itself. The laser spot size is focused on a tiny area, typically
1–10 µm in diameter, allowing researchers to target a single cell or a specific region within
the cell even though the cell itself is much smaller. Please note that the diameter of typical
bacterial cells ranges from 0.2 to 10 µm (e.g., 1 µm for Staphylococcus aureus, 1.5–4 µm for
Mycobacterium tuberculosis) [72,73]. While laser light bathes the entire outer surface of the
cell, it can penetrate to reach biomolecules within the cell. The laser light continuously
illuminates the cell (seconds to minutes), and the key information of biomolecules comes
from the femtosecond (fs) excitation (1 fs = 10 −15 s) of the biomolecules (proteins, lipids,
DNA, etc.) by the laser light. This excitation causes the molecules, which are much smaller
than cells, to vibrate at their characteristic frequencies for a short period (picoseconds to
nanoseconds). This vibrational state is a fleeting response (picoseconds to nanoseconds) as
the bonds within the molecule pull it back to its original state. The biomolecule eventually
relaxes by releasing the energy gained from the laser light. The Raman signal, which carries
the fingerprint information of the biomolecules, is generated during this short vibrational
state. By analyzing the Raman spectrum (pattern of scattered light intensities), scientists
can identify the types of biomolecules present and their relative abundance within the
cell. When the laser beam hits the bacterial cell or a biomolecule, most of the light scatters
without changing energy, but a tiny fraction scatters at different frequencies. This change
in frequency is called the Raman shift. The in-depth details regarding Raman mechanisms
are documented elsewhere [74].

While Raman spectroscopy offers advantages, an even more powerful technique, SERS,
can be used to address challenges like trace detection or complex mixtures. SERS boosts
signal strength by harnessing the interaction of molecules with specially designed metallic
nanostructures [75–77]. When light hits these nanostructures, it excites localized surface
plasmon resonances (LSPRs)—essentially, waves of electrons moving across the metal’s
surface [78,79]. LSPRs create intense electromagnetic fields that amplify the Raman signal
of nearby molecules, making it possible to detect even minute traces of substances [80,81].

Beyond this powerful plasmonic effect, SERS sensitivity also draws from a chemical
interaction between the molecule and the metal surface [82]. This involves a temporary
exchange of electrons, acting as a bridge that can further amplify the molecule’s Raman
signal [75]. Importantly, the chemical effect can further amplify or slightly reduce the
Raman signal, but its overall contribution is typically less significant than the powerful
boost provided by plasmons [83].

The sensitivity of SERS opens promising possibilities across various fields. It enables
early detection of pathogens, allowing for the rapid treatment of infections. In food safety,
SERS can detect minute traces of harmful bacteria or toxins, safeguarding consumers [52].
Additionally, SERS allows for the analysis of complex environmental samples for pollutants
or other contaminants, aiding in environmental monitoring [84].

While offering significant advantages and sophisticated results, SERS still faces the
challenge of analyzing complex spectral data. Subtle differences between closely related
pathogens or the influence of background noise can be hard to distinguish using traditional
methods. This is where machine learning enters the picture, providing essential assist-
ing tools to extract meaningful patterns from complex Raman/SERS data. This leads to
groundbreaking advancements in areas like bacterial pathogen detection.



Chemosensors 2024, 12, 140 5 of 37

For a deeper technical understanding of the mechanisms behind SERS enhancement,
see Appendix A.

3. ML Techniques for Raman Spectroscopy: Traditional ML, CNNs, and Other
Deep Learning Techniques

Machine learning models discussed in this section have been effectively used to
address the previously discussed key challenges. Table 1 provides a comparative overview
of the key ML techniques deployed in Raman spectroscopy for bacterial identification,
exploring their specific advantages and challenges.

Table 1. Unsupervised and supervised ML techniques for Raman spectroscopy: a comparative guide.

Techniques Strengths Weaknesses Ideal Applications Key References for
Pathogen Detection

Unsupervised ML

PCA, K-means,
hierarchical clustering,

DBSCAN, etc. 1

(1) No need for labeled
data. (2) Automatic

identification of groups
or clusters. (3) Useful
for exploratory data

analysis.

(1) Limited ability to
handle complex data

structures. (2) Sensitive
to initialization and
parameter settings.

(3) Difficult to interpret
clusters in

high-dimensional
spaces.

(1) Preliminary analysis
for bacterial

identification.
(2) Exploratory data

analysis. (3) Clustering
of bacterial spectra.

(1) PCA and
hierarchical clustering

for discriminating
Raman DNA signatures

of B. anthracis from
B. cereus and

B. thuringiensis [85].

Supervised ML

Traditional methods:
SVM, RF, DT, KNN,

ensemble methods, etc.
2

(1) Effective for smaller
datasets.

(2) Computationally
efficient.

(3) Interpretable
models.

(1) Limited ability to
capture complex

non-linear
relationships.

(2) Performance
depends on feature
selection and data

quality. (3) Potential
overfitting or

underfitting issues.

(1) Rapid clinical
diagnostics.

(2) Analysis of mixed
bacterial samples.

(3) Bacterial
identification and

discrimination.

(1) RF for accurate
classification of bacteria

and archaea,
identifying key

biomolecules [86].
(2) RF for analysis of
bacterial extracellular
matrices (ECMs) [60].

CNN 3

(1) Handles complex
spectral data.

(2) Automatic feature
extraction. (3) Effective
for classification tasks.

(1) Requires large,
labeled datasets.

(2) Computationally
intensive. (3) Black-box

models (low
interpretability).

(1) Clinical diagnostics
(rapid, complex

samples). (2) Precise
identification

(antibiotic resistance).
(3) Single-cell analysis
and microbial ecology

research.

(1) CNN for identifying
bacterial isolates and
predicting antibiotic

treatments [18].
(2) CNN to distinguish
between closely related
Shigella spp. and E. coli

strains [87].

ODL methods: ViT,
aNN, ResNet, GANs,

etc. 4

(1) Effective for
complex data and
limited datasets.

(2) Robust to complex
samples and real-world
noise. (3) Can handle
sequential data and

long-range
dependencies.

(1) Computationally
intensive. (2) Needs
careful validation on

diverse datasets.
(3) Requires domain
expertise to select the
right ODL method.

(1) Analysis of complex
clinical samples.
(2) Analysis of

rare/hard-to-culture
samples. (3) Microbial
ecology/strain-level

analysis.

(1) ViT for rapid
antibiotic resistance

classification in clinical
settings [59]. (2) GANs
to enhance datasets for
rare deep-sea bacteria

analysis [88].

1 PCA = principal component analysis; DBSCAN = density-based spatial clustering of applications with noise.
2 SVM = support vector machine; RF = random forest; DT = decision tree; KNN = k-nearest neighbors. 3 CNN =
convolutional neural network. 4 ViT = vision transformer; aNN = attentional neural network; ResNet = residual
network; GAN = generative adversarial network.
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3.1. Unsupervised Machine Learning

Unsupervised machine learning techniques offer an exploratory approach to Raman
data analysis, particularly valuable when dealing with unlabeled datasets. These techniques
offer advantages such as the discovery of unknown bacterial subgroups, dimensionality
reduction for simplified analysis, and guidance for hypothesis generation in basic research.
Principal component analysis (PCA) reduces data dimensionality by identifying the prin-
cipal components explaining most of the variance, making it ideal for visualizing data
and identifying underlying patterns. Researchers have used PCA in combination with
classification models for preliminary spectral exploration and biomarker identification [89].
K-means partitions data into “K” clusters based on similarity, effectively grouping similar
spectra, but requires specifying the number of clusters. Hierarchical clustering creates a
tree-like structure (dendrogram) representing spectral relationships, helpful for explor-
ing hierarchical structures in data. Density-based spatial clustering of applications with
noise (DBSCAN) discovers clusters of arbitrary shape based on density, making it ideal
for identifying clusters with varying densities and dealing with outliers. Researchers have
applied clustering methods like K-means and DBSCAN to Raman data for bacterial strain
differentiation and to study microbial community dynamics [90].

3.2. Supervised Machine Learning

In contrast to unsupervised methods, supervised machine learning techniques lever-
age labeled datasets to learn specific relationships between spectral features and target
outcomes (e.g., bacterial species, antibiotic resistance). This approach offers several advan-
tages, including the potential for high accuracy when well-defined labels are available and
the ability to directly predict specific biological characteristics of interest.

3.2.1. Traditional Machine Learning

Traditional machine learning algorithms, including support vector machine (SVM),
decision tree (DT), random forest (RF), and others, offer a complementary approach, often
focusing on extracting handcrafted features from spectral data. They can excel with smaller
datasets (typically less than 1000 samples) and provide insights into the driving spectral
features, offering valuable transparency. SVM constructs a hyperplane to separate classes
and works well with high-dimensional data, while RF is an ensemble of decision trees that
is robust to overfitting and handles non-linear relationships. DT is simple and interpretable
but can be prone to overfitting, whereas KNN classifies based on proximity to neighbors in
a feature space but is sensitive to noise and outliers. Ensemble methods combine multiple
models to improve overall performance. For scenarios where computational resources are
limited or rapid analysis is crucial, traditional ML methods can be highly suitable. However,
they may struggle with highly complex spectral data or subtle differences between samples
compared to deep learning techniques. Researchers have successfully used RF to classify
complex bacterial communities in environmental samples and to explore SERS-based
bacterial chemotaxonomy [60,86]. Additionally, various traditional ML methods have been
combined with Raman spectroscopy for rapid, label-free clinical diagnostics, including
antibiotic resistance profiling [91].

3.2.2. Deep Learning (DL)

Deep learning encompasses a powerful suite of supervised learning techniques that
leverage multilayered neural networks to uncover complex relationships within data. In the
context of Raman analysis, two key deep learning categories emerge: CNNs and other deep
learning techniques.

Convolutional Neural Networks (CNNs)

CNNs, inspired by the structure of the visual cortex, have emerged as a dominant force
due to their ability to process grid-like data [92].They excel at extracting intricate patterns
and spatial features from complex Raman spectra. CNNs have demonstrated superior
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performance in identifying complex spectral patterns and can handle large, labeled datasets
(often exceeding 1000 samples per class), making them ideal for differentiating closely
related bacterial strains, identifying subtle antibiotic resistance markers, and handling
samples with background noise [18,93–95]. They offer advantages such as automatic
feature extraction, high accuracy with large datasets, and robustness to noise. CNNs can be
trained to adapt to variations in sample preparation and spectral noise, enhancing their
robustness in real-world clinical settings. Researchers have successfully employed CNNs to
distinguish between closely related pathogens like Shigella spp. and Escherichia coli and for
accurate identification even in complex clinical samples [87,96]. Additionally, CNNs have
demonstrated the ability to detect subtle antibiotic resistance markers in bacteria such as
Staphylococcus aureus [18]. However, CNNs can be computationally intensive and may be
challenging to interpret. They also face challenges such as potential overfitting to training
data and the need for large, well-labeled datasets [97].

Other Deep Learning (ODL)

Researchers are harnessing innovative ODL methods like vision transformers (ViTs),
attentional neural networks (aNN), and generative adversarial networks (GANs) to tackle
specific challenges, such as addressing dataset limitations, extracting subtle patterns,
and handling real-world sample complexities. ViTs have proven effective for rapid an-
tibiotic resistance classification in clinical settings [59], while aNNs show potential for
analyzing complex extracellular vesicles, aiding in disease diagnostics [98]. GANs can be
used to augment datasets for rare bacteria analysis, as exemplified by their use in enhancing
datasets for rare deep-sea bacteria analysis [88]. These ODL methods offer advantages
such as effectiveness for complex data, robustness to noise, and the ability to handle lim-
ited datasets. However, they can be computationally intensive, require careful validation,
and demand domain expertise for optimal method selection.

4. Three Case Studies Based on Modern Trends in ML-Enabled Raman Detection of
Bacterial Pathogens

A comprehensive review of the recent literature (from 2019 to 2024, keywords: machine
learning, Raman spectroscopy, and bacterial detection) revealed research articles reflecting
new research trends on ML-enabled Raman/SERS-based detection of bacterial pathogens.
Our study thus focused on the critical analysis of 32 different research papers reflecting
the trends. These papers were chosen for their emphasis on in-depth analysis of ML
algorithms for analyzing Raman or SERS spectral data and their ability to address the key
challenges (see Figure 1B) and to resolve bacterial signatures at levels including species,
strain, and phenotype (e.g., antibiotic resistance). We then categorized these papers based
on the types of ML approaches (CNN, traditional ML, and other deep learning), arranging
them chronologically within each category to highlight trends and facilitate methodological
comparisons (see Appendix B for a full list of the 32 papers and their categorization).
The analysis of these 32 papers revealed key trends, including the dominance of CNN-
based approaches (31%), increasing interest in SERS methods (34%), and the potential of
cutting-edge ODL methods. These trends highlight the need to sustain ongoing research on
ODL methods tailored to address issues with noisy Raman data and the lack of standardized
SERS protocols and explainable AI techniques. To illustrate the evolution of ML methods
for addressing key challenges in Raman-based bacterial detection, with a focus on detecting
pathogens, we selected three in-depth case studies: (1) decoding bacterial identity with
CNNs, especially to handle complex spectral data; (2) enhancing bacterial detection by
SERS (e.g., for enhanced sensitivity and detection of subtle biomarkers); and (3) tackling
data challenges and expanding Raman analysis with other deep learning (ODL) methods.
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4.1. Case Study I: Decoding Bacterial Identity with CNNs

The antimicrobial resistance crisis demands swift, precise bacterial diagnostics, a chal-
lenge traditional methods often fail to meet. Recent advancements in CNNs offer a potential
breakthrough, deciphering the intricate spectral language of Raman data to advance treat-
ment decisions.

4.1.1. CNNs: Addressing Clinical Complexity in Bacterial Detection

Despite its power, Raman spectroscopy faces hurdles in clinical settings—analyzing
intricate spectral patterns and combating low signal-to-noise ratios can be overwhelming.
Traditional methods often struggle to distinguish subtle differences crucial for accurate
bacterial identification and antibiotic susceptibility testing. However, recent advancements
in deep learning, particularly CNNs, offer innovative solutions, tackling these shortcom-
ings and enhancing bacterial detection and identification tasks. CNNs can even pinpoint
antibiotic resistance markers, distinguishing between methicillin-resistant Staphylococ-
cus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains with remarkable
accuracy [18,89].

Convolutions are a core component of CNNs and act like filters that can automatically
scan and extract important features from complex data, like the sophisticated peaks and
valleys within a Raman spectrum. In essence, they help CNNs “see” the patterns within
the data that hold the key to identifying different types of bacteria.

Ho et al. successfully used a CNN inspired by the ResNet architecture to identify
bacterial isolates, predict effective treatments, and even detect antibiotic resistance [18].
This approach works well because of how CNNs analyze bacterial data and how ResNet
elegantly addresses a common challenge in deep learning called the “vanishing gradient
problem” [99]. In simple terms, imagine a researcher trying to analyze a long and complex
Raman spectrum. As deep neural networks get more complex, they can sometimes struggle
to remember important details from the beginning of the spectrum by the time they reach
the end—this is the vanishing gradient problem. ResNet’s clever solution helps the network
retain crucial information from earlier layers, leading to improved performance.

ResNet addresses this with “residual blocks”, acting like shortcuts within the network
that let crucial details flow directly to later layers. This essentially helps the CNN model
remember the most important details of the spectrum, even when analyzing complex data.

The specific CNN in this study had 26 layers, starting with a convolutional layer that
used 64 filters to scan the Raman spectrum (see Figure 2 for a visual representation of this
CNN architecture). These filters act as specialized magnifying glasses, focusing on infor-
mation such as peak shapes and spacing that are key to identifying bacteria using Raman
spectra. Next, residual layers with ResNet’s “shortcuts” ensured that these important fea-
tures were fully utilized for analysis. A key advancement in this study involved replacing
traditional pooling layers within the ResNet architecture with strided convolutions. While
traditional pooling layers can lose valuable information about the precise location of peaks
within the Raman spectrum—details crucial for distinguishing between bacteria—strided
convolutions preserve this information. This enhancement is vital for detecting the subtle
differences that indicate different bacterial strains or antibiotic resistance. After the convo-
lutional layers (with their strided convolutions) have analyzed the data, a fully connected
layer takes the results and makes the ultimate decision—identifying the specific bacteria
and potential antibiotic resistance.
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Figure 2. Step-by-step transformation of complex Raman spectral data into an accurate bacterial
identification and antibiotic treatment decision within a CNN. Adapted from Chi-Sing Ho et al.,
Nature Communications, 2019. Copyright 2019 [18].

To address the lack of large datasets for CNN implementation, Ho et al. gathered
their own training data [18]. They collected a robust reference dataset of 60,000 spec-
tra from 30 bacterial and yeast isolates. These isolates represent over 94% of bacterial
infections treated at Stanford Hospital from 2016 to 2017, ensuring the dataset’s clinical
relevance. This comprehensive dataset was used to train a CNN on the “Bacteria-ID” subset
(60,000 preprocessed spectra). This initial training used a short measurement time of only
1 s per spectrum, demonstrating the potential for rapid analysis. The model was then fine-
tuned on a smaller dataset of 3000 spectra for even greater accuracy. To rigorously evaluate
its performance, the model was tested on a separate dataset of 3000 spectra it had never
seen before. The results were impressive: the model achieved an average accuracy of 82.2%
when classifying 30 different bacterial isolates. Remarkably, when the same CNN was
used to classify bacteria into broader treatment groups and to detect antibiotic resistance,
it achieved even higher accuracies of 97% and 89.1%, respectively [18]. The study also
demonstrated the CNN’s superiority over traditional machine learning models like logistic
regression and support vector machines.

While the CNN demonstrated strong performance, a limitation within its ResNet
design held potential for further improvement. The filters in the architecture, analogous to
magnifying glasses with a fixed zoom level, could only effectively analyze a specific range
of peak sizes. However, Raman spectra contain peaks of varying widths—wide peaks need
a “wider zoom” for proper analysis, while narrow peaks need a “closer zoom”. Having
a fixed zoom across all CNN layers hinders the network’s ability to fully understand the
complex patterns within the spectrum and accurately identify the bacteria.

To address this limitation, a subsequent study proposed using a CNN module that
could analyze the spectrum at multiple scales [89]. This innovative approach builds upon
the previous work, aiming to solve the fixed kernel size issue. It replaces a single, fixed
“zoom level” with multiple branches, each with a progressively increasing kernel size. This
functions like having a set of magnifying glasses with different zoom levels, allowing the
CNN to capture both big-picture patterns and tiny details within the Raman spectrum.
Each branch analyzes the spectrum at a different scale, capturing information from both
broad and narrow peaks. This combined information provides a far richer understanding
of the spectral data. Finally, the model refines these data and uses a fully connected layer
to make the ultimate classification—identifying the specific type of bacteria present.

By leveraging this multiscale approach, the study successfully replicated the previous
work using the Bacteria-ID dataset (identifying 30 bacterial isolates) and achieved a signifi-
cant improvement in overall accuracy (86.7% compared to 82.2%). The improved model
also excelled in classifying bacteria groups for treatment and antibiotic resistance analysis,
achieving impressive accuracies of 98% and 92.7%, respectively.
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4.1.2. RamanNet and Data Augmentation: Balancing Accuracy and Efficiency in
Bacterial Detection

While the complex, multiscale CNN architecture described in the previous subsection
successfully addressed the fixed zoom limitation, such models can be computationally
demanding. For certain applications, a simpler CNN design optimized for the unique
nature of Raman spectra might be advantageous. Given that Raman spectra are essentially
one-dimensional representations of intensity variations across wavenumbers, they are in-
herently less complex than the multichannel image data that CNNs often excel in analyzing.
This simplicity paves the way for effective yet computationally lightweight models.

Our next case study explores this concept, proposing a simplified CNN model specifi-
cally tailored for Raman spectra [100]. Often called “RamanNet”, this model incorporates
key modifications. Firstly, it employs a simplified convolutional layer, utilizing a single
layer with one kernel. This results in a reduced feature map (i.e., extracted information
from the Raman spectra). Secondly, it reduces residual layers—instead of the usual six
residual blocks in a standard ResNet, this model has only two. These modifications lead
to a less complex CNN with the following advantages: (1) reduced model parameters,
leading to decreased complexity; (2) faster training time; and (3) lower computational cost.
In essence, RamanNet offers a balance between accuracy and efficiency, making it suitable
for real-world applications where computational resources might be limited.

Utilizing the Ho et al. study’s Bacteria-ID dataset [18], the model demonstrates supe-
rior performance in detecting bacterial isolates, achieving an improved average accuracy of
84.7% compared to 82.2% in the previous work [100]. Additionally, it exhibits a high accu-
racy of 97.1% in identifying antibiotic treatments. However, when it comes to distinguishing
antibiotic resistance (MRSA/MSSA) classes, RamanNet falls short of outperforming the
baseline model, achieving an accuracy of 81.6% compared to 89.1%. This discrepancy may
stem from the highly similar Raman spectra between MRSA and MSSA, posing a challenge
for the simpler model to capture the nuanced differences effectively.

To demonstrate the power of data augmentation, consider the following study [89].
Faced with limitations in dataset size and diversity, the researchers strategically employed
data augmentation to artificially expand their training data. They implemented four key
techniques: (1) Gaussian noise, which introduced slight random variations in intensity
values, mimicking potential noise during acquisition; (2) average blur, where variations
in blurring were achieved by calculating new intensity values based on averaging with
neighboring points using random filter sizes; (3) random dropping, simulating missing
data points by “blanking out” small sections of the spectrum; and (4) randomly scaling
the spectrum, where the overall intensity is randomly scaled up or down by a small factor.
Importantly, while a spectrum had a 50% chance of augmentation, only one of the noise
or blurring techniques was applied at a time, but they could be combined with dropping
and scaling.

Utilizing this data augmentation method, the CNN model achieved a remarkable
accuracy of 86.7% in classifying 30 bacterial isolates. The augmented model also achieved
excellent accuracy of 98% and 92.7% in identifying bacterial treatment and MSSA/MRSA
classification, respectively. This performance surpassed previous works [18], demonstrating
the effectiveness of data augmentation. These results illustrate that data augmentation is a
powerful tool for improving CNN performance in Raman spectral analysis, particularly
when faced with limitations in dataset size and diversity.

Figure 3 provides a visual comparison of the three key CNN architectures discussed
in this case study. Panel A shows the original ResNet-inspired CNN from Ho et al., with its
multiple residual layers [18]. Panel B illustrates the multiscale 1D CNN approach from
Deng et al., which addresses the fixed kernel size limitation [89]. Finally, Panel C depicts
the simplified RamanNet structure from Zhou et al., designed for computational efficiency
while maintaining high accuracy [100]. This visual comparison highlights the evolution
of CNN designs in adapting to the unique challenges of Raman spectral analysis for
bacterial identification.
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Figure 3. Evolution of CNN architectures for Raman spectral analysis in bacterial identification.
(A) ResNet-inspired CNN (Ho et al.), featuring multiple residual layers for deep learning [18].
(B) Multiscale 1D CNN (Deng et al.), incorporating various kernel sizes to capture features at different
scales [89]. (C) RamanNet (Zhou et al.), a simplified architecture optimized for computational
efficiency while maintaining high accuracy [100]. These architectures represent key advancements in
applying CNNs to Raman spectroscopy for bacterial detection, highlighting the progression from
complex deep networks to more specialized and efficient designs tailored for spectral data analysis.

4.1.3. A Comparative Analysis of CNN-Based Raman Approaches for Bacterial Diagnostics

Table 2 offers a detailed comparison of the pioneering CNN approaches explored
in this case study, revealing their capabilities, limitations, and potential advantages in
addressing the challenges of bacterial identification using Raman spectroscopy.

Table 2. Optimizing CNN design for Raman spectroscopy.

Challenge Addressed Accuracy Metric Key Insight SERS (Y/N) Ref.

Differentiating closely related
pathogens 99.64% SERS + CNN for Shigella/E. coli

differentiation Y [87]

Clinical application, complex
samples

CNN: 99.80% (genus), 98.37%
(species)

SERS + CNN for clinical
pathogens Y [96]

CNN complexity, computational
resources

84.7 ± 0.3% (isolate), 97 ± 0.3%
(treatment ID) RamanNet: simplified CNN N [100]

Urgent diagnostics for
resistant/hypervirulent strains

>94% for antibiotic resistance
genes

Raman–CNN for K. pneumoniae
diagnostics N [101]

Accuracy limitations of existing
methods

86.7% (isolate), 92.7%
(MRSA/MSSA) Multiscale DL for ID N [89]

Identifying closely related
pathogens beyond whole-cell

analysis
CNN: 96.33% DNA-based Raman + CNN N [85]
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Table 2. Cont.

Challenge Addressed Accuracy Metric Key Insight SERS (Y/N) Ref.

Limited spectral variation
between serovars 97% SERS + multiscale CNN for

Salmonella serovars Y [62]

Microbial contamination,
complex matrices 95–100% CNN for diverse bacterial ID N [102]

Microbial complexity, single-cell
analysis 95.64 ± 5.46% Single-cell ID with Raman +

ConvNet N [103]

Subtle spectral differences,
antibiotic resistance

82% (isolate), 97% (treatment),
89% (MRSA/MSSA)

Successful MRSA/MSSA
distinction N [18]

The studies analyzed demonstrate the significant potential of CNNs to enhance bacte-
rial identification using Raman spectroscopy. By overcoming the inherent challenges of
Raman spectroscopy, CNNs achieve exceptional accuracy, even when discerning closely
related pathogens and guiding antibiotic treatment decisions [18,62,87,96,101,102]. The evo-
lution of CNN architectures, from the initial ResNet-inspired approach to the multiscale
analysis and the computationally efficient RamanNet, reveals a drive towards increased
precision and adaptability [87,89,100]. Additionally, the integration of SERS for signal
enhancement and strategic data augmentation techniques demonstrates their combined
power for enhancing model performance [62,87,96].

While CNN-based Raman spectroscopy offers significant advantages, ongoing efforts
to address key challenges, such as limited dataset availability and the need for explainable
models, will further enhance its potential. The availability of diverse, well-curated Raman
spectral datasets of sufficient size remains crucial for developing robust, generalizable CNN
models. Additionally, continued exploration of specialized CNN architectures tailored to
the unique nature of Raman data could lead to further performance gains. To fully realize
the potential of CNNs in clinical settings, a focus on standardization, the creation of user-
friendly instruments, and the development of explainable models for spectral biomarker
identification would be valuable for broader adoption. This need for explainability is
particularly important in bacterial identification using Raman spectroscopy—interpreting
how models arrive at their predictions is key to ensuring they have grasped the underlying
scientific principles and guiding trust in their decisions. However, CNNs often suffer from
being a “black box”, hindering full confidence in their decision-making process [104,105].
To address this challenge, techniques like gradient-weighted class activation mapping
(Grad-CAM) offer a promising solution [89,106,107]. By carefully analyzing how the model
makes decisions, Grad-CAM creates a special map that highlights the most important parts
of the Raman spectrum for identifying bacteria. Grad-CAM pinpoints the most important
spectral regions for identifying bacteria, revealing the features that guide the model’s
classification. By visualizing this map, we can see the specific “fingerprints” within the
spectrum that guide the model’s choices.

This case study demonstrates how CNNs effectively address the challenges of complex
spectral data and low signal-to-noise ratios, offering significant potential in transforming
infectious disease management and advancing our understanding of the microbial world.
Building upon the power of CNNs, their combination with advanced signal enhancement
techniques like SERS promises even greater precision in bacterial analysis. This integration
is especially crucial for scenarios where sensitivity is pivotal, like detecting trace amounts
of pathogens or subtle spectral variations signifying antibiotic resistance. Case Study II
delves into the ways SERS empowers ML-driven Raman spectroscopy.

4.2. Case Study II: Enhancing Bacterial Detection by SERS

Delayed or inaccurate bacterial identification can have devastating consequences.
In the treatment of a sepsis case, every hour without appropriate antibiotics increases the
mortality risk. For foodborne outbreaks, rapid pathogen detection is key to preventing
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widespread illness. Yet, traditional methods often lack speed or specificity. SERS com-
bined with machine learning promises a revolution in bacterial identification, offering
unparalleled sensitivity and the power to unlock subtle markers for accurate classification.

4.2.1. SERS: Unlocking Precision in Clinical Diagnostics

In clinical settings, precise bacterial identification is paramount. Incorrect or de-
layed diagnoses lead to ineffective treatments and the potential for disease spread, and
they contribute to the rise of antibiotic resistance. This rise, particularly in pathogens
like Staphylococcus aureus (MRSA), necessitates rapid diagnostics to guide targeted ther-
apy. SERS-ML offers the potential to pinpoint subtle biomarkers, not only distinguishing
between closely related species but also revealing antibiotic resistance profiles. Previous
studies by Ho et al. and Deng et al. demonstrated this, achieving accuracies of 89% and
92.7%, respectively, in MSSA/MRSA identification [18,89].

Tseng et al. address this challenge with a SERS-ML approach remarkable for its focus
on clinical realism [59]. Unlike many studies relying on lab-grown bacteria or augmented
data, they amassed 11,774 SERS spectra from bacteria isolated directly from blood cultures.
This focus on clinical realism sets Tseng et al.’s study apart, ensuring their model is trained
on the complexity of real-world infections. Demonstrating the power of this approach,
they achieved a 98.5% accuracy in distinguishing MRSA from MSSA, highlighting the
technique’s potential to guide antibiotic choice.

Their SERS-ML workflow begins with meticulous data preparation. By removing
background fluorescence, focusing on the 400–2000 cm−1 region, and normalizing spectra,
they ensure a clean and consistent dataset for training their machine learning model. This
preprocessing is crucial because SERS signals can be complex. To tackle the intricate task of
bacterial identification, the model works in a hierarchical manner. First, it distinguishes
between Gram-positive and Gram-negative bacteria, providing crucial information for an-
tibiotic choice. Next, it pinpoints the specific species, increasing accuracy. Finally, and most
impressively for S. aureus, the model even detects antibiotic resistance—a capability with
transformative potential for effective clinical decisions.

To tackle the complexity of these real-world SERS spectra, Tseng et al. utilized an
innovative deep learning approach—the vision transformer (ViT) [59]. This architecture
offers a wider field of view than traditional CNNs, making it particularly adept at identify-
ing subtle differences in bacterial fingerprints. The ViT model achieves its breakthrough
by combining a wider perspective with a powerful self-attention mechanism. Figure 4
demonstrates the difference between the CNN and ViT architectures. Unlike a CNN, which
focuses on localized features, the ViT processes the SERS spectrum in smaller patches. This
allows it to analyze both fine details and overarching patterns within the spectral data.
The self-attention mechanism empowers the model to determine how different regions
within the SERS spectrum relate to each other. This enables it to automatically focus on the
most relevant areas for accurate bacterial identification. Furthermore, since SERS spectra
are essentially one-dimensional sequences of intensity values, the ViT’s architecture is
particularly well suited for this type of analysis. This design’s similarity to models used in
natural language processing contributes to the ViT’s success in handling spectral data.

The researchers found that the ViT model outperformed the CNN in identifying
bacterial species, especially for Enterobacter cloacae and Klebsiella Pneumoniae. The ViT’s
self-attention mechanism and suitability for 1D sequence data contribute to its success.
These advantages led to higher accuracies in both Gram typing (99.30%) and species iden-
tification (97.56%). Furthermore, the ViT model excels in identifying antibiotic-resistant
strains like MRSA, even with limited data. By using transfer learning, it leverages knowl-
edge from a pretrained model to achieve 98.5% accuracy, significantly faster and without
overfitting. This capacity for rapid and accurate antibiotic resistance detection is partic-
ularly valuable in clinical settings. While designed for specific species, the ViT can still
determine Gram type for unknown bacteria, providing doctors with vital information for
rapid antibiotic selection.
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Figure 4. Decoding bacterial identity: CNN vs. ViT. (A) In the traditional CNN architecture,
convolutional and pooling layers extract features and reduce dimensionality. (B) The innovative
ViT breaks the SERS spectrum into patches. Its self-attention mechanism analyzes both broad and
detailed spectral patterns, enhancing its ability to distinguish subtle bacterial differences. Reprinted
with permission from Yi-Ming Tseng, Ko-Lun Chen, Po-Hsuan Chao, et al., Applied Materials, 2023.
Copyright 2023, American Chemical Society [59].

Furthermore, Ciloglu et al. demonstrated the potential of SERS-ML in diagnosing
antibiotic resistance by focusing on methicillin-resistant Staphylococcus aureus (MRSA) [108],
a bacteria known for causing difficult-to-treat infections [109]. They used a deep learning
algorithm to analyze a collection of 33,975 unique signals (spectra). Figure 5 illustrates the
normalized mean spectra of MRSA and MSSA, revealing similar peak positions but distinct
differences in relative band intensities.

Both spectra exhibit strong bands at 658 cm−1 (COO− deformation of guanine),
732 cm−1 (flavin adenine dinucleotide derivatives and glycosidic ring mode of pepti-
doglycan components), 958 cm−1 (CN deformation of saturated lipids), 1333 cm−1 (C-N
stretching of adenine), 1450 cm−1 (CH2 deformation of saturated lipids), and 1576 cm−1

(CN stretching of amide II) [58,108,110–112]. Notably, the 732 cm−1 peak exhibits signifi-
cantly increased intensity in MRSA, potentially indicating alterations in the peptidoglycan
layer associated with antibiotic resistance. This finding aligns with previous research
demonstrating differences in cell wall thickness between MRSA and MSSA [113]. Addi-
tionally, minor intensity variations at 658, 958, and 1333 cm−1 suggest differences in the
biomolecular composition within the cell wall. These subtle spectral distinctions provide
crucial information for machine learning algorithms to accurately classify MRSA and MSSA,
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underscoring the power of SERS-ML to detect minute structural changes linked to antibiotic
resistance. This technology holds potential for rapid and precise bacterial identification in
clinical settings, aiding in timely and appropriate antibiotic selection to combat the growing
threat of resistant pathogens.

Figure 5. SERS-based discrimination of MRSA and MSSA. Subtle spectral variations distinguish
MRSA from MSSA. Key peaks reveal subtle structural variations associated with antibiotic resistance,
particularly the prominent 732 cm−1 band in MRSA, linked to changes in the peptidoglycan layer.
These distinct spectral features enable machine learning algorithms to accurately differentiate be-
tween these clinically significant bacterial strains. Reproduced with permission from Fatma Uysal
Ciloglu et al., Scientific Reports, 2021. Copyright 2021 [108].

4.2.2. SERS: A Transformative Toolkit for Microbiology

A compelling example demonstrates how SERS can uncover hidden biological infor-
mation. Bacteria possess a unique outer layer called the extracellular matrix (ECM). This
ECM, analogous to a personalized jacket, holds clues to the bacteria’s identity. Leong et al.’s
novel approach avoids analyzing the bacteria directly, as their presence can be masked by
the ECM [60]. Instead, they use a special chemical probe (4-mercaptopyridine, MPY) that
interacts with this outer layer. This interaction produces a unique signal, similar to how
different fabrics reflect light in distinct ways. By analyzing these signals with ML tools,
researchers can uncover a wealth of information about the ECM’s makeup—everything
from its overall charge to the specific molecules present. Since different bacterial species
have unique ECMs, this “chemical fingerprint” allows for accurate classification, even
within the complexities of natural environments. Figure 6A illustrates the mechanism of
SERS-based bacterial ECM surface chemotaxonomy.

First, researchers used a silver nanocube array coated with a special chemical (MPY)
to interact with the bacteria’s outer layer (ECM). This creates a unique signal for each
bacterial species. To make sense of these complex spectral fingerprints, researchers turned
to powerful machine learning techniques.

Specifically, they used unsupervised machine learning techniques—hierarchical clus-
tering (HC) and principal component analysis (PCA). HC and PCA serve as powerful
pattern recognition tools. HC sorted the spectra into groups based on similarity, revealing
different levels of detail about the bacteria. Level 1 separated the bacteria broadly. Level
2 made finer distinctions, and Level 3 pinpointed the individual species. PCA worked
similarly, visually organizing the bacteria into clusters that matched the HC groupings
(Figure 6B). Importantly, these unsupervised models worked without any prior knowl-
edge about the bacteria. The fact that they successfully sorted species demonstrates that
each bacterial ECM interacts with the MPY probe in a unique way, producing a distinct
SERS fingerprint.
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Figure 6. Decoding bacterial identity with SERS. (A) SERS-based bacterial surface chemotaxonomy:
Researchers use the special chemical probe 4-mercaptopyridine (MPY) to interact with the bacteria’s
outer layer (ECM). This creates a unique spectral fingerprint for each species. (B) Machine learning
reveals hidden patterns. (i) Unsupervised clustering of SERS spectra groups bacteria with similar
ECM compositions. (ii) Key spectral features (top) and their influence on clustering (bottom) are
highlighted, revealing the chemical distinctions between bacteria at different classification levels.
Reprinted with permission from Shi Xuan Leong, Emily Xi Tan, Xuemei Han, et al., ACS Nano, 2023.
Copyright 2023, American Chemical Society [60].

Here is a breakdown of how researchers revealed these hidden patterns. In Level
1, the researchers found that the bacteria’s surface charge influences their SERS spectra.
Bacteria with a more negative surface charge interact strongly with the MPY probe, altering
the balance between different forms of MPY. This change is reflected in the strength of
specific peaks within the SERS signal. In Level 2, subtle differences in the bacteria’s
overall ECM chemical makeup cause shifts in specific SERS peaks of the MPY probe.
Researchers used simulations to show that bacteria with exopolysaccharides that interact
more strongly with MPY exhibit larger shifts in these peaks. In Level 3, the entire SERS
spectrum acts as a unique fingerprint for each bacterium. Subtle differences in the bacteria’s
ECM, including specific molecules and their arrangement, create these distinctive spectral
patterns. Computer simulations supported the idea that different ECM compositions
interact with the MPY probe in unique ways, leading to species-level distinctions.

Finally, the researchers used a supervised machine learning technique called a random
forest classifier to analyze the complex SERS fingerprints. This model works like a decision
tree, sorting the spectra based on key differences. After training on a large dataset, their
model achieved over 98% accuracy in identifying all six bacteria. To ensure reliable results,
they ran the test one hundred times with varying data, consistently obtaining high accuracy.
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The model pinpointed specific regions within the SERS signal that revealed the most
significant differences between ECMs. A model built without the MPY probe performed
poorly, highlighting a key point: the MPY amplifies subtle distinctions in the bacteria’s ECM,
creating a much clearer fingerprint for the machine learning classifier. This demonstrates
the power of their approach for accurate, rapid bacterial identification.

This work demonstrates that SERS coupled with machine learning has the potential to
revolutionize how we classify and understand bacteria in diverse environments. Its ability
to uncover subtle biological differences, as demonstrated by Leong et al. [60], positions
SERS as a cornerstone in revolutionizing microbiology research and its applications. Be-
yond purely diagnostic applications, researchers are harnessing the power of SERS in other
critical areas like food safety.

For example, Yan et al. developed a SERS-based test for the rapid detection of E. coli
O157:H7 contamination in food [52]. This test uses tiny nanoparticles with antibodies that
specifically target the bacteria. If E. coli is present in a liquid sample, the nanoparticles attach,
creating a unique signal that indicates both its presence and its concentration. Notably,
the study stands out as a unique example of applying machine learning for quantitative
pathogenic bacteria detection using SERS, highlighting a current gap in the field where
most studies focus on classification tasks. To analyze the complex data and accurately
predict bacterial load, researchers employed a powerful pattern-finding algorithm called
extreme gradient-boosting regression (XGBR). This model, surpassing the accuracy of
traditional methods, demonstrated the exceptional sensitivity of SERS for rapid, point-
of-care pathogen detection, highlighting the potential of regression-based approaches for
addressing quantification challenges in SERS-ML research.

Overall, these studies spotlight SERS as a robust toolkit, ready to address challenges
in clinical diagnostics and food safety and to expand our fundamental understanding of
bacteria. This potential is due to its unparalleled sensitivity and specificity. Far beyond
simple laboratory analysis, SERS’s ability to unlock hidden biological information positions
it as a cornerstone in revolutionizing microbiology research and its applications.

4.2.3. Comparison of SERS-ML Approaches

While each of the studies examined displays the power of SERS-ML, their approaches
differ significantly. Table 3 provides a side-by-side comparison, highlighting variations
in experimental design, machine learning algorithms, and their specific strengths. This
diversity in approaches underscores the flexibility of ML in SERS interpretation. Traditional
ML methods remain valuable tools alongside cutting-edge deep learning models, offering
complementary ways to extract powerful insights from complex spectral data. Examining
these differences can assist future researchers in selecting the most appropriate methods
and techniques for their specific applications.

Table 3. A Guide to SERS-ML approaches: experimental design, algorithms, and strengths.

Challenge
Addressed Sample Type Key Insight Algorithm

Category
SERS

Substrate

Input (No.
of

Spectra)
Ref.

Differentiating
closely related

pathogens

Pure bacterial
cultures

SERS + CNN for
Shigella/E. coli
differentiation

CNN AgNPs 1600 [87]

Clinical application,
complex samples Clinical isolates SERS + CNN for

clinical pathogens CNN AgNPs 17,149 [96]

Limited spectral
variation between

serovars

Pure bacterial
cultures

SERS + multiscale
CNN for Salmonella

serovars
CNN AuNPs 1854 [62]
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Table 3. Cont.

Challenge
Addressed Sample Type Key Insight Algorithm

Category
SERS

Substrate

Input (No.
of

Spectra)
Ref.

Analysis of mixed
bacterial samples

Mixed bacterial
cultures

SERS + ANN for
mixed bacteria

analysis
Traditional ML Au@Ag@SiO2 N/A [84]

Point-of-need ID,
alternative taxonomy,

complex ECMs
Bacterial cultures SERS-based

chemotaxonomy Traditional ML Ag
Nanocubes 100/species [60]

Algorithm selection,
real-world
complexity

Clinical isolates
Algorithms classify
Staphylococcus via

SERS
Traditional ML AgNPs 2752 [90]

Visual analysis
limitations, rapid

diagnostics
Bacterial isolates

SERS + ML reveals
MRSA/MSSA

biomarkers
Traditional ML AgNPs 230 [114]

Food safety, early
detection,

quantitative analysis
Milk, beef SERS-LFA + XGBR

for E. coli detection Traditional ML AuDTNB@Ag 2700 [52]

Clinical sample
complexity, antibiotic

resistance, limited
data

Bacteria from blood
cultures

ViT for SERS,
clinical focus ODL AgNPs 11,774 [59]

Spectral consistency,
clinical complexity Clinical isolates

SERS + ML for
pathogen

classification
ODL AgNO3 ≈6950 [115]

Subtle differences,
need for rapid

methods
Clinical isolates

SAE-DNN for
MRSA/MSSA in

SERS
ODL AgNPs ≈1699/

isolate [108]

To aid researchers seeking optimal Raman spectroscopy parameters for their bacterial
samples, we compiled the comprehensive Table A1 in Appendix B. This table details the
key experimental settings (including excitation wavelength, spectral range, grating, and ac-
quisition time) used in each of the 32 analyzed studies. By referencing this table, researchers
can gain insights into effective parameter choices and tailor their own Raman/SERS-ML
experiments for bacterial identification accordingly.

While the analyzed studies demonstrate the power of SERS-ML for bacterial identifi-
cation, several key challenges and areas for advancement emerge. Careful preprocessing
of SERS spectra is essential for maximizing accuracy. This crucial step involves denoising,
baseline subtraction, normalization, outlier removal, dimensionality reduction, and peak
alignment [116,117]. Techniques such as the Savitzky–Golay filter and wavelet denois-
ing reduce electronic noise and cosmic ray artifacts, while baseline subtraction methods
like polynomial fitting or asymmetrical least squares eliminate contaminating signals
from instruments and substrates. Normalization, often through vector normalization,
enables cross-experiment comparisons by accounting for variations in setup and sample
preparation. Further refinement involves outlier removal and dimensionality reduction,
with techniques like Principal component analysis (PCA) helping to distill essential spec-
tral features. Peak alignment ensures consistency, particularly when comparing different
samples or experimental conditions. Crucially, applying consistent preprocessing steps
and parameters across all data is essential for valid quantitative comparisons. Researchers
can utilize various software libraries such as Raman Processor (MATLAB, open-source,
MIT license); OriginPro 2024b (OriginLab Corporation); LabSpec 6 (HORIBA); RamPy
(Python, open-source, GNU GPL v2), Scipy.signal (Python, open-source, BSD license),
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and chemospec (R, open-source, GPL-3); and hyperspec (R, open-source, GPL-3) to facili-
tate these processes. This comprehensive preprocessing approach maximizes the accuracy
and reliability of machine learning outcomes in Raman/SERS-based bacterial identification
and related applications.

The choice of Raman excitation wavelength, along with techniques for processing
spectra like Savitzky–Golay smoothing and standard normal variate, significantly reduce
noise and enhance informative signals [61]. Though time-consuming, particularly for large
datasets, researchers are constantly refining these preprocessing methods for efficiency.
Reproducibility is another concern, as SERS results are sensitive to several factors that
include variations in substrates, nanoparticles, and experimental protocols. Developing
standardized SERS substrates and protocols and exploring low-cost substrate innovations
will enhance reproducibility across different laboratories and applications. Furthermore,
the transition from pure cultures to clinical samples poses challenges for SERS-based
bacterial detection due to the complex spectral contributions from clinical matrices like
blood, urine, or sputum. These matrices can mask bacterial signals, hindering accurate
identification. The growth media components, including salts, nutrients, and metabolites,
can further complicate the spectra by interacting with bacterial cells and SERS substrates.
To address this, researchers have developed various strategies. Boardman et al. demon-
strated a combined sample preparation and SERS detection method for identifying bacteria
in whole blood, achieving high specificity and sensitivity for E. coli and S. aureus [118].
Similarly, Sivanesan et al. employed a bimetallic SERS substrate to enhance bacterial sig-
nals in blood for selective identification [119]. Furthermore, multivariate data analysis
has proven crucial in distinguishing bacterial signals from media effects. Premasiri et al.
showed that different bacterial species, including Klebsiella pneumoniae, E. coli, Pseudomonas
aeruginosa, Enterococcus faecalis, and two strains of S. aureus all grown in the same growth
medium (i.e., tryptic soy broth (TSB) except for K. pneumoniae, which was grown in nutrient
broth (NB)) exhibit distinct SERS spectra, while the same species maintains its characteristic
spectrum across different media [120]. Their study also highlighted the importance of
proper washing procedures in removing medium contributions. This combined approach,
leveraging both sample preparation techniques and multivariate analysis, significantly
improves the reliability of SERS-based bacterial detection in complex clinical samples.

Addressing these limitations holds the key to unlocking the full potential of SERS-
ML, transforming bacterial identification across research, clinical, and industrial settings.
From the precision of clinical diagnostics to ensuring food safety, SERS offers unparalleled
sensitivity and specificity. Its ability to unlock hidden biological information, like the subtle
taxonomic distinctions revealed in the Leong et al. study [60], positions it to revolutionize
our understanding of the microbial world. To achieve widespread adoption, SERS repro-
ducibility and standardized substrates must be addressed. Additionally, creating extensive,
shared spectral libraries will empower researchers to develop even more advanced ML
models. By continuing to address these key challenges, SERS-ML is poised to become a
cornerstone of microbiology research, driving breakthroughs in clinical care, food safety,
and fundamental bacterial classification.

While Case Studies I and II demonstrated impressive precision, real-world samples
are not always ideal. Case Study III explores how ODL not only expands datasets but also
combats noise and complexity to ensure reliable results, making the transition to real-world
applications smoother.

4.3. Case Study III: Tackling Data Challenges and Expanding Raman Spectroscopy with
ODL Techniques

While CNNs excel in Raman spectroscopy, ODL offers unique advantages for tackling
core challenges and expanding its potential. These techniques go beyond simply augment-
ing datasets. Notably, ODL methods can handle real-world spectral noise, ensuring reliable
results even in less-than-ideal conditions. Additionally, they can detect subtle spectral
shifts critical for applications like early disease detection. While Raman spectroscopy
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holds promise for early cancer detection, the difficulty of gathering large patient datasets
can hinder model development [121]. A major hurdle in applying Raman spectroscopy
clinically, especially for conditions like early-stage cancer, is limited datasets. Several
innovative studies have employed techniques like generative adversarial networks (GANs)
to augment spectral data. This paves the way for reliable models even when gathering
numerous patient samples is difficult.

4.3.1. Expanding Raman’s Reach with Limited Data

Previous studies utilized 72,000 and 4200 datasets to build the CNN model for micro-
bial identification [18,103]. However, clinicians rarely have access to such large datasets.
To make this model applicable for real-world applications, we need to overcome this chal-
lenge. Liu et al. and Yu et al. successfully overcame this challenge by implementing GAN
augmentation to deliver accurate taxonomic results with fewer samples [88,122]. GAN-
based methods offer a solution to the challenge of limited datasets in Raman spectroscopy.
GAN augmentation works by generating realistic synthetic spectra that closely mimic real
ones. This expands the training dataset available to the model. With more “examples” to
learn from, even if they are generated, the model becomes better at identifying the subtle
patterns that distinguish different pathogens. This approach enables reliable classification
while minimizing the need for laborious and costly data collection [123].

Figure 7 illustrates the GAN architecture, a deep learning framework where two neural
networks (the generator, G, and discriminator, D) engage in an adversarial process to create
and distinguish realistic data [124]. In this framework, the generator attempts to produce
realistic spectra while the discriminator differentiates between real and generated examples.
This ongoing competition drives the GAN to progressively improve its understanding of
real data patterns.

Figure 7. Simplified GAN structure for Raman spectra augmentation. Reproduced with permission
from Shixiang Yu, Hanfei Li, Xin Li, Yu Vincent Fu, and Fanghua Liu, Science of The Total Environment,
2020. Copyright 2020, Elsevier [88].

Yu et al. successfully leveraged GANs to address the challenge of limited spectral
datasets common in Raman spectroscopy [88]. They designated a small subset of spectra
(50 in this case) for each pathogen strain as training data, with additional spectra held
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for testing. By creating a labeled dataset (target strain spectra labeled “1”, all others “0”),
the GAN could generate realistic spectra to augment the training data, ultimately boosting
model performance and enabling accurate pathogen classification.

The model successfully pinpointed spectral regions between 800–850 cm−1 and
1400–1450 cm−1 wavenumbers as particularly important for differentiating between pathogen
types. These findings could significantly improve marine pathogen monitoring. By focusing
the analysis on the specified regions, faster and more efficient Raman tests for water quality
or outbreak detection could be developed. Additionally, the success of this GAN-based ap-
proach in the marine context demonstrates its potential for broader diagnostic applications
where sample collection is challenging.

While GAN models offer significant advantages, they can face stability challenges.
To address these limitations and further enhance resolution, Liu et al. adopted the progres-
sive growing of GANs (PGGAN) approach—a technique known for increasing stability
and generating highly detailed images [122,125]. PGGAN functions similar to a skilled
artist sketching a Raman spectrum, starting with a rough outline and progressively adding
layers of detail. This refinement process allows the GAN to learn the spectrum’s overall
structure before focusing on the finer nuances. Building upon this approach, Liu et al.’s
study combined PGGAN with ResNet to generate a high-resolution Raman spectral dataset,
leading to a powerful taxonomic model [122].

The researchers began with low spatial resolution (12 pixels) for both the generator
(G) and discriminator (D) (Figure 8A). As training progressed, they incrementally added
layers, increasing the resolution to 768 pixels. This gradual approach enables the model to
learn the big picture of the data before getting into the finer details. Ultimately, the GAN-
produced spectra become virtually indistinguishable from real ones (Figure 8B), greatly
expanding the dataset while drastically reducing the time needed for collecting real-world
spectral data.

Figure 8. Accelerating Raman spectroscopy with PGGAN. (A) The PGGAN training process for
Fictibacillus sp. spectra generation. (B) Generated spectra become increasingly indistinguishable from
real spectra (g) as resolution increases. Reproduced with permission from Bo Liu, Kunxiang Liu, Nan
Wang, Kaiwen Ta, Peng Liang, Huabing Yin, and Bei Li, Talanta, 2022. Copyright 2022, Elsevier [122].
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The study utilized the ResNet architecture developed by Ho et al. (refer to Figure 2) [18].
This ResNet model achieved a remarkable 99.8% accuracy in identifying bacterial species.
This combined method addresses the need for large datasets and handles low-quality
spectra. It enables rapid, non-invasive identification of individual bacterial cells, with
the potential for cell sorting using microfluidics. The simplified sample preparation makes
it ideal for challenging in-field analysis in microbiology and health care. However, the ver-
satility of ODL extends far beyond the identification of microbes. Let us explore how
researchers are applying these techniques to diverse challenges across the Raman spec-
troscopy landscape.

4.3.2. Beyond Bacteria: ODL Tackles Diverse Raman Applications

From the depths of the ocean to the intricacies of plant biology, ODL is transforming
how we use Raman spectroscopy. Qin et al.’s and Pérez et al.’s studies highlight ODL’s
remarkable power across diverse fields [98,126]. In medicine, Qin et al. demonstrate
the potential to revolutionize disease diagnosis [98]. By analyzing extracellular vesicles
(EVs), which function as potent “weapons” during infections [127], researchers achieved
unprecedented accuracy in pinpointing EVs [98]. This groundbreaking work paves the way
for advanced EV-based diagnostic tools, enabling early detection and targeted treatment
of bacterial infections. Though challenges like isolating individual EVs from clinical
samples remain, ODL’s unique capabilities position it to overcome such hurdles. Similarly,
Pérez et al. show how ODL–Raman systems could revolutionize precision agriculture [126].
By detecting subtle changes caused by bacterial canker in tomato plants, farmers could
intervene earlier, limiting disease spread and protecting yields.

Qin et al. combined the power of Raman spectroscopy with the innovative atten-
tional neural network (aNN), achieving unprecedented accuracy in identifying EVs from
different pathogens [98]. Inspired by how humans selectively focus on important visual
details, the aNN utilizes attention mechanisms to prioritize the most informative spectral
regions [128]. Figure 9a illustrates how this process functions. The aNN begins by ana-
lyzing a Raman spectrum of a sample suspected to contain EVs. Convolution modules
function as smart filters, highlighting crucial patterns. Next, powerful attention modules
refine the analysis by directing the model’s focus to the most informative spectral regions
for distinguishing EVs. The aNN’s classifier then leverages this information to determine
not only the type of bacteria present (e.g., Gram-positive or Gram-negative) but also the
specific species, drug-resistance status, and even growth stage. This remarkably detailed
identification has the potential to revolutionize infection diagnosis, leading to faster and
more effective treatment decisions.

The attention module itself employs two key mechanisms (Figure 9b,c). Channel atten-
tion identifies important signal frequencies within the Raman spectrum, while wavenumber
attention pinpoints subtle molecular shifts. It does this by highlighting the most relevant
parts of the data, similar to how a magnifying glass zooms in on specific details. This
focused analysis allows the aNN to accurately identify differences between EVs, even when
those differences are very small.

Qin et al. demonstrated the immense potential of combining Raman spectroscopy with
the aNN for high-precision EV analysis [98]. The model’s ability to classify EVs by species,
antibiotic resistance, and even growth stage establishes a new benchmark for accuracy. This
groundbreaking work paves the way for advanced EV-based diagnostic tools, enabling the
early detection and targeted treatment of bacterial infections. While challenges remain in
isolating individual EVs from clinical samples, the foundation laid by Qin et al.’s study,
combined with advancements in Raman technology, brings this transformative diagnostic
approach closer to reality.

The success of ODL in tackling the complexities of bacterial EVs highlights its adapt-
ability for diverse biological challenges. Inspired by this potential, Pérez et al. applied
Raman spectroscopy to combat a destructive plant disease: bacterial canker of tomato [126].
This disease severely impacts global tomato production, and early detection is key to limit-



Chemosensors 2024, 12, 140 23 of 37

ing its spread. However, traditional diagnostics are often slow and unreliable, especially
since the disease can remain latent. Pérez et al. explore how Raman spectroscopy can
detect subtle biochemical changes caused by the pathogen, promising a fast, non-invasive
solution for the early identification even in asymptomatic plants.

Figure 9. Inside the aNN: from spectrum to EV identification. (a) aNN architecture: The aNN
extracts intricate spectral patterns with four convolution modules. Attention modules then refine
the analysis, zeroing in on the most important regions for EV identification. A classifier leverages
this focused information to deliver remarkably detailed results. (b) Channel attention: Pinpointing
key frequencies in the Raman spectrum, channel attention guides the aNN towards crucial clues for
EV identification. (c) Wavenumber attention: Zeroing in on subtle molecular shifts, wavenumber
attention reveals the hidden fingerprints that distinguish different EVs. Reprinted with permission
from Yi-Fei Qin, Xin-Yu Lu, Zheng Shi, et al., Analytical Chemistry, 2022. Copyright 2022, American
Chemical Society [98].

Researchers collected a total of 297 Raman spectra from both healthy (120) and in-
fected but asymptomatic (177) tomato plants using a 785 nm excitation laser micro-Raman
spectrometer. To ensure accurate analysis, they carefully prepared the data by removing
background fluorescence to isolate true plant signals and using “standard normal variate
(SNV)” normalization to minimize unrelated variations. These refined data were then
analyzed with PCA (principal component analysis) to pinpoint the key spectral differences
between healthy and infected plants. PCA functions as a pattern recognition tool, aiding
researchers in identifying spectral features that distinguish between healthy and infected
plants (see Figure 10).

To build a dependable predictive model, the researchers split their spectral data into
training (70%) and testing (30%) sets.They implemented PCA to extract the most prominent
features and then evaluated two classifiers—a multilayer perceptron (MLP) neural network
and a traditional linear discriminant analysis (LDA) model. This double check ensured
their disease detection method was not algorithm-dependent.

Both classification models (i.e., MLP and LDA) successfully differentiated healthy and
infected plants. However, the MLP neural network slightly outperformed LDA, demon-
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strating its ability to handle non-linear patterns within the spectral data. Overall, the study
highlights the power of Raman spectroscopy, combined with ML, to revolutionize disease
management by enabling the early detection of bacterial canker in tomatoes. The suc-
cess of both the bacterial EV analysis [98] and the plant disease detection [126] studies
underscores the remarkable versatility of ODL techniques in Raman spectroscopy. To fur-
ther highlight the benefits and potential applications of these techniques, let us examine
them in a table format, exploring factors like the challenge solved, target identification,
and clinical potential.

Figure 10. Workflow for transforming Raman spectra into disease detection. Normalized spec-
tra reveal subtle differences between healthy (HTo) and infected (BCTo) plants. Key compound
wavenumbers (dashed lines) highlight potential disease markers. Reprinted from Moisés Roberto
Vallejo-Pérez et al., Plants, MDPI 2021. Copyright 2021 [126].

4.3.3. A Comparative Analysis of ODL Techniques for Raman-Based Bacterial Analysis

Table 4 provides a valuable guide for researchers seeking appropriate ODL techniques,
highlighting their strengths and potential applications across diverse Raman-based bacterial
analysis scenarios. This comparative analysis can aid in technique selection and the
development of new ODL–Raman solutions.

Table 4. Overcoming Raman spectroscopy challenges with other deep learning techniques.

ODL Technique Challenge Solved Key Insight Clinical
Potential? Ref.

Vision transformer (ViT)
Accurately identifies bacteria

and antibiotic resistance in
complex blood cultures

ViT-based SERS accurately
determines antibiotic

resistance and classifies
clinical pathogens

Y [59]

CNN, recurrent neural
network (RNN) variants

Variability and noise in clinical
samples

SERS with deep learning
enables robust classification of

clinical bacterial isolates
Y [115]

Attention neural network
(aNN)

Analyzing complex biological
samples (bacterial EVs)

Raman with aNN identifies
EVs, discovers biomarkers,
and reveals EV biogenesis

insights

Y [98]

Residual network (ResNet) Limited datasets and
complexity of clinical samples

ResNet deep learning
accurately classifies ESKAPE
pathogens in clinical samples

Y [129]

Progressive growing GAN
(PGGAN) + ResNet

Limited and noisy spectral
data (marine environment)

Raman, PGGANs, and ResNet
accurately classify marine

pathogens, overcoming data
limitations

Promising [122]
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Table 4. Cont.

ODL Technique Challenge Solved Key Insight Clinical
Potential? Ref.

Spectral transformer (ST)
Computational efficiency,

handling sample variability,
antibiotic resistance detection

Spectral transformers offer
comparable accuracy with

faster training and superior
handling of sample variation

for antibiotic resistance studies

Y [130]

U-Net
Information loss during deep

learning training, classification
of antibiotic resistance

U-Net improves Raman-based
antibiotic resistance

classification by reducing
information loss

Y [131]

Stacked autoencoder–deep
neural network (SAE-DNN)

Detecting subtle spectral
differences for antibiotic
resistance determination

SERS with SAE-DNNs
accurately distinguishes

antibiotic resistance profiles
(MRSA vs. MSSA)

Y [108]

Multilayer perceptron (MLP) Early disease detection
(presymptomatic) in plants

Raman spectroscopy with
MLP enables early plant
disease detection prior to

visible symptoms

Promising [126]

Long short-term memory
(LSTM)

Accurate bacteria classification
at the strain level, analysis of

complex spectral data

LSTM deep learning
differentiates bacterial strains

and extracts subtle spectral
information

Promising [132]

Generative adversarial
network (GAN)

Limited and/or noisy spectral
data

Raman with GANs and deep
learning accurately classifies
pathogens despite spectral

challenges

Promising [88]

Table 4 emphasizes the versatility of ODL techniques, demonstrating how they can
overcome challenges ranging from small datasets [88,122] to handling complex samples [98]
and the demand for precise disease detection [126]. While these techniques demonstrate im-
mense promise in Raman spectroscopy, acknowledging current limitations is key for future
progress. Despite techniques like GANs for data augmentation, sizable datasets remain a
hurdle in some applications. Translating ODL–Raman solutions into real-world clinical
practice requires standardization and robust validation on diverse samples. Additionally,
research into computationally efficient ODL models tailored for Raman spectroscopy, along
with explainable methods, is crucial. Understanding ODL model decisions will build
trust within the clinical community and aid in identifying the spectral biomarkers that
drive disease detection. The future holds exciting potential for hybrid techniques, novel
applications like in situ monitoring and personalized medicine, multimodal diagnostics,
and the development of accessible, user-friendly Raman–ODL instruments. This case study
highlights ODL’s potential to address core challenges in Raman spectroscopy, positioning
it to revolutionize various fields through data augmentation, robust real-world sample
handling, and the identification of subtle spectral signatures.

5. Limitations and Future Directions

While the integration of machine learning with Raman spectroscopy demonstrates
extraordinary potential, it is crucial to acknowledge its current limitations and chart a path for
overcoming those challenges. To fully realize its transformative impact, the field must address
dataset scarcity and lack of standardization and promote explainable AI methodologies.

• Data challenges: The development of robust, accurate models often depends on
substantial, well-curated, and harmonized datasets. Initiatives for multi-institutional
data sharing through accessible repositories with standardized metadata are essential



Chemosensors 2024, 12, 140 26 of 37

to address smaller dataset limitations. Exploration of techniques like transfer learning
and data augmentation also holds promise.

• Standardization: The lack of standardized protocols for sample preparation, spectral
acquisition, and data analysis hinders reproducibility and clinical translation. Es-
tablishing best practices and guidelines will ensure reliable results across different
laboratories and applications.

• Limited focus on quantification: Our review reveals a predominant focus on classifica-
tion tasks in pathogen detection, highlighting an opportunity for further research into
regression-based approaches for quantifying bacterial load. The study by Yan et al.,
as highlighted in Case Study II, demonstrates the potential of machine learning to ac-
curately predict bacterial concentration using SERS, underscoring a promising avenue
for future exploration.

• Explainable AI: While certain deep learning models deliver exceptional results, achiev-
ing a clear understanding of their decision-making processes remains a challenge.
Developing explainable AI techniques, such as Grad-CAM, is vital for building trust
in ML–Raman solutions, especially within the clinical context.

By focusing research efforts on these core areas, researchers can unlock the full po-
tential of ML–Raman to revolutionize our approach to infectious diseases, food safety,
and fundamental biological research. Recalling the challenges outlined in the Introduc-
tion, it is these limitations that often impede the translation of promising research into
real-world applications.

The future of ML–Raman is immensely bright, with exciting potential for transforma-
tive advances in several areas:

• Open questions: The case studies examined highlight exciting open questions for fu-
ture research. These include the development of ODL architectures specifically tailored
for Raman spectroscopy, computationally efficient models for real-time applications,
and the pursuit of spectral biomarkers for early disease detection.

• Multimodal analysis: Integrating Raman spectroscopy with complementary tech-
niques like microfluidics and mass spectrometry paves the way for comprehensive
analysis. This offers richer insights into bacterial phenotypes, antibiotic resistance
mechanisms, and single-cell dynamics—areas crucial for combating the AMR crisis.

• Harnessing GenAI’s potential: The integration of cutting-edge generative AI (GenAI)
models holds significant promise for Raman spectroscopy and microbiology. These
models can further enhance data generation, aid in spectral interpretation, and poten-
tially uncover novel biological insights.

• Cross-field collaboration: Fostering interdisciplinary collaboration between experts in
Raman spectroscopy, machine learning, and microbiology is paramount. By combining
diverse knowledge and expertise, researchers can develop innovative ML–Raman
solutions tailored to address specific biological challenges and clinical needs.

The studies analyzed in this review powerfully demonstrate the transformative capa-
bilities of machine learning in Raman spectroscopy. By critically addressing limitations,
harnessing emerging technologies, and promoting cross-field collaboration, we can solidify
the role of ML–Raman as a cornerstone of microbiology, ultimately improving patient
outcomes and safeguarding global health.

6. Conclusions

This review journeyed through the groundbreaking synergy of machine learning
and Raman spectroscopy for bacterial identification, revealing its transformative potential
to revolutionize how we diagnose infections, ensure food safety, and understand the
microbial world.

Case Study I established the potential of CNNs to revolutionize clinical diagnostics.
Their ability to handle complex spectral data and pinpoint subtle biomarkers for antibi-
otic resistance underscores their potential impact on treatment decisions and the fight
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against AMR. Building upon those foundations, Case Study II delved into the power of
SERS. By amplifying the Raman signal, SERS enables the detection of trace pathogens and
offers unparalleled sensitivity for scenarios like food safety and early-stage disease detec-
tion. Finally, Case Study III highlighted the potential of other deep learning techniques.
These innovative methods address challenges like limited datasets through techniques like
GANs and extract insights from complex samples, greatly expanding the applications of
Raman spectroscopy.

Throughout these case studies, the challenges and opportunities for advancement
within the field became increasingly clear. The availability of diverse, well-curated Raman
datasets, the standardization of experimental protocols, and the pursuit of explainable
AI models are crucial areas for further development. However, the potential impact of
addressing these challenges is immense. Imagine a future where ML–Raman enables
the following:

• Rapid point-of-care diagnostics: Clinicians, equipped with portable, ML-powered
Raman devices, can swiftly identify the cause of an infection and determine the most
effective antibiotic, preventing needless delays and improving patient outcomes.

• Precision-guided food safety: Rapid ML-SERS-based tests screen food production
lines for harmful bacteria, overcoming adaptability challenges to safeguard consumers
and prevent costly outbreaks.

• Decoding the microbial world: Researchers harness the power of ML and Raman
to unlock insights into complex bacterial communities, unraveling the mysteries of
microbial ecosystems and their impact on the environment and human health.

The integration of machine learning and Raman spectroscopy is not simply about
improving existing technologies—it holds the key to fundamentally transforming how
we diagnose infections, protect our food supply, and understand the world around us.
This burgeoning field demands continuous research and innovation to fully realize its
transformative potential. The field is poised for rapid progress and invites researchers,
clinicians, and innovators to join this revolutionary journey.
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Appendix A. Technical Details of SERS Enhancement Mechanisms

SERS achieves its remarkable sensitivity through a combination of electromagnetic
and chemical enhancement mechanisms [75]. These two contributions arise due to the
fundamental phenomenon of Raman scattering intensity (IR), which is proportional to the



Chemosensors 2024, 12, 140 28 of 37

square of the induced dipole moment (µind), which is the product of Raman polarizability
(α) and magnitude of electric field (E) [76]. In the SERS measurement, when the incident
light strikes over a metallic nanoparticle of smaller dimensions than the wavelength, it leads
to the excitation of surface plasmons, which is the coupling of photons to the charge density
oscillations of conducting electrons, Figure A1a [78]. Under these excitations, localized
surface plasmons (LSPRs) occur when the frequency (ωo) of incident light matches the
frequency of the oscillating electron. It leads to the locally enhanced electric field (Eloc) at
the particle surface compared to the incident electromagnetic field (Eo) by a factor of Gex
given in the following relation of enhancement factor [79,81].

Gex = [Eloc(ωo)/Eo(ωo)]
2 (A1)

The resonance frequency of plasmons in the metallic structure depends on certain
factors: dielectric function of the metal, effective electron mass, local surroundings, and
structural geometry for the propagation [133]. In the localized surroundings, other oscilla-
tion sources are generated, such as the modified Raman dipole (Po). Generally, the interac-
tion between α of the molecule with Po is higher in magnitude (2–3 orders) than the free
molecules not attached to the metals. Thus, these mutual excitations of (α) by (Eo), and vice
versa, further enhance the SERS signal by enhancement factor GR given below.

GR = [Eloc(ωR)/Eo(ωR)]
2 (A2)

where ωR is the Raman-shifted frequency. For the molecules exhibiting low vibrational
frequencies in the Raman mode, ωo ≈ ωR is considered roughly equal, and the electro-
magnetic field enhancement factors of Equations (A1) and (A2) are considered comparable.
Thus, overall enhancement under the effect of the electromagnetic field in the SERS (G)
scale with the fourth power of the Eo is responsible for the sensitivity of SERS techniques,
capable of addressing minor changes in the local field enhancement [77].

G = IEloc(ωR)I4/IEo(ωR)I4 (A3)

Figure A1. (a) In the presence of electromagnetic waves of incoming frequency (ωinc) over metallic
nanoparticle (Au) generating a localized surface plasmon resonance (LSPR). Reprinted with permis-
sion from Sebastian Schlücker, Angewandte Chemie International Edition, 2014. Copyright 2014, John
Wiley and Sons [80]. (b) The chemical contribution in SERS shows a charge transfer mechanism for
the attached molecule over the metal and semiconductor interface. The arrows represent the direction
of charge transfer and the spheres represent molecular orbitals. Reprinted with permission from Shan
Cong et al., The Innovation, Elsevier, 2020. Copyright 2020 [134].

In the chemical enhancement mechanism of SERS, the surface plasmon resonance
absorption occurs far from the laser excitation wavelength (within a certain sensing volume)
through the charge transfer transition (µCT) mechanism either through the molecule-to-
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metal or metal-to-molecule pathway. Three different types of mechanisms have been
proposed during chemical enhancement: interfacial ground state charge transfer (µGSCT),
photon-induced charge transfer (µPICT), and the occurrence of the electronic exciting reso-
nance within the molecule [135]. In the vicinity of the metallic nanoparticles, the generation
of electrons after photo-irradiation is either excited from the highest occupied molecular
orbital (HOMO) of the adsorbed molecule transferred to the Fermi energy level (EF) of the
metal or excited from the EF of the metal and transferred to the lowest occupied molecular
orbital of the molecule (LUMO), Figure A1b. In the case of semiconductors, the energy band
gap (Eg) and its associated EF play a crucial role in plasmonic nanoparticles in the charge
transfer process. It is important to note that the chemical-contributed mechanism during
SERS could either lead to quenching or enhancement of the scattering [82] . Nevertheless,
the chemical contribution to the SERS enhancement is not significant (factor of 103), as
observed in electromagnetically induced plasmons (105 to 109) [83] . The total enhancement
factor constituting the electromagnetic and chemical contribution is generalized in relation
(Equation (A4)), given below.

Enhancement FactorSERS = [ISERS/NSur]/[INRS/NVol] (A4)

The relation evaluated for a single excitation wavelength describes the average Raman
enhancement, where ISERS is the intensity of the Raman band of the adsorbed molecule,
INRS is the normal Raman intensity (i.e., without SERS effect), and Nsur and Nvol are the
average number of molecules in the scattering volume of SERS and non-SERS Raman
spectroscopic measurements [136].

Appendix B

Researchers can optimize their Raman spectroscopy–ML experimental design for
bacterial identification by referencing Table A1. This table offers a valuable guide to Raman
spectroscopy parameters, sample details, bacterial species/strains, algorithms, and accu-
racy metrics drawn from 32 diverse studies. This resource can streamline the process by
providing insights into effective parameter choices and methodological comparisons.

Table A1. Design effective Raman spectroscopy–ML experiments: a parameter guide for bacterial research.

Sample Type Specific
Bacteria

Algorithm
Category

Accuracy
Metric

Input (No. of
Spectra) Raman Parameters Ref.

Pure bacterial
cultures

E. coli
(2 strains),

Shigella spp.
(8 strains)

CNN 99.64% 1600

Excitation: 784.56 nm, 25 mW
grating: 600 L/mm, spectral range:
400–2300 cm−1, exposure = 60 s,

objective = 100×
[87]

Clinical
isolates +
AgNPs

30 species,
9 genera CNN

CNN: 99.80%
(genus), 98.37%

(species)
17,149

Excitation: 785 nm, 20 mW,
spectral range: 65–2800 cm−1,

exposure = 5 s
[96]

Pure cultures 30 isolates,
15 species CNN

84.7 ± 0.3%
(isolate),
97 ± 0.3%

(treatment ID)
≈60,000 N/A [100]

K. pneumoniae
clinical isolates

K. pneumoniae
(71 strains) CNN

>94% for
antibiotic
resistance

genes
7455

Excitation: 785 nm, 150 mW,
grating: 1200 L/mm, spectral
range: 390.79–1552.14 cm−1,

objective = 50×
[101]

N/A N/A CNN
86.7% (isolate),

92.7%
(MRSA/MSSA)

Paper 10 data N/A [89]
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Table A1. Cont.

Sample Type Specific
Bacteria

Algorithm
Category

Accuracy
Metric

Input (No. of
Spectra) Raman Parameters Ref.

Genomic DNA
isolates

Brucella spp.,
Bacillus spp. CNN CNN: 96.33% 843

Excitation: 785 nm, 30 mW,
grating: 600 L/mm, spectral range:

600–1700cm−1, exposure = 60 s,
objective = 100×

[85]

Pure bacterial
cultures +
AuNPs

S. Enteritidis, S.
Typhimurium, S.

Paratyphi
CNN 97% 1854

Excitation: 785 nm, 5 mW, spectral
range: 550–1676 cm−1,

exposure = 2 s
[62]

Individual
microbes and
cells on Teflon

12 species
(Gram +ve and
−ve) + fungi

CNN 95–100% ≈ 6000
per organism Excitation: 532 nm, 20 mW [102]

Bacteria,
archaea, yeast
under various

conditions

14 species CNN 95.64 ± 5.46% >4200 (train)
1400 (test)

Excitation: 785 nm, <16 mW,
grating: 600 L/mm, spectral range:

600–1800 cm−1, exposure =
60–90 s, objective = 100×

[103]

Lab-prepared
isolates

S. aureus
(MRSA/MSSA

pair) + yeast
CNN

82% (isolate),
97%

(treatment),
89%

(MRSA/MSSA)

72,000

Excitation: 633 nm, 13.17 mW,
grating: 300 L/mm, spectral range:
381.98–1792.4 cm−1, background:

poly fit (5)

[18]

Mixed
bacterial
cultures

E. coli, S.
aureus, S.

typhimurium
Traditional ML

ANN: R2 >
0.95, RMSE <

0.06
N/A N/A [84]

Bacterial
cultures

6 dis-
tinct species Traditional ML >98% 100 per species

Excitation: 532 nm, 0.3–0.4 mW,
spectral range: 400–1800 cm−1,

objective = 20×
[60]

Clinical
isolates, some

cultured

12 species
(Gram

+ve/−ve) +
2 fungi

Traditional ML

RF: 90.73%
(species ID),

99.92%
(antibiotic
resistance)

>300
per species
(train), 80
per species

(test)

Integration time = 60–90 s [91]

Clinical
isolates on
aluminum

9 species
(Gram

+ve/−ve)
Traditional ML

Simple filter:
92% (1 s/cell),

DAE: 84%
(0.1 s/cell)

≈11,141

Excitation: 532 nm, 7 mW, grating:
1200 L/mm, spectral range:

280–2186cm−1, exposure = 0.01,
0.1, 1, 10, or 15 s, objective = 100×

[137]

Clinical
isolates +
AgNPs

117 S.
aureus strains Traditional ML

DBSCAN:
0.9733, Rand
index, CNN:

98.21%
Accuracy

2752
Excitation: 785 nm, spectral range:

519.56–1800.8 cm−1,
exposure = 20 s

[90]

Bacterial
cultures
on silver-

coated slides

30 species,
7 genera Traditional ML

86.23 ± 0.92%
(all, single

model);
87.1–95.8%

(hierarchical)

15,890
Excitation: 532 nm, 5 mW, grating:

300 L/mm, spectral range:
400–1800 cm−1, objective = 20×

[19]

Single
prokaryotic

cells

3 bacteria,
3 archaea Traditional ML >98% 40 per species N/A [86]

Pure cultures
on silicon

wafer
E. coli

ATCC 8739 Traditional ML N/A N/A
Excitation: 532 nm, 8 mW, spectral
range: 650–3300 cm−1, exposure =

0.033 s, background: poly fit (6)
[138]

Bacterial
isolates +
AgNPs

S. aureus
(MRSA/MSSA),
L. pneumophila

Traditional ML 97.8 ± 0.63%
(kNN) 230

Excitation: 785 nm, 3
mW, spectral range:

550–1700 cm−1, exposure = 1 s,
objective = 50×

[114]

Milk, beef E. coli O157:H7
(and others) Traditional ML

Limit of
detection:

6.94 × 101 CFU/mL,
Recovery
86–128%

2700
Excitation: 633 nm, grating:
300 L/mm, exposure = 2 s,

objective = 50×
[52]
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Table A1. Cont.

Sample Type Specific
Bacteria

Algorithm
Category

Accuracy
Metric

Input (No. of
Spectra) Raman Parameters Ref.

Heat-
inactivated

bacterial cells

B. mallei, B.
pseudomallei,

other
Burkholderia

spp.

Traditional ML

95.5%
sensitivity

(core group),
83.4%

sensitivity
(others)

≈ 200
per strain

Excitation: 532 nm, 7 mW, grating:
920 L/mm, spectral range:

15–3275 cm−1, exposure = 5 s,
objective = 100×

[139]

Bacteria from
blood cultures

8 common
species

Other deep
learning

99.3% Gram
type, 97.56%

species, 98.5%
MRSA/MSSA

11,774 Excitation: 632.8 nm,
objective = 20× [59]

Clinical
isolates +
AgNO3

A. xylosoxidans,
B. cepacian, C.
indologenes, +

12 others

Other deep
learning CNN: 99.86% ≈6950

Excitation: 785 nm, 20 mW,
spectral range:

519.56–1800.81 cm−1,
exposure = 5 s

[115]

Extracellular
vesicles (EVs)

6 bacterial
species

Other deep
learning

>96%
(Gram/species),

93% (strain),
87%

(physiological)

4335

Excitation: 532 nm, 5 mW, grating:
300 L/mm, spectral range:

800–1800 & 2700–3200 cm−1,
exposure = 9 s, objective = 100×

[98]

Clinical
isolates

ESKAPE
pathogens

Other deep
learning

99.99%
(training),

98.66%
(validation)

>160
per species

Excitation: 633 nm, grating:
1200 L/mm, spectral range:

600–1700 cm−1, exposure = 20 s,
objective = 100×

[129]

Single bacterial
cells (deep-sea)

5 deep-sea
strains

Other deep
learning 99.8 ± 0.2%

Initial: 300 per
strain

(augmented)

Excitation: 785 nm, grating:
1800 L/mm [122]

Partially
covered CaF2

surfaces

15
bacterial/non-

bacterial
classes, incl.

MR/MS

Other deep
learning

96% (15
classes), 95.6%

(MR/MS)
5200

per species

Excitation: 785 nm, 60 mW,
grating: 950 L/mm, spectral range:

700–1600 cm−1
[130]

N/A N/A Other deep
learning

86.3%
(species-level),

97.84%
(empiric

treatment),
95% (antibiotic

resistance)

Paper 10 data N/A [131]

Clinical
isolates +
AgNPs

S. aureus (19
MRSA, 1
MSSA)

Other deep
learning

97.66%
accuracy, 99.2%

specificity,
96.1%

sensitivity

≈1699
per isolate

Excitation: 785 nm, 3 mW, grating:
1200 L/mm, spectral range:

550–1700 cm−1, exposure = 1 s,
objective: 100×

[108]

Tomato plant
leaves

C.
michiganensis

subsp.
michiganensis

Other deep
learning

PCA + MLP:
99% Acc, 95%
Spec, PCA +

LDA: 97% Acc,
88% Spec

177 (infected),
120 (healthy)

Excitation: 785 nm, 20 mW,
grating: 1200 L/mm, spectral

range: 800–1800 cm−1

exposure = 10 s, objective = 20×
[126]

Pure bacterial
cultures

(intestinal
pathogens)

8 strains from
Urechis

unicinctus

Other deep
learning

94%
isolation-level

accuracy
150 per strain

Excitation: 785 nm, grating:
600 L/mm, spectral range:

600–1800 cm−1, exposure = 60 s,
objective = 100×

[132]

Pure bacterial
cultures

S. hominis, V.
alginolyticus, B.

licheniformis

Other deep
learning N/A 100 per strain Grating: 1200 L/mm,

exposure = 60 s, objective = 100× [88]
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