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Abstract: With the sudden advancement of glucose biosensors for monitoring blood glu-
cose levels for the prevention and diagnosis of diabetes, non-enzymatic glucose sensors
have aroused great interest owing to their sensitivity, stability, and economy. Recently,
researchers have dedicated themselves to developing non-enzymatic electrochemical glu-
cose sensors for the rapid, convenient, and sensitive determination of glucose. However, it
is desirable to explore economic and effective nanomaterials with a high non-enzymatic
catalysis performance toward glucose to modify electrodes. Metal oxides (MOs) and
metal sulfides (MSs) have attracted extensive interest among scholars owing to their ex-
cellent catalytic activity, good biocompatibility, low cost, simple synthesis process, and
controllable morphology and structure. Nonetheless, the exploitation of MOs and MSs in
non-enzymatic electrochemical glucose sensors still suffers from relatively low conductiv-
ity and biocompatibility. Therefore, it is of significance to integrate MOs and MSs with
metal/carbon/conducive polymers to modify electrodes for compensating the aforemen-
tioned deficiency. This review introduces the recent developments in non-enzymatic elec-
trochemical glucose sensors based on MOs and MSs, focusing on their preparation methods
and how their structural composition influences sensing performance. Finally, this review
discusses the prospects and challenges of non-enzymatic electrochemical glucose sensors.

Keywords: metal oxides; metal sulfides; glucose; non-enzymatic; electrochemical sensor

1. Introduction
Diabetes, as a chronic systemic metabolic disorder, arises from either insufficient

insulin secretion or an insufficient utilization of insulin in the human body, resulting
in elevated blood glucose levels [1,2]. Diabetes may lead to a variety of complications,
including unintended weight loss, renal failure, cardiovascular disease (CVD), retinopathy,
and stroke, which can even lead to death [3–5]. According to the International Diabetes
Federation (IDF), the global diabetic patient population is steadily rising, with diabetes
projected to emerge as the seventh most-prominent cause of mortality worldwide by
2040 [6]. Consequently, continuous blood sugar monitoring of patients plays a pivotal role
in early diabetes prevention and diagnosis.

To date, various methods have been developed for serum glucose detection, such
as enzyme electrodes [7], the hexokinase (HK) method [8], spectrophotometry [9], high-
performance liquid chromatography (HPLC) [10], and urine glucose test strips. In lab-
oratories, widely studied methods for glucose detection include colorimetry [11], elec-
trochemistry [12], chemiluminescence [13], surface plasmon resonance (SPR) [14], and
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fluorescence [15]. Clinically, enzyme-based electrochemical sensors are the mainstream
glucose detection method and have undergone three iterations of updates. First-generation
glucose oxidase (GOx)-based sensors rely on oxygen and are susceptible to interference
from electroactive substances, such as acetaminophen, ascorbic acid, and uric acid. Second-
generation glucose sensors facilitate electron transfer from the redox center of GOx to the
electrode surface by introducing redox mediators, but they may face issues, such as toxicity
and stability problems, due to the leaching of these mediators. Third-generation glucose
sensors focus on achieving direct electron transfer (DET) between GOx and the electrode
without the need for redox mediators. However, third-generation glucose sensors are still
in the research stage [16]. Although enzyme-based sensors currently dominate the glucose
sensor market, natural enzymes may be affected by environmental factors, such as pH,
humidity, and temperature. Non-enzymatic electrochemical glucose sensors are expected
to rely on the direct redox reactions of glucose on electrode materials, thus avoiding the
use of biological enzymes, which has been a goal that researchers have been striving to
achieve [17].

Non-enzymatic glucose sensors employing precious-metal electrode materials, like
platinum, gold, palladium, and silver, have demonstrated remarkable benefits regarding
sensitivity, selectivity, and response time [18,19]. Nevertheless, the utilization of pre-
cious metals faces constraints due to their low reserves and high costs, making it difficult
to achieve large-scale application. The rapid advancement of nanomaterials has gener-
ated a growing fascination with the utilization of metals [20], alloys [21], metal oxides
(MOs) [22,23], metal sulfides (MSs) [24,25], carbon materials [26], and their composites as
electrocatalysts for emerging non-enzymatic electrochemical glucose sensors. Recently,
researchers have been committed to developing non-enzymatic electrochemical glucose
sensors based on MOs and MSs due to their excellent catalytic activity, good biocompatibil-
ity, cost-effectiveness, simple synthesis process, and controllable morphology and structure.
MOs, known for their diverse oxidation states, exhibit substantial promise as excellent
candidate materials for non-enzymatic electrochemical glucose sensors, primarily owing
to their low preparation cost, outstanding catalytic activity, and inherent stability [27–29].
Moreover, non-enzymatic electrochemical glucose sensors with a high catalytic perfor-
mance can be effectively created by fabricating metal oxides with large specific surface
areas and multi-component composites providing more catalytic active sites. Recently,
MOs, such as iron (Fe)-based [30], cobalt (Co)-based [31,32], copper (Cu)-based [33], nickel
(Ni)-based [34–36], zinc (Zn)-based [37], titanium (Ti)-based [38], and their composites,
have found extensive application as catalysts in non-enzymatic electrochemical glucose
sensors. Compared with the corresponding MOs, MSs exhibit a smaller band gap, supe-
rior conductivity, and better stability. Furthermore, MSs can be synthesized via a simple
fabrication procedure without the high-temperature annealing process. Similar to MOs,
some MSs, such as NiS, Ni3S2, CoS, and Co3S4, exist in various chemical states, showing
proficient glucose oxidation capabilities. Recently, MSs based on copper (Cu) [39], molyb-
denum (Mo) [40], cobalt (Co) [41], and nickel (Ni) [42] have demonstrated notable stability
and noteworthy catalytic activity, and have been increasingly studied in non-enzymatic
electrochemical glucose sensors. Interestingly, researchers are dedicated to developing
novel non-enzymatic electrochemical glucose sensors based on MOs or MSs by enhancing
the conductivity, increasing the specific surface area, and constructing heterojunctions.
However, the inherent conductivity of MOs or MSs is relatively poor. Consequently, a
common strategy is to combine them with conductive materials, such as carbon-based ma-
terials or conductive polymers, including reduced graphene oxide (rGO), carbon nanotubes
(CNTs), carbon nanofibers (CNFs), polypyrrole (PPy), polyaniline (PANI), and poly(3,4-
ethylenedioxythiophene) (PEDOT). In addition, MOs or MSs of different types of metals
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can be combined to construct heterojunctions, which can not only improve the conductivity
of the electrode material, but also enhance the catalytic activity through synergistic effects.

As the awareness of diabetes increases, the interest of researchers in this field will
continue to increase. In recent years, scientists have conducted extensive research and
experiments on the application of electrochemical sensors for glucose detection (Figure 1a).
In this review, we focus on the latest progress in the field of non-enzymatic electrochemical
glucose sensors based on MOs and MSs (Figure 1b). This paper summarizes the preparation
methods, structural characteristics, morphologies, and corresponding sensing properties
of various MOs and MSs. In addition, we analyze the reasons for the synergistic enhance-
ment of multi-component electrode materials in comparison to their single components.
Finally, we also proposed the issues and challenges faced by non-enzymatic electrochemical
glucose sensors based on MOs and MSs, and presented a certain prospect for the future
development of non-enzymatic electrochemical glucose sensors.
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2. MO-Based Non-Enzymatic Electrochemical Glucose Sensors
2.1. Iron-Based Oxides

Since Godarzi et al. [52] originally reported Fe3O4/functionalized-MWCNTs/glassy
carbon electrode (GCE)-based non-enzymatic electrochemical sensors in 2014, Fe3O4 NPs
have emerged as an outstanding catalyst for innovative sensing platforms due to their
oxidation stability, excellent catalytic properties, and biocompatibility [53–55]. Moreover,
hematite (Fe2O3), another typical iron-based oxide, exhibits outstanding electrical conduc-
tivity, has a low cost, good chemical stability, and high catalytic activity [56]. For example,
Luo et al. [57] reported that the NiO/Fe2O3-based non-enzymatic glucose sensor achieved
sensitive glucose detection in a 0.05 M PBS (pH = 7.0) solution. Therefore, both of them
and their composites possess the advantages of a wide linear range, high sensitivity, and
great anti-interference ability in the application of electrochemical glucose sensors.

To address the relatively low catalytic activity caused by the traditional agglomera-
tion of iron-based oxides, various improved strategies have been studied to enhance their
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catalysis performance for establishing glucose biosensors with superior properties. For
instance, combining conductive polymers, carbon materials, and metal–organic frame-
works (MOFs) can significantly improve the analytical performance of glucose sensors.
Ghaffarirad et al. [43] reported a non-enzymatic electrochemical sensor using PANI and
Fe3O4@MIL-101-NH2-modified nitrogen-doped functionalized graphene (NFG), shown
in Figure 2a. Using mercaptoacetic acid-functionalized magnetic Fe3O4 nanoparticles as
the core, the Fe3O4@MIL-101-NH2 core–shell structure was synthesized through the in situ
growth of MOFs. Then, the authors combined MOFs with PANI and NFG to enhance the
conductivity, stability, and sensitivity, which compensates for the limits of MOFs. This
work shows that we can optimize the performance by regulating the composition, mor-
phology, and structure of materials. Typically, oxides obtained by the controlled pyrolysis
of MOFs can expose highly active metal sites. For instance, Abrori et al. [58] reported
FeBDC-derived Fe3O4 for a non-enzymatic electrochemical glucose sensor. Compared
with FeBDC, FeBDC-derived Fe3O4 was broken into small particles due to the pyrolysis
of organic ligands. More interestingly, Liu et al. [59] reported melamine and Prussian
blue (PB)-derived g-C3N4/α-Fe2O3 composites for a sensitive non-enzymatic electrochemi-
cal glucose sensor. Specifically, PB was obtained by co-precipitating a mixed solution of
K3[Fe(CN)6] and FeCl3 at an ambient temperature, then PB and HCl were added to abso-
lute ethanol containing melamine and stirred, followed by the evaporation of the solvent.
Finally, the obtained product was annealed for 4 h at 550 ◦C to prepare g-C3N4/α-Fe2O3

(Figure 2b). The g-C3N4/α-Fe2O3/GCE electrode exhibited a higher current response in the
KOH solution compared to the other electrodes (Figure 2c) and the sensor possessed a wide
linear range from 2 µM to 2.4 mM (Figure 2d). This can be ascribed to two reasons: (i) the
two-dimensional (2D)-layered structure of g-C3N4 provided a large specific surface area for
anchoring and dispersing α-Fe2O3 nanoparticles; (ii) glucose molecules were preferentially
adsorbed to the electrode surface by the abundant N on the surface of g-C3N4, which was
followed by electrochemical oxidation under the synergistic effect of g-C3N4 and α-Fe2O3.
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GCE, α-Fe2O3/GCE, and g-C3N4/α-Fe2O3/GCE in the 0.05 M KOH solution. (d) Calibration curve of
the response current versus glucose concentrations. (a) Reproduced with permission [43]. Copyright
2024, Elsevier. (b–d) Reproduced with permission [59]. Copyright 2016, Elsevier.

2.2. Cobalt-Based Oxides

Co3O4 harbors cobalt ions in both divalent and trivalent states, which are cru-
cial for the electrochemical redox process, and have been used widely. Simultane-
ously, the empirical evidence substantiates the role of Co3O4 as an effective catalyst
in the domain of non-enzymatic electrochemical glucose sensors, owing to its tunable
morphology, straightforward production, remarkable biocompatibility, and excellent
catalytic performance [60–62]. Scholars have endeavored to design Co3O4 nanostruc-
tures with a variety of morphologies, including nanofibers [63,64], nanoparticles [65,66],
nanosheets [67,68], and other configurations.

Taking advantage of the Co (III)/Co (IV) redox pair in Co3O4 that can directly
achieve the electrocatalytic oxidation of glucose, more and more researchers have in-
tegrated Co3O4 with other nanomaterials, such as carbon-based nanomaterials, to construct
highly sensitive non-enzymatic electrochemical glucose sensors. Maghsoudi et al. [69]
reported a glucose biosensing platform based on an rGO/Co3O4/Nafion/GCE electrode.
rGO/Co3O4 was obtained from a hydrothermal reaction of a mixed solution of cobalt
chloride hexahydrate, urea, and rGO, followed by annealing the product. The electro-
chemical glucose sensor is evaluated via cyclic voltammetry and exhibits a linear range
from 25 nM to 2.0 µM and a limit of detection (LOD) of 3.66 nM benefiting from the
synergistic interplay of rGO and Co3O4. Meanwhile, the sensor showcased remarkable
accuracy in the quantification of glucose in real samples of serum and urine. In addition,
Ramesh et al. [70] developed an ultrasonic-assisted thermal reduction method for the fabri-
cation of Co3O4/PPy@N-MWCNT composites. The product derived from the mixture of
PPy, MWCNT, and cobalt nitrate within a hydrothermal reaction environment underwent
a subsequent high-temperature annealing procedure, which achieved the conversion of
Co(OH)2 into Co3O4. The findings reveal that the dimensions of Co3O4 nanoparticles
loaded on the N-MWCNT/PPy composite span a range of 10–20 nm (Figure 3a–d). In
light of the excellent property of Co3O4 and its synergistic effect, Co3O4@N-MWCNT/PPy
possesses an exceptional electrochemical performance. On the one hand, the Co3O4@N-
MWCNT/PPy-based supercapacitor maintained an impressive 96.8% of its initial capac-
itance, even after undergoing 10,000 cycles. On the other hand, the authors utilized the
synthesized Co3O4@N-MWCNT/PPy to modify GCE for constructing a electrochemical
glucose sensor that exhibited a high sensitivity of 195.72 µA mM−1 cm−2 (Figure 3e). Inter-
estingly, besides the direct utilization of carbon-based materials, MOF-derived carbon mate-
rials have also been employed to enhance the conductivity of Co3O4. Ouyang et al. [44] pre-
pared rhombohedral dodecahedral ZIF-67 as the precursor that was first reduced thermally
at a high temperature and then oxidized at a low temperature to yield a nitrogen-doped,
hollow, carbon, porous nano-polyhedron (NHCN-Co3O4) (Figure 3f). The reduced cobalt
species (with an average size of 40 nm, Figure 3g) located inside the carbon framework
during pyrolysis acted as the catalyst to induce the growth of carbon nanotubes on the
outer surface of the NHCN-Co3O4 framework. The NHCN-Co3O4/GCE electrode-based
sensor manifested a wide linear range from 1.0 µM to 32.0 mM, with a low LOD of 0.2 µM.
Moreover, the sensor exhibited a superior anti-interference ability and long-term stability
(Figure 3h). The reasons that result in these superior performances can be summarized
from two perspectives. From one perspective, carbon nanotubes derived from organic
ligands enhance the electrical conductivity of the composites. From another perspective,
the hollow, carbon nano-polyhedron retained the high porosity and large specific surface
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area of ZIF, thereby shortening the path of electron transport and also providing more
active sites for glucose oxidation.
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Figure 3. TEM images of the (a,b) Co3O4-doped N-MWCNT composites and (c,d) Co3O4@N-
MWCNT/PPy composites. (e) Galvanostatic charge–discharge curve of the supercapacitor based
on Co3O4@N-MWCNT/PPy composites (left) and calibration curve for the glucose sensor based on
Co3O4@N-MWCNT/PPy/GCE electrodes, showing the response current in relation to glucose con-
centrations (right). (f) Illustration of the synthesis process of NHCN-Co3O4. (g) SEM image of NHCN-
Co3O4 (inset: corresponding TEM image). (h) Amperometric response showing anti-interference
measurements of the NHCN-Co3O4/GCE electrode with 0.30 mM of glucose and 0.30 mM of each
possible interfering species (UA, AA, DA, leucine, glutamic acid, alanine, pyruvic acid, lactic acid,
and KCl) (inset: corresponding long-term stability tests). (a–e) Reproduced with permission [70].
Copyright 2021, Elsevier. (f–h) Reproduced with permission [44]. Copyright 2022, Elsevier.

2.3. Copper-Based Oxides

Copper oxide (CuO) has been widely used in the field of electrochemical glucose
sensors owing to its good stability, low cost, environmental friendliness, and straightfor-
ward synthesis methodology [71–74]. Additionally, the synergistic effect between cuprous
oxide (Cu2O) and CuO can significantly enhance electrochemical performance [75,76]. In
addition to traditional chemical precipitation, hydrothermal reactions, electrospinning, and
microwave-assisted techniques, some novel methods have been employed for the synthe-
sis of copper oxide. These include dielectric barrier discharge (DBD) micro-plasma [77],
vacuum spray [78], and successive ion-layer adsorption and reaction (SILAR) [79]. For
example, Xiang et al. [80] obtained CuS/Cu2O/CuO/Cu arrays on Cu foils with SILAR
technology and used them directly as glucose-sensing electrodes. For glucose detection in
alkaline solutions, the sensor demonstrated good selectivity, reproducibility, and stability.
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Gopal et al. [81] reported a ternary composite composed of cuprous oxide and MXene
embedded in porous activated carbon (Cu2O/M/AC) utilizing the co-precipitation method,
and its schematic diagram. Palmyra palm flowers were utilized to fabricate MXene-loaded
porous activated carbon (AC) via pyrolysis and purification, in which AC and MXene
were combined at a mass ratio of 1:2, and the resulting mixture underwent ultrasonic
treatment to yield MXene-AC (M-AC). Ultimately, employing Cu(CH3COO)2·H2O as the
copper source, an aqueous solution comprising Cu(CH3COO)2·H2O, M-AC, and glucose
was subjected to reflux at 90 ◦C to synthesize Cu2O/M/AC. In comparison with M-AC
and AC-Cu2O, the Cu2O/M/AC composite demonstrated superior catalytic activity. This
enhancement was attributed to the loading of Cu2O, enhancing the active sites of the
glucose sensor. Moreover, the interaction between MXene and Cu2O facilitated electron
transfer between the electrode and the electrolyte, thereby benefiting the redox reaction. It is
worthy to note that the morphology of copper oxide significantly impacts the performance
of electrochemical glucose sensors. For instance, Fan et al. [82] synthesized three distinct
types of CuO through varying reaction conditions. When Cu2+ and Na2CO3 coexisted,
Cu2+ was precipitated by CO3

2− to form Cu2(OH)2CO3 that was then calcined at a high
temperature to obtain CuO particles with an average size of 27 nm (CuO-s). Furthermore,
when the pH of the abovementioned mixture was adjusted to within 10 to 11 using NaOH
and maintained at a lower temperature, platelet-shaped CuO (CuO-p) was obtained. Then,
when CTAB (surfactant) and H2O2 were added to the solution, the following precipitation
reaction occurred between Cu2+ and the added NaOH to obtain needle-like CuO (CuO-n).
The mechanism of CuO-catalyzed glucose oxidation is shown in Equations (1) and (2):

CuO + OH− → CuOOH + e− (1)

2CuOOH+C6H12O6 (glucose) → 2CuO+C6H10O6 (gluconolactone) + 2H2O (2)

On the one hand, H2O2 might promote CuO nucleation and growth by supplying a
small quantity of oxygen vacancies during the formation of CuO and by consuming inter-
mediate Cu(OH)2, thereby causing the transformation of CuO from platelet-like (without
the addition of H2O2) to needle-like. On the other hand, the surfactant CTAB was effective
in preventing the product from agglomerating and obtaining finer needle-shaped CuO.
The pre-synthesized CuO nanoparticles with different morphologies were exploited to
establish non-enzymatic electrochemical glucose sensor for monitoring glucose. Interest-
ingly, CuO-n exhibited the highest sensitivity (2.05 mA mM−1 cm−2) compared to CuO-p
(2.02 mA mM−1 cm−2) and CuO-s@500 (1.52 mA mM−1 cm−2), which was attributed to
the excellent long-term stability of needle-like CuO as well as the high charge transfer rate.
In addition to regulating the morphologies of CuO, integrating it with other nanomaterials
can also enhance the properties of non-enzymatic electrochemical glucose sensors based
on copper-based oxides. For instance, Zohaa et al. [83] reported a composite material
loaded with copper oxide nanoparticles on mobile crystalline material-41 (Cu2O@MCM-
41), for constructing non-enzymatic electrochemical glucose sensors. First of all, Cu2O
nanoparticles with sizes ranging from 14 to 100 nm were prepared by the coprecipitation
method and subsequent annealing using copper nitrate, polyvinylpyrrolidone, and sodium
hydroxide as precursors. Then, Cu2O@MCM-41 was obtained through the hydrothermal
method and high-temperature calcination. Specifically, Cu2O was dispersed on MCM-41
that can efficiently inhibit the aggregation of Cu2O nanoparticles. The adsorption capacity
of MCM-41 was enhanced by the homogeneous mesoporous structure, which offered a
sizable specific surface area. CuO loading further enhanced the specific surface area and
catalytic activity of CuO@MCM-41. Due to their excellent catalytic activity and biocom-
patibility, Au nanoparticles (Au NPs) are widely used in electrochemical glucose sensors.
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Nevertheless, Au NPs may suffer from agglomeration issues, leading to a reduction in the
active surface area. Thus, it is necessary to enhance the dispersibility of Au NPs to improve
the performance of the sensors. By heating the mixture containing Au NPs, graphene
quantum dots (GQDs), and Cu2O, Nguyen et al. [84] designed Au/Cu2O/GQD composites
and applied them for the detection of glucose. Cu2O, Au NP, and Au/Cu2O/GQD possess
average sizes of 30.5 nm, 29.8 nm, and 33.3 nm, respectively. The introduction of Cu2O
prevented the aggregation of Au NPs. Additionally, GQDs further improved conductivity
and biocompatibility.

2.4. Zinc-Based Oxides

Zinc oxide (ZnO), an n-type II-IV semiconductor, boasts remarkable catalytic activ-
ity, controlled morphology, and excellent chemical stability [85]. Its versatile utility is
evident across a multitude of applications, encompassing colorimetry [86], electrochem-
istry [87], photoluminescence [88], electrochemiluminescence [89], and fluorescence [90].
Due to the unique properties of ZnO, researchers have applied it to non-enzymatic elec-
trochemical glucose sensors. For example, Ali et al. [91] reported that a vitamin B12-
modified ZnO-based non-enzymatic electrochemical sensor achieved sensitive glucose
detection in the range of 0.1 to 10 mM, with an LOD of 5 µM. Surprisingly, this sensor
demonstrated excellent potential for glucose detection in human whole blood, with an
RSD of less than 1%. Although the ZnO nanomaterial-based electrochemical glucose
sensor demonstrates pronounced sensitivity, exceptional selectivity, a low LOD, and fa-
vorable biocompatibility [92], single ZnO is no longer sufficient to meet contemporary
demands. Therefore, the development of ZnO-based composite materials has aroused
great research interest from scholars in various fields. As an illustration, Hussein et al. [93]
reported a glucose-sensing platform utilizing ZnO/Co3O4/rGO/GCE. The experimental
results demonstrate that ZnO/Co3O4/rGO/GCE exhibits superior electrochemical oxida-
tion behavior and lower charge transfer resistance (Rct) compared to ZnO/Co3O4/GCE,
ZnO/GCE, and Co3O4/GCE.

Sharma et al. [94] reported a composite material in which ZnO nanorods were dec-
orated with carbon nano-onions, referred to as ZnO/CNO. Initially, peanut-shaped ZnO
nanorods 0.2–0.4 µm in length were obtained using a solvothermal reaction at 90 ◦C,
followed by annealing at 500 ◦C. Subsequently, the pyrolysis product of flaxseed oil was
annealed at 500 ◦C for 2 h to yield CNO. Finally, equal masses of ZnO and CNO were mixed
to obtain ZnO/CNO. CNO was composed of graphitic carbon and diamond-like carbon,
which exhibited a similarity to a spherical fullerene structure, featuring a closed carbon
shell. It displayed an onion-like structure, formed by the successive wrapping of concentric
fullerenes. The ZnO/CNO/GCE-based sensor, benefiting from the synergistic effects of
Zn active centers and carbon materials, demonstrated notable glucose oxidation activity
in the range of 0.1 mM–15 mM with a sensitivity of 606.64 µA mM−1 cm−2. Additionally,
the sensor showed an exceptional anti-interference performance along with good long-
term cycle stability. Furthermore, Au NPs have been introduced to prepare compositional
catalytic agents due to their intrinsic non-enzymatic catalytic performance for catalyzing
the oxidation of glucose. For instance, Awais et al. [45] presented vertically aligned ZnO
nanorods decorated with Au NPs (Au-ZnO NRs) and demonstrated their utilization in
electrochemical glucose sensors (Figure 4a). Initially, the fluorine-doped tin oxide (FTO)
electrode’s surface underwent successive infiltrations with a zinc acetate solution, followed
by the transformation of the zinc acetate into uniformly deposited ZnO seeds through a
hydrothermal reaction. ZnO NRs (Figure 4b) were obtained by placing the electrode in a
mixed solution of zinc nitrate and hexamethylenetetramine for a hydrothermal reaction.
Subsequently, methanol was employed as a reducing agent to facilitate the in situ growth of
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Au NPs on the surface of ZnO nanorods (Figure 4c). The sensor demonstrated a remarkable
electrochemical glucose oxidation performance and showed exceptional characteristics in
terms of stability, repeatability, selectivity, and its anti-interference ability. This could be
attributed to two primary factors: Firstly, the presence of Au NPs significantly augmented
the specific surface area, creating more active sites and promoting the electron transfer rate.
Secondly, a synergistic effect between ZnO and Au further contributed to this enhance-
ment. However, the loading of Au NPs typically requires a reduction in chloroauric acid
using reducing agents under specific reaction conditions. Consequently, there is an urgent
need to develop a simple and efficient technology for the deposition of Au NPs. Recently,
Young et al. [95] reported a direct-current (DC) sputtering system for the direct deposition
of Au NPs on ZnO nanorods (Au/ZnO NRs). Initially, a radio-frequency sputtering sys-
tem was employed to deposit a ZnO seed layer onto the Cr/Au film. Subsequently, ZnO
nanorods with an average diameter of 54 nm and an average length of 2 µm were grown
through the hydrothermal method at 90 ◦C. Ultimately, Au NPs were deposited onto the
surface of the ZnO nanorods via DC sputtering. The addition of Au NPs enhanced the
specific surface area, thereby creating more active sites for glucose oxidation. Consequently,
the Au/ZnO NR electrode exhibited greater sensitivity compared to the ZnO NR electrode.
In addition to noble metals, non-noble metals have also been employed in ZnO-based
non-enzymatic electrochemical glucose sensors. For example, Golli et al. [96] reported
Cu/ZnO nanocomposites using a sol–gel approach for non-enzymatic electrochemical
glucose sensors (Figure 4d). They then coated Cu/ZnO thin films onto the surface of a
GCE and immobilized them with chitosan (GHIT). The ZnO particles exhibited a size
range of 22–55 nm, with an average size of 38 nm (Figure 4e). Moreover, the illuminated
white particles in Figure 4f indicate the presence of copper nanoparticles (Cu NPs). Copper
underwent a redox reaction involving Cu2+/Cu3+/Cu2+, which facilitated the oxidation of
glucose (Figure 4g). The mechanism of glucose oxidation catalyzed by Cu/ZnO is shown
in Equations (3)–(7):

Cu + 2OH− → Cu(OH)2+2e− (3)

Cu(OH)2 + OH− → CuOOH+H2O+e− (4)

CuOOH + C6H12O6 → Cu(OH)2 + C6H11O6 (5)

C6H11O6 + OH− → C6H10O6 + H2O+e− (6)

C6H10O6 → C6H12O7 (7)

The existence of the GHIT layer could enhance biocompatibility, while the incor-
poration of Cu NPs proved the advantages of augmenting the specific surface area and
improving electron transport across the electrode surface.

2.5. Titanium-Based Oxides

Titanium dioxide (TiO2), a typical semiconductor, exhibits distinctive optical and elec-
trical properties. Moreover, TiO2 demonstrates favorable attributes, including biocompati-
bility, catalytic efficiency, and non-toxicity [97–99]. As a consequence, TiO2 finds extensive
application in diverse fields, such as electrochemistry [100], photoelectrochemistry [101],
electrochemiluminescence [102], and photocatalytic fuel cells [103]. To fully harness its ad-
vantages, novel morphologies of TiO2, such as nanoribbon [104] and nanotube arrays [105],
have been recently devised by scholars. Notably, in the field of electrochemical glucose
sensing, researchers have enhanced the sensing performance of TiO2 through the creation
of heterojunctions or the incorporation of other materials to modify its bandgap structure.
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Chiu et al. [46] obtained Au NPs-TiO2/PANI composites through the deposition
of Au NPs and TiO2 NPs onto a PANI substrate (Figure 5a). Initially, polyaniline was
created through chronoamperometry in a solution composed of 0.5 M HCl, 0.1 M aniline
monomer, and 3 M KCl. Subsequently, TiO2 and Au NPs were deposited sequentially
on the PANI support. The TiO2 aggregated densely, covering nearly all PANI surfaces
with evenly distributed Au NPs (depicted as bright white spots in Figure 5b,c). The
oxidation mechanism of glucose on the active surface of Au NPs-TiO2 is illustrated in
Figure 5d. The sensor exhibited a remarkable sensitivity of 313.6 µA mM−1 cm−2 and a
low LOD of 0.15 µM. Notably, the sensor displayed outstanding stability, maintaining its
performance for an extended period of 70 days. These excellent sensing properties benefited
from the synergistic effect of the active center and PANI substrate: (i) PANI increased the
conductivity, while the large specific surface area of PANI provided abundant sites and
avoided the aggregation of deposited Au NPs and TiO2 NPs; and (ii) Au and TiO2 as dual
active centers accelerated the oxidation of glucose. Moreover, Jeong et al. [106] employed
the thermal plasma method to prepare TiO2 NPs, subsequently depositing them onto an
FTO substrate. They then utilized an electrochemical approach to deposit the substrate with
chitosan and polypyrrole (CS-PPy) thin films, resulting in the formation of CS-PPy/TiO2

nanocomposites. TiO2 NPs, with an approximate average size of 20 nm, were securely
affixed to the FTO substrate via heat treatment at 450 ◦C for 24 h. PPy and CS were linked
through hydrogen bonds, whereas the interaction between CS-PPy and TiO2 involved
both hydrogen bonds and Ti-N bonds. The electrochemical performance of the glucose
sensor based on CS-PPy/TiO2/FTO exhibited a high sensitivity of 302.0 µA mM−1 cm−2

and a low LOD of 6.7 µM. Furthermore, TiO2 NPs produced using the thermal plasma
method exhibit greater purity and a significantly larger specific surface area compared to
those synthesized via the conventional sol–gel technique, which could expose more active
sites and improve the sensitivity and selectivity of electrochemical glucose sensors. More
interestingly, compared with disordered TiO2 NPs, the ordered TiO2 array structure plays
an important role in increasing the specific surface area and improving the electron transfer
rate. For instance, Kumar et al. [107] reported the fabrication of Cu2O-modified TiO2

nanotube arrays on Ti6Al4V alloy substrates (Ti6Al4V-TNTs/Cu2O NPs) for constructing
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non-enzymatic electrochemical glucose sensors to monitor glucose sensitively. Initially, the
Ti6Al4V alloy was immersed in a solution comprising ammonium fluoride and ethylene
glycol. During this process, the Ti6Al4V alloy plate served as the anode, while a Pt foil
acted as the cathode. An anodization voltage of 20 V was applied for 3 h. Subsequently,
an annealing procedure was conducted to induce the transformation of the TNTs from the
amorphous to the anatase phase. To further improve the conductivity, Cu2O was deposited
onto TNTs via the chemical bath deposition method. The TNT thin plate was immersed in
the Cu(NO3)2·3H2O solution, followed by the addition of NaOH under continuous stirring,
and then the product was annealed to obtain TNTs/Cu2O NPs. The chemical reactions that
occurred during the whole process are shown in Equations (8)–(10):

Cu(NO 3)2·3H2O + 2NaOH → Cu(OH)2 + 2NaNO3+3H2O (8)

Cu(OH)2 → CuO + H2O (9)

4CuO → 2Cu2O + O2 (10)
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The Cu2O/TNT-based electrochemical glucose sensor demonstrated a wide linear
range spanning from 5 mM to 35 mM, with a high sensitivity of 101.65 mA mM−1 cm−2.
These studies suggest that we can improve the electrocatalytic activity of electrode
materials by (i) regulating their morphology and (ii) constructing multi-component
composite materials.

2.6. Manganese-Based Oxides

Manganese dioxide (MnO2), a typical transition metal oxide, is known for its low cost,
minimal environmental impact, high catalytic activity, outstanding chemical stability, and
excellent biocompatibility [108–110]. In comparison to other non-noble metal oxides, such
as Cu2O and Co3O4, MnO2 possesses relatively poor electrical conductivity. To address
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this limitation, researchers have enhanced the conductivity by integrating other high-
conductivity materials, like CuO and PANI, to create MnO2-based nanocomposites [47,111].
Notably, the 2D structure of MnO2 has gained significant attention in recent years in the
field of non-enzymatic electrochemical glucose sensors. This phenomenon is primarily
attributed to the significant specific surface area offered by 2D MnO2, which provides a
great deal of active sites and significantly improves electrochemical redox kinetics.

The hydrothermal method for the in situ growth of 2D structures is a typical method
for preparing MnO2 nanosheets. For example, Huang et al. [112] reported a straight-
forward hydrothermal method for fabricating MnO2 nanosheet arrays on nickel foam
(MnO2 NS/NF). The surface of the NF changed from smooth to rough with the addition
of MnO2. The integrated electrode constructed by the MnO2 NS/NF three-dimensional
(3D) network facilitated easy access to target molecules and exhibited strong electrical
conductivity. Furthermore, the staggered growth of 2D MnO2 nanosheets with a larger
specific surface area resulted in an increased number of exposed active sites. Thus, the
electrochemical non-enzymatic glucose sensor based on MnO2 NS/NF exhibited a wide
linear range from 1 µM to 1.13 mM, a high sensitivity of 6.45 mA mM−1 cm−2, and a
low LOD of 0.5 µM. Additionally, the sensor demonstrated an excellent anti-interference
performance for glucose detection, even in the presence of interfering substances, such
as dopamine (DA), ascorbic acid (AA), uric acid (UA), and other compounds. Interest-
ingly, compared with the hydrothermal method, the electrodeposition technique possesses
greater advantages in the controllable construction of MnO2 nanosheets. For instance,
Jadhav et al. [113] presented a technique for producing vertically aligned MnO2 thin-film
nanosheets on stainless-steel (SS) substrates using anodic potentiostatic deposition. Mn2+

combined with OH- to form Mn(OH)2, which was subsequently converted into MnO2

through annealing. The average thickness of the MnO2 flakes was 38 nm, and the separa-
tion between two neighboring flakes was approximately 50 nm. The vertically grown MnO2

nanosheets were staggered, and the large specific surface area provided abundant active
sites for electrochemical redox reactions. Moreover, the tubular structure aligned along
the c-axis of the crystal lattice established effective pathways for ion transport, thereby
minimizing resistance during electrochemical reactions. The sensor exhibited a sensitivity
of 4341 µA mM−1 cm−2, a linear range spanning from 50 µM to 1.2 mM, and a low LOD
of 0.53 µM. These remarkable glucose-oxidizing abilities originate from the distinctive
structure of vertically oriented MnO2 thin-film nanosheets. Moreover, another report on
the electrodeposition technique was the preparation of binary MnO2/Co3O4 on the surface
of electrospun carbon nanofibers (MnO2/Co3O4@ECNFs) reported by Yin et al. [114]. The
pure ECNFs exhibited a smooth surface, and then they were stabilized and carbonized at
different temperatures. Subsequently, they were modified in an HNO3 solution to yield
ECNFs enriched with carboxyl and hydroxyl groups. The modified fibers were immersed
in a mixed solution of Na2SO4, MnSO4, and CoSO4, and a certain current was applied to
facilitate the deposition of Mn-Co bimetallic oxides. Compared with Co3O4@ECNFs and
MnO2@ECNFs, MnO2/Co3O4@ECNFs displayed a more densely packed and aggregated
structure. The detection mechanism of glucose catalyzed by Co3O4/MnO2 is shown in
Equations (11)–(13):

Co3O4 + 4OH− → 3CoO2 + 2H2O + 4e− (11)

2CoO2 + C6H12O6 → 2CoOOH + C6H12O6 (12)

2MnO2 + C6H12O6 → 2MnOOH + C6H12O6 (13)

In the presence of glucose, CoO2 and MnO2 were transformed into CoOOH and
MnOOH, respectively, accompanying the conversion of glucose to gluconolactone. The
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bimetallic oxides demonstrated stronger redox kinetics compared to single oxides, which
can be attributed to the synergistic enhancement effect of Co3O4 and MnO2. Furthermore,
the non-enzymatic electrochemical glucose sensor based on MnO2/Co3O4@ECNFs/GCE
demonstrated an excellent linear relationship in two concentration ranges of 5 µM to
0.57 mM and 0.57 mM to 1.93 mM. This method for preparing multi-component metal
oxides through a straightforward one-step electrodeposition technique has provided signif-
icant inspiration for our research.

Here, the reported MO-based non-enzymatic electrochemical glucose sensors are
categorized according to the types of MO composites (Table 1).

Table 1. Non-enzymatic electrochemical glucose sensors based on MO composites.

Nanomaterial Electrolyte Sensitivity Linear Range LOD Real Sample Ref.

Fe3O4@Au@CoFe-LDH 1.0 M KOH 6342 µA mM−1 cm−2 37.5 µM–15.64 mM 12.7 µM / [30]

Fe3O4 nanospheres 0.1 M NaOH 96.1 µA mM−1 cm−2

38.2 µA mM−1 cm−2
0 mM–10 mM
3 mM–18 mM 19.2 µM

Apple/
watermelon/

pear juice
[55]

NiO/Fe2O3
0.05 M PBS
(pH = 7.0) 230.5 µA mM−1 cm−2 50 µM–2.867 mM 3.9 µM Human serum [57]

GS/NFG/PANI/
Fe3O4@MIL-101-NH2

0.02 M PBS 61.183 µA µM−1 cm−2 0.5 µM–25 mM 0.3 µM Human plasma
and serum [43]

Co3O4/CeO2 0.1 M NaOH 790.746 µA mM−1 cm−2 83.75 µM–2.796 mM 5.5 µM Fruit juice [32]
Co3O4NPs@HCC-

MWCNTs 0.1 M NaOH 1261 µA mM−1 cm−2 0.5 µM–0.1 mM 43.9 nM Human serum [62]

Co3O4 NSs 0.1 M NaOH 2787 µA mM−1 cm−2 1 µM–1.1 mM 0.1 µM / [66]
NHCN-Co3O4 0.1 M NaOH 12.9 µA mM−1 cm−2 1.0 µM–32 mM 0.2 µM Human serum [44]

CuO/CNT 0.1 M NaOH 4340 µA mM−1 cm−2 0.5 µM–1 mM 0.355 µM Human urine
and beverages [72]

CuO/AC 0.1 M NaOH 2073.6 µA mM−1 cm−2 0.2 µM–2.4 mM 0.1 µM / [74]
CuO@MCM-41 0.1 M NaOH 17.23 mA mM−1 cm−2 83 µM–1.5 mM 16 nM / [83]

Au/Cu2O/GQDs 0.1 M PBS
(pH = 7.4) 32.5 µA µM−1 cm−2 1 nM–1 M 70 nM / [84]

Pt/ZnO NRs 0.1 M NaOH 32.0527 µA mM−1 cm−2 0 mM–8 mM / / [37]

B12-derived ZnO 0.1 M NaOH 78.88 mA mM cm−2 1 mM–10 mM 5 µM Human
whole blood [91]

Au/ZnO NRs 0.1 M NaOH 182.96 µA mM−1 cm−2 0 mM–8 mM / / [95]

Ag@TiO2 0.1 M NaOH 19106 µA mM−1 cm−2

4264 µA mM−1 cm−2
1 µM–1 mM
1 mM–4 mM 0.18 µM Energy beverage

and beer [104]

Ni-DLC/TiO2 nanotube 0.5 M NaOH 1063.78 µA mM−1 cm−2 0.99 mM–22.97 mM 0.53 µM / [105]
Ti6Al4V-TNTs/

Cu2O NPs 0.1 M NaOH 101.65 µA mM−1 cm−2 5 mM–35 mM 0.655 mM Orange juice [107]

N-htGONR/MnO2
0.1 M PBS
(pH = 7.4) 82.05 µA mM−1 cm−2 50 µM–5 mM 8 µM Beer [110]

AuNPs-MnO2/PANI 0.1 M KOH 13.1 µA mM−1 cm−2 0.5 mM–10 mM / / [47]

Note: LDHs: layered double hydroxides. GS: graphite sheet. NFG: nitrogen-doped functionalized graphene.
PANI: polyaniline. NPs: nanoparticles. HCC: hollow carbon chain. NSs: nanosheets. NHCN: nitrogen-doped
hollow carbon nano-polyhedron. CNTs: carbon nanotubes. AC: activated carbon. MCM-41: mobile crystalline
material-41. GQDs: graphene quantum dots. NRs: nanorods. B12: vitamin B12. Ni-DLC: Ni and diamond-like
modified carbon. TNTs: TiO2 nanotubes. N-htGONRs: nitrogen-doped heat-treated graphene oxide nanoribbons.

3. MS-Based Non-Enzymatic Electrochemical Glucose Sensors
In common metal sulfides, metal atoms and sulfur atoms may exist in various atomic

ratios, resulting in different phases (such as CuS, Cu2S, CoS, Co3S4, NiS, Ni3S2, Ni7S6,
etc.). Sulfides of the same metal, in different phases, exhibit significant differences in their
catalytic performance for glucose oxidation, highlighting the need for the precise control
of crystal phases. When preparing electrode materials, crystal-phase control strategies
from other research areas can be referenced. (i) Reaction temperature: An increase in
temperature during the reaction helps accelerate the reaction rate, crystal growth, and
phase transition. (ii) Reaction time: As the reaction time increases, the crystal phase may
transform from a metastable phase to a stable one. (iii) Heat treatment: Heat treatment of
the synthesized product may also induce a phase transition. For example, the 2H phase of
molybdenum disulfide (MoS2), which has semiconductor properties, can transform into the
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metallic 1T phase after high-temperature annealing [115]. (iv) Molar ratio of metal source
to sulfur source: It is feasible to obtain the target product by artificially controlling the feed
ratio of the precursors. It is important to note that when either the metal source or sulfur
source is in excess relative to the other, the excess may no longer participate in the reaction.
This requires the consideration of other factors, such as the reaction temperature and
time. (v) Electrodeposition parameters: The crystal phases of sulfides can be controlled by
adjusting the scanning rate and deposition cycle during the electrodeposition process. For
example, Li et al. [116] controlled the crystal phases of NixSy grown in situ on carbon paper
by adjusting the parameters of the unipolar pulse electrodeposition process. Ultimately,
they obtained two different crystal phases: Ni9S8 and Ni3S2.

3.1. Copper-Based Sulfides

Copper sulfide (CuxSy), a common transition-metal chalcogenide semiconductor, pos-
sesses several desirable characteristics, including stability, biocompatibility, low cost, and
high catalytic activity [117,118]. Interestingly, the redox reaction between Cu (II)/Cu (III)
redox pairs as electron mediators can effectively accelerate the electrocatalytic oxidation
process of glucose. In the realm of non-enzymatic electrochemical glucose sensors, CuxSy is
frequently designed into 2D or hollow structures, capitalizing on its advantages of a large
specific surface area and porosity to enhance sensing performance [119–121]. Scalability
and uniformity of CuxSy are important parameters for its future commercialization. Re-
cently, Cho et al. [122,123] obtained uniform and highly crystalline CuS films on Cu foils
using sulfurization methods with hydrogen sulfide gas (H2S) or an ammonium sulfide
solution. Interestingly, by adjusting parameters, such as the sulfur source concentration
and sulfurization time, they obtained CuS films with different sub-microstructures. These
uniform CuS films demonstrated great potential in gas sensing, temperature sensing, and
thermoelectric platforms. However, the relatively poor conductivity of CuxSy has hampered
its extensive application in sensing. It is worthy to note that various approaches, such as in-
tegrating with noble metal-based materials and conductive polymers, have been developed
to improve catalytic performance, electrical conductivity, and mechanical stability.

Mai et al. [124] reported an anodic oxidation method to prepare 2D CuxS (CuS and
Cu2S) nanosheets on 3D copper foam (3DCF), followed by the electrodeposition of Au
NPs on CuxS. The 3D copper foam structure provided a large active area, and the highly
conductive CuxS nanosheets were interconnected to form a conductive framework. Au NPs
(with an average particle size in the range of 100–200 nm) were uniformly deposited on
CuxS, effectively avoiding the aggregation of Au NPs. The non-enzymatic electrochemical
glucose sensor based on the Au-CuxS/3DCF/GCE electrode exhibited a wide linear range
of 1.98 µM–976.56 µM, along with a high sensitivity of 59 µA µM−1 cm−2, as well as a
low LOD of 7.62 µM. This excellent sensing performance was attributed to the following
reasons: (i) biomolecules could be steadily immobilized by strong interaction of Au-S
bondm and (ii) the synergistic effect between Au NPs and CuxS improved charge transfer
and electrolyte penetration. In addition to noble metals, chitosan polymer-derived carbon
substrates can also significantly improve electron transport at the electrode surface. For
instance, Sharma et al. [125] reported a one-step hydrothermal synthesis of a composite of
N and S co-doped chitosan (NSC) microspheres and CuS (CuS/NSC) for non-enzymatic
electrochemical glucose sensors (Figure 6a). Firstly, a mixture containing chitosan, thiourea,
copper sulfate (CuSO4), formaldehyde, and acetic acid was introduced into a Teflon-lined
stainless-steel autoclave and heated to 190 ◦C for 24 h. Secondly, the dried product was
carbonized at 800 ◦C for 2 h under a nitrogen atmosphere. Chitosan served as the carbon
and nitrogen source, while thiourea acted as the source of sulfur and nitrogen. Furthermore,
the hydroxyl and amine groups in chitosan could interact with thiourea, acetic acid, and
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formaldehyde to form a self-assembled network. Pure NSC showed a spherical structure
(Figure 6b), and CuS nanoparticles with an average particle size in the range of 10–20 nm
were distributed on the surface of NSC spheres (Figure 6c,d). NSC served as a supportive
matrix for anchoring CuS nanoparticles, resulting in an enhanced electrochemical response.
The linear range of this sensor spanned from 160 µM to 11.76 mM, with an LOD of 2.72 µM
and a sensitivity of 13.62 mA mM−1 cm−2 (Figure 6e). Therefore, improving the dispersion
of electroactive materials is an effective way to enhance the performance of non-enzymatic
electrochemical glucose sensors. Recently, He et al. [48] reported a unique vine-like CuS
nanowire (V-CuS NWs) for non-enzymatic electrochemical glucose sensors (Figure 6f–h).
Thiourea was used as a source of sulfur, decomposing into NH4OH and H2S during the
hydrothermal process. Subsequently, Cu2+ and S2− in the solution reacted to form CuS
nanoparticles. Interestingly, when polyethylene glycol (PEG) was added to the solution, it
acted as both a template and a polymerization agent, allowing CuS nanoparticles to attach
to its surface and form unique nanowire structures. Consequently, the nanowires were
cross-linked to form a 3D network structure. The current response of the non-enzymatic
electrochemical glucose sensor based on V-CuS NWs demonstrated good linear relationship
versus glucose concentration in the range of 1 µM to 7 mM (Figure 6i,j). In addition, the
sensor exhibited excellent anti-interference and stability (Figure 6k,l). Therefore, when
preparing MS-based nanomaterials, we should consider designing them into 2D or 3D
structures to expose more active sites and shorten the electron transport channel.

3.2. Molybdenum-Based Sulfides

Molybdenum disulfide (MoS2), a typical chalcogenide, possesses a unique 2D
layered structure, adjustable band gap (≈1.8–1.9 eV), and good mechanical stability,
which has triggered a research boom in the fields of biosensors, electrocatalysis, and
supercapacitors [126–129]. However, the relatively poor electrical conductivity and elec-
trocatalytic activity toward glucose of pure MoS2 limit the application of MoS2-based
non-enzymatic electrochemical glucose sensors. Therefore, introducing other semicon-
ductors to construct MoS2-based heterojunctions is an effective strategy to overcome the
abovementioned problems.

As mentioned in Section 3.1, the Cu (II)/Cu (III) redox pair of CuxSy is beneficial for
catalyzing the oxidation of glucose. Therefore, researchers usually combine CuxSy with
MoS2 as the electroactive material of MoS2-based non-enzymatic electrochemical glucose
sensors. Recently, Cao et al. [49] used Cu2O cubes as a sacrificial template; dopamine,
sodium molybdate, and thioacetamide as the carbon source, Mo source, and S source,
respectively; and then obtained MoSx-supported hollow Cu9S5/C (Cu9S5/C/MoSx) by
high-temperature carbonization and a hydrothermal reaction (Figure 7a). During the
sulfurization process, O2− and S2− undergo ion exchange reactions, resulting in the trans-
formation of solid Cu2O cubes into hollow Cu9S5 frameworks (Figure 7b,c). Furthermore,
compared to Cu2O and Cu2O/C, Cu9S5/C/MoSx exhibited a better ability to catalyze
glucose oxidation. Moreover, Sharma et al. [130] used a one-step hydrothermal method
to prepare CuS/MoS2 (Figure 7d,e) for a non-enzymatic electrochemical glucose sensor.
Thiourea ((NH2)2CS) was used as the sulfur source and reacted with Cu2+ and MoO4

2− in
an alkaline solution, as shown in Equations (14)–(16):

(NH 2)2CS + 2OH− → S2− + 2H2O + H2CN2 (14)

Cu2+ + S2− → CuS↓ (15)

4MoO4
2−+15(NH 2)2CS + 6H2O → 4MoS2↓+ SO4

2− + 6SCN− + 24NH3 + 9CO2↑ (16)
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Figure 6. (a) Schematic diagram of the preparation of CuS/NSC. SEM images of (b) NSC and
(c) CuS/NSC. (d) TEM image of CuS/NSC. (e) Calibration curve of current response vs. glucose
concentration. (f) Schematic diagram of the synthesis of V-CuS NWs. SEM images of (g,h) V-CuS
NWs. (i) Response current to continuous addition of glucose and corresponding (j) calibration plot of
current versus glucose concentration. (k) Anti-interference and (l) stability test. (a–e) Reproduced
with permission [125]. Copyright 2022, Elsevier. (f–l) Reproduced with permission [48]. Copyright
2024, Elsevier.

It is noteworthy that CuS/MoS2 exhibited excellent electrocatalytic activity due to
(i) sufficient activity sites from the increased surface area and (ii) the synergistic effect
of CuS and MoS2 (Figure 7f). Therefore, the CuS/MoS2-based non-enzymatic electro-
chemical glucose sensor showed a wide linear range of 0.1 mM-11 mM, a high sensitivity
of 252.7 µA mM−1 cm−2, and a low LOD of 1.52 nm (Figure 7g). The above two works
suggest that we should make full use of the large specific surface area of 2D-MoS2 when
preparing MoS2-based composite materials. More interestingly, Luo et al. [131] constructed
a non-enzymatic electrochemical glucose sensor based on an MoO3-MoS2/Ni porous
array/screen-printed electrode (SPE) using polystyrene spheres as sacrificial templates
through a two-step electrodeposition method (Figure 7h). Due to the large specific surface
area and abundant active sites supported by the porous array, significant synergistic effects
of MoO3 and MoS2, and the excellent conductivity of the Ni array, the MoO3-MoS2/Ni
array showed a higher current response than the Ni array, MoO3/Ni array, and MoO3-
MoS2/Ni film (Figure 7i). This strategy of constructing a multi-component, ordered array
structure by a simple electrodeposition method is valuable for reference.
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3.3. Cobalt-Based Sulfides

Cobalt sulfide (CoxSy) is a significant semiconductor nanomaterial with attributes
including cost-effectiveness, a straightforward preparation process, high conductivity,
favorable biocompatibility, and rapid redox kinetics [132,133]. Furthermore, cobalt sulfide
exists in various chemical states (e.g., CoS, CoS2, Co3S4, and Co9S8), showing great potential
for glucose oxidation. However, pure cobalt sulfides often exhibit poor conductivity.
Therefore, cobalt sulfides are usually compounded with carbon materials (such as rGO
and MWCNTs) or conductive polymers (such as PPy) to enhance their conductivity. More
interestingly, the combination of CoxSy with MOF or MOF-derived CoxSy has become a
new strategy to construct CoxSy-based composites.

Sridhar et al. [134] reported a microwave synthesis method to immobilize carbon-
coated CoS2 nanoparticles on rGO (CoS2@C-rGO). The 2D-sheet shape of graphene oxide
(Figure 8a) demonstrated a large specific surface area. Cobalt acetate and thioacetamide
were mixed in a graphene oxide aqueous solution at a mass ratio of 1:2 and then ultra-
sonicated. After evaporating the water via hydrothermal treatment, the CoS2@C-rGO
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powder was obtained through microwave irradiation. Among them, rGO served as both a
conductive platform and a suitable substrate for immobilizing cobalt sulfide nanoparticles
(20–40 nm, Figure 8b), enabling the creation of unique 3D structures. The CoS2@C-rGO-FTO
electrode-based non-enzymatic electrochemical glucose sensor displayed an excellent linear
response and a low LOD of 0.078 µM in the glucose range up to 3 mM. The sensor also
demonstrated an outstanding anti-interference performance in the presence of UA and
AA interference substances (Figure 8c). In addition to carbon-based materials, conductive
polymers are also often used to enhance electron transport on electrode surfaces. For
example, Qi et al. [135] reported a CoS-PPy-CP flexible electrode-based non-enzymatic
electrochemical glucose sensor. Initially, PPy-CP was prepared by depositing PPy on con-
ductive carbon paper (CP) using cyclic voltammetry. Then, CoS was grown in situ on
PPy-CP by the hydrothermal method. Interestingly, CoS without PPy showed a short rod
structure (CoS-CP), while CoS with PPy formed nanoparticles (CoS-PPy-CP). The roles of
PPy were as follows: (i) The deposition of PPy on the CP formed a large number of folded
structures, providing more sites for the growth of CoS; (ii) The -NH- coordination in PPy
allowed Co2+ to combine with PPy; and (iii) The addition of PPy increased conductivity,
which helped increase the sensitivity of the non-enzymatic electrochemical glucose sensor.
The sensor showed a wide linear range in the concentration ranges of 0.5 µM–465.5 µM
and 565.5 µM–8415.5 µM, while achieving a low LOD of 0.14 µM. In addition, combining
CoxSy with MOF has become a new method to obtain CoxSy-based composite materials.
This approach not only enhances the porosity of the composite materials, but also sig-
nificantly increases their specific surface area, conductivity, and stability. For instance,
Ramesh et al. [50] successfully obtained CoS@Co-MOF composites for supercapacitors and
non-enzymatic electrochemical glucose sensors through a one-step hydrothermal method
(Figure 8d). It is worth noting that the CoS@Co-MOF/GCE-based non-enzymatic elec-
trochemical glucose sensor exhibited a wide linear range of 5 µM–1170 µM (Figure 8e).
Moreover, Gharani et al. [136] reported an Ag/MoS2@Co3S4 composite derived from Mo-
doped ZIF-67. Surprisingly, the deposition of Ag nanoparticles significantly reduced the
charge transfer resistance and enhanced the glucose oxidation ability. This inspires us to
consider the following two points when preparing MOF-derived materials: (i) doping other
metals into the MOF precursor, and (ii) introducing noble metal nanoparticles.
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the CoS2@C-rGO-FTO electrode with 0.15 mM of UA and AA in a 0.1 M NaOH solution at the
applied potential of 0.5 V. (d) Schematic of the preparation process of CoS@MOF for supercapacitors
and non-enzymatic electrochemical glucose sensors. (e) DPV curves of different concentrations of
glucose (inset: calibration curve of current response vs. glucose concentration). (a–c) Reproduced
with permission [134]. Copyright 2018, Elsevier. (d,e) Reproduced with permission [50]. Copyright
2023, Elsevier.

3.4. Nickel-Based Sulfides

Nickel-based sulfide (NixSy) occurs in various atomic ratios, such as NiS, NiS2, Ni3S2

and Ni7S6. The active center for effective electrochemical sensing is commonly attributed
to the Ni (ii)/Ni (iii) redox pair [137,138]. Currently, NixSy with varying morphologies,
including nanoparticles [139], nanospheres [140], and microspheres [141], are employed
as electrode modifiers. Nevertheless, pure NixSy suffers from poor mechanical stability
and low electrical conductivity [142]. Consequently, it is a great challenge to develop
NixSy-based nanomaterials capable of substantially enhancing the electrochemical sensing
performance. Kannan et al. [143] reported a core–shell nanowire composite consisting of
Ni-Ni3S2/NiMoO4. Cyclic voltammetry tests revealed that the electrochemical glucose
oxidation behavior of Ni-Ni3S2/NiMoO4 was significantly improved compared to Ni foam,
Ni-Ni3S2, and Ni-NiMoO4 due to the synergistic effect of different components.

As mentioned earlier, the morphology of electroactive materials affects their specific
surface area (corresponding to the number of active sites) and the distance of electron trans-
port. For example, Kim et al. [144] successfully grew Ni3S2 with different morphologies
on nickel foam using the hydrothermal method by adjusting the volume ratio of ethanol
and water (Et/W) to alter the polarity of the solution. As the water content increased,
Ni3S2 gradually evolved from flakes to cauliflower-like microspheres and dendrites. In-
terestingly, the cauliflower-like Ni3S2 obtained at Et/W = 1:1 exhibited the lowest charge
transfer resistance and the best electrochemical redox behavior. In addition to morphology,
Mazurków et al. [145] recently reported that the energy band structure of electrode mate-
rials significantly influences sensitivity and selectivity in glucose detection. Specifically,
they synthesized four spherical materials (CuS, Ag2S, FeS2, and α-NiS) of comparable sizes
using wet chemical methods (Figure 9a–d). Interestingly, among the non-enzymatic electro-
chemical glucose sensors based on these four sulfides, the sensitivities of FeS2, Ag2S, CuS,
and α-NiS demonstrated a gradually increasing trend. Theoretical calculations indicated
that CuS and α-NiS possess moderate d-band center positions, while Ag2S exhibited a lower
d-band center, and FeS2 exhibited a higher d-band center. Furthermore, all four sulfides
exhibited a good capability to catalyze glucose oxidation (Figure 9e–h). Although α-NiS
exhibited the highest sensitivity to glucose, it demonstrated the lowest selectivity. This
phenomenon indicates that the influence of band structure should be taken into account
when designing NixSy-based nanomaterials.

The poor conductivity of Ni3S2 significantly restricts its application in non-enzymatic
electrochemical glucose sensors. Incorporating carbon materials or conductive polymers
has been demonstrated to be an effective method for enhancing the electron transport prop-
erties of Ni3S2. For instance, Li et al. [51] reported a bamboo-like nitrogen-doped carbon
nanotube-encapsulated nickel sulfide crystal (Ni3S2@NCNT) (Figure 9i). When the product
obtained by refluxing nickel nitrate and dicyandiamide (DCD) was annealed, the nickel
nanoparticles generated during the pyrolysis process could induce the conversion of DCD
into NCNT while being encapsulated in the NCNT structure (Ni@NCNT, Figure 9j). After
hydrothermal sulfurization treatment, Ni@NCNT was transformed into Ni3S2@NCNT,
preserving its bamboo-like structure (Figure 9k–m). Interestingly, the bamboo-like struc-
ture of NCNTs enhanced electron transfer at the electrode surface while providing a
robust enclosure that confined the Ni3S2 active centers and mitigated their aggregation.
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Therefore, the non-enzymatic electrochemical glucose sensor based on Ni3S2@NCNT ex-
hibited notable glucose oxidation activity within the range of 0.46 µM to 3.19 mM, with
an LOD of 0.14 µM and an impressive sensitivity of 1447.64 µA mM−1 cm−2. Moreover,
Meng et al. [146] reported a nanoworm-like Ni3S2 on a GCE modified with hybrid films
of poly 3,4-ethylenedioxythiophene-rGO (Ni3S2 NWs/PEDOT-rGO HFs/GCE) using elec-
trodeposition technology for non-enzymatic electrochemical glucose sensors. Specifically, a
PEDOT-rGO hybrid film was initially electrodeposited on the surface of the GCE through
cyclic voltammetry in a mixed solution of an EDOT monomer and GO. Subsequently,
Ni3S2 NWs were electrodeposited in a similar manner, employing NiCl2 as the source of
nickel and (NH2)2CS as the sulfur source. The associated reaction process is shown in
Equations (17) and (18):

Ni2+ + (NH 2)2CS → [Ni(NH 2)2 CS]2+ (17)

3[Ni(NH 2)2 CS]2+ + 6e− → Ni3S2 + 2CN− + 2NH4+ + (NH 2)2CS (18)

Chemosensors 2025, 13, x FOR PEER REVIEW 19 of 32 
 

 

has been demonstrated to be an effective method for enhancing the electron transport 
properties of Ni3S2. For instance, Li et al. [51] reported a bamboo-like nitrogen-doped car-
bon nanotube-encapsulated nickel sulfide crystal (Ni3S2@NCNT) (Figure 9i). When the 
product obtained by refluxing nickel nitrate and dicyandiamide (DCD) was annealed, the 
nickel nanoparticles generated during the pyrolysis process could induce the conversion 
of DCD into NCNT while being encapsulated in the NCNT structure (Ni@NCNT, Figure 
9j). After hydrothermal sulfurization treatment, Ni@NCNT was transformed into 
Ni3S2@NCNT, preserving its bamboo-like structure (Figure 9k–m). Interestingly, the bam-
boo-like structure of NCNTs enhanced electron transfer at the electrode surface while 
providing a robust enclosure that confined the Ni3S2 active centers and mitigated their 
aggregation. Therefore, the non-enzymatic electrochemical glucose sensor based on 
Ni3S2@NCNT exhibited notable glucose oxidation activity within the range of 0.46 µM to 
3.19 mM, with an LOD of 0.14 µM and an impressive sensitivity of 1447.64 µA mM−1 cm−2. 
Moreover, Meng et al. [146] reported a nanoworm-like Ni3S2 on a GCE modified with hy-
brid films of poly 3,4-ethylenedioxythiophene-rGO (Ni3S2 NWs/PEDOT-rGO HFs/GCE) 
using electrodeposition technology for non-enzymatic electrochemical glucose sensors. 
Specifically, a PEDOT-rGO hybrid film was initially electrodeposited on the surface of the 
GCE through cyclic voltammetry in a mixed solution of an EDOT monomer and GO. Sub-
sequently, Ni3S2 NWs were electrodeposited in a similar manner, employing NiCl2 as the 
source of nickel and (NH2)2CS as the sulfur source. The associated reaction process is 
shown in Equations (17) and (18): 

 Ni2+ + (NH2)2CS → [Ni(NH2)2CSሿ2+  (17)

 3[Ni(NH2)2CS]2+ + 6e− → Ni3S2 + 2CN− + 2NH4+ + (NH2)2CS  (18)

The non-enzymatic electrochemical glucose sensor based on Ni3S2 NWs/PEDOT-rGO 
HFs/GCE exhibited high sensitivity (2123 µA mM−1 cm−2), a wide linear range (15 µM–
9105 µM), and a low LOD (0.48 µM). The redox reaction between Ni (II) and Ni (III) at the 
Ni active center facilitated the oxidation of glucose. In conclusion, the regulation of mor-
phology and composition through various methods is an effective strategy to improve the 
electrochemical redox capability of nickel sulfide-based nanomaterials. 

 
Figure 9. SEM images of (a) CuS, (b) Ag2S, (c) FeS2, and (d) α-NiS. CV curves of (e) GCE/CuS, (f) 
GCE/Ag2S, (g) GCE/FeS, and (h) GCE/α-NiS-based non-enzymatic electrochemical glucose sensors at dif-
ferent glucose concentrations at a scan rate of 100 mV/s. (i) Illustration of the synthesis process of 
Ni3S2@NCNT. SEM images of (j) Ni@NCNT (inset: corresponding TEM image) and (k) Ni3S2@NCNT. (l) 
TEM image and (m) HRTEM image of Ni3S2@NCNT. (a–h) Reproduced with permission [144]. Copyright 
2024, Elsevier. (i–m) Reproduced with permission [51]. Copyright 2022, Elsevier. 

Figure 9. SEM images of (a) CuS, (b) Ag2S, (c) FeS2, and (d) α-NiS. CV curves of (e) GCE/CuS,
(f) GCE/Ag2S, (g) GCE/FeS, and (h) GCE/α-NiS-based non-enzymatic electrochemical glucose
sensors at different glucose concentrations at a scan rate of 100 mV/s. (i) Illustration of the synthesis
process of Ni3S2@NCNT. SEM images of (j) Ni@NCNT (inset: corresponding TEM image) and
(k) Ni3S2@NCNT. (l) TEM image and (m) HRTEM image of Ni3S2@NCNT. (a–h) Reproduced with
permission [144]. Copyright 2024, Elsevier. (i–m) Reproduced with permission [51]. Copyright
2022, Elsevier.

The non-enzymatic electrochemical glucose sensor based on Ni3S2 NWs/PEDOT-rGO
HFs/GCE exhibited high sensitivity (2123 µA mM−1 cm−2), a wide linear range (15 µM–
9105 µM), and a low LOD (0.48 µM). The redox reaction between Ni (II) and Ni (III) at
the Ni active center facilitated the oxidation of glucose. In conclusion, the regulation of
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morphology and composition through various methods is an effective strategy to improve
the electrochemical redox capability of nickel sulfide-based nanomaterials.

Here, the reported MS-based non-enzymatic electrochemical glucose sensors are
categorized according to the types of MS composites (Table 2).

Table 2. Non-enzymatic electrochemical glucose sensors based on MS composites.

Nanomaterial Electrolyte Sensitivity Linear Range LOD Real Sample Ref.

CuS-NWAs 0.1 M NaOH 2610 µA mM−1 cm−2 0.5 µM–560 µM 17.5 nM Human serum [119]
H-Ni(OH)2@CuS 0.1 M NaOH 2738.57 µA mM−1 cm−2 10 µM–6.64 mM 3.3 µM Human serum [120]

CuS NCs@Ni1Co2 LDHs 0.1 M NaOH 2236.4 µA mM−1 cm−2 1 µM–4.6 mM 0.18 µM Human serum [121]
CuS/NSC 0.1 M NaOH 13.62 mA mM−1 cm−2 160 µM–11.76 mM 2.72 µM Human serum [125]

V-CuS NWs 0.1 M KOH 2518 µA mM−1 cm−2 1 µM–7 mM 0.13 µM / [48]

NiO NS-MoS2 0.1 M NaOH 1880 µA mM−1 cm−2 5 µM–370 µM 3.53 µM Artificial urine
and ORS [40]

Cu9S5/C/MoSx 0.1 M NaOH 2528.6 µA mM−1 cm−2

1185.7 µA mM−1 cm−2
0.5 µM–1.082 mM

1.082 mM–8.332 mM 0.12 µM Human serum
and beverages [49]

CuS/MoS2 0.1 M NaOH 252.7 µA mM−1 cm−2 0.1 mM–11 mM 1.52 µM Human serum [130]

MoS2-MoO3/Ni 0.2 M NaOH 2278.2 µA mM−1 cm−2

1421.1 µA mM−1 cm−2
0.5 µM–2 mM
2 mM–5.5 mM 0.2 µM Glucose drinks

and serum [131]

Co3S4 0.2 M NaOH 346.7 µA mM−1 cm−2 2 µM–1.11 mM 0.17 µM / [24]
CuS/CoS 0.1 M NaOH 314.85 µA mM−1 cm−2 0.1 mM–11 mM 1.71 µM Human serum [41]

Co3S4/CuCo2O4 0.1 M NaOH 1062.5 µA mM−1 cm−2

512.5 µA mM−1 cm−2
1 µM–0.405 mM
405 µM–5.03 mM 2.1 µM Human serum

and seawater [133]

CoS@Co-MOF 0.1 M KOH 4.6 µA µM−1 cm−2 5 µM–1.17 mM 0.11 µM Human serum [50]
Ag/MoS2@Co3S4 0.1 M NaOH 546.8 µA mM−1 cm−2 0.2 µM–30 µM 0.08 µM / [136]

NC-NiS@NS-NiS 1.0 M KOH 54.6 µA mM−1 cm−2 20 µM–5 mM 8.3 nM Human urine
and serum [42]

Ni7S6/NiO 0.1 M NaOH 7.10 µA mM−1 cm−2 90 µM–3.12 mM 0.3 µM Human serum [137]
Ni-Ni3S2/NiMoO4 0.5 M NaOH 10.49 µA µM−1 cm−2 0 µM–0.24 mM 55 nM Human serum [143]

Ni3S2@NCNT 0.1 M NaOH 1447.64 µA mM−1 cm−2 0.46 µM–3.19 mM 0.14 µM Artificial sweat [51]
Ni3S2 NWs/PEDOT-rGO HFs 0.1 M NaOH 2123 µA mM−1 cm−2 15 µM–9105 µM 0.48 µM Human serum [146]

Note: NWAs: nanowall arrays. H-Ni(OH)2: hollow Ni(OH)2. CuS NCs: CuS nanocages. NSCs: N-and S-doped
carbon spheres. V-CuS NWs: vine-like CuS nanowires. NiO NS: NiO nanosheet. NC-NiSs: NiS nanoclusters.
NS-NiS: NiS nanosphere. NWs: nanoworms. PEDOT: poly (3,4-ethylenedioxythiophene). HFs: hybrid films.
ORS: oral rehydration solution.

4. Challenges Faced by Non-Enzymatic Electrochemical Glucose Sensors
in Practical Applications

Enzyme sensors typically operate under milder conditions and are sensitive to en-
vironmental factors, such as temperature, pH, and humidity. Additionally, the enzyme
activity may decline over time, leading to a shorter sensor lifespan. Non-enzyme sensors,
on the other hand, do not rely on enzyme activity and are expected to maintain stabil-
ity under a wider range of temperatures and pH values. However, the non-enzymatic
electrochemical glucose sensors reported in laboratories (including but not limited to
those shown in Tables 1 and 2) almost all operate in neutral to alkaline environments, as
the catalytic process requires the consumption of OH−, which requires additional pre-
treatment [147,148]. Figure 10 distinguishes the differences between enzyme-based and
non-enzyme electrochemical glucose sensors in various aspects. Although there is great
anticipation for non-enzyme electrochemical glucose sensors, enzyme sensors are still
widely used in practical applications. The path to widespread the commercialization of
non-enzyme electrochemical glucose sensors remains long.
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(i) Insufficient selectivity: Non-enzyme electrochemical glucose sensors rely on the elec-
trochemical oxidation of glucose. However, other electrochemically active substances
present in complex biological samples and real-world detection environments, such
as ascorbic acid (AA), uric acid (UA), and dopamine, may also undergo reactions on
the electrode surface, generating interference signals that affect the accurate detection
of glucose. Therefore, the selectivity of non-enzyme electrochemical glucose sensors
remains a significant challenge.

(ii) Sensitivity requires further improvement: In certain applications involving low glu-
cose concentrations, such as blood glucose monitoring in diabetic patients after insulin
administration or cell cultures sensitive to glucose levels, non-enzyme glucose sensors
may fail to provide accurate detection.

(iii) Limited working environment: A large number of studies have shown that common
MOs and MSs exhibit good catalytic activity in alkaline environments; however, their
catalytic activity significantly decreases in neutral or acidic environments.

(iv) Process optimization issues: In this review, we found that some MOs perform better
after high-temperature annealing, while MSs typically involve a sulfide reaction
between the metal and sulfur source. Therefore, synthesizing these materials in the
laboratory generally requires high-temperature equipment, such as muffle furnaces,
vacuum tube furnaces, and electric ovens. Simplifying the synthesis process would
facilitate the promotion of large-scale applications.

Targeting the selectivity of non-enzymatic glucose sensors remains a major chal-
lenge for their commercialization, and we have summarized several strategies to address
this challenge.

(i) Nanoconfinement effect: The fixed size of nanopores provides a strategy for excluding
the influence of certain interfering substances. Benedetti et al. [149] recently reported
a conductive mesoporous carbon shell-coated Au nanoparticle used to simulate the
3D structure of enzymes. The separated nanopores created the surface of Au, which
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not only creates an alkaline environment for non-enzymatic detection locally, but
also eliminates the interference from Cl−, UA, AA, and proteins. This non-enzymatic
electrochemical glucose sensor based on the nanoconfinement effect enables glucose
detection in whole blood.

(ii) Defect engineering: Defect engineering has been demonstrated to be an effective
strategy to enhance the catalytic activity of nanomaterials. Zhong et al. [150] obtained
Ni(OH)2 nanosheets with varying defect (oxygen vacancy) concentrations by treating
the product with Ar plasma for different times. Interestingly, defective Ni(OH)2

exhibited better selectivity than pristine Ni(OH)2.
(iii) Design electrode materials with a stronger glucose molecule adsorption capability

based on theoretical calculations: In principle, the stronger the electrode material’s
adsorption capability for glucose molecules, the more beneficial it is for reducing the
diffusion energy barrier and accelerating reaction kinetics. Furthermore, the glucose
molecule adsorption layer formed on the electrode surface hinders other interfering
substances from approaching the electrode surface to some extent, thereby reducing
their adsorption and reaction on the electrode.

(iv) Intelligent back-propagation (BP) neural network: Recently, Zhou et al. [151] innova-
tively introduced an intelligent BP neural network into electrochemical microarrays
to improve the selectivity of non-enzymatic electrochemical sensors. They prepared
three non-enzymatic electrodes (NiO/Pt, Ni(OH)2/Au, and Ni(OH)2/Pt) by elec-
trodeposition and dripping, and then integrated them into a single electrochemical
unit. This strategy overcame the overlapping oxidation peaks of glucose and lactate
for the first time and can identify multiple biomarkers, which will help promote the
commercialization of non-enzymatic glucose sensors in the future.

5. Summary and Prospectives
This review summarizes the recent research progress in non-enzymatic electrochemical

glucose sensors based on MOs and MSs, with a primary focus on two main aspects: material
synthesis methods and sensing performance. Although noble metal nanomaterials possess
excellent electrical conductivity, catalytic performance, and biocompatibility, their high cost
limits their application. In contrast, MOs and MSs have attracted much attention in the
field of non-enzymatic electrochemical glucose sensors due to their abundant raw material
reserves, simple synthesis, controllable morphology, and superior catalytic performance.
Scholars are committed to developing electrode materials with outstanding catalytic activity.
Therefore, various processes for synthesizing MOs or MSs have been developed, including
the hydrothermal method, ultrasonic stripping method, ion exchange method, thermal
reduction method, emulsion cross-linking method, vacuum spray method, micro-plasma
method, electrochemical deposition method, and so on. The constructed non-enzymatic
electrochemical glucose sensors based on MOs or MSs and their composites usually pos-
sess the advantages of high sensitivity, a wide linear range, low limit of detection, good
selectivity, and anti-interference ability. The hydrothermal method and thermal reduction
method both involve high temperature and pressure; the vacuum spray method relies
on a vacuum environment; the micro-plasma method has both high equipment costs and
complexity; and the ultrasonic stripping method has a low cost and process complexity, but
it is primarily effective for preparation of 2D materials. The emulsion cross-linking method
generally does not require high-temperature conditions, but requires precise control over
the concentration of cross-linking agents and reaction conditions. The ion exchange method
has moderate costs (requiring certain chemical reagents) and process complexity. From the
perspectives of cost and process complexity, the electrochemical deposition method offers
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economic benefits, simplicity, customizability, and suitability for large-scale production,
making it a technique with significant application potential.

Currently, two primary strategies are employed to enhance the performance of non-
enzymatic electrochemical glucose sensors. One strategy is to increase the porosity and
specific surface area of the electrode materials by altering their morphology and structure.
Larger porosity helps provide more channels for ion diffusion and reduces the ion transport
distance. Larger specific surface area is beneficial for exposing more active sites, thereby
improving the sensitivity of the sensor. In addition to the 2D nanosheet structures and
MOF-derived porous structures we mentioned earlier, laser-induced graphene (LIG) has
recently been widely used to construct electrode materials with 3D porous structures, large
specific surface areas, and excellent conductivity. For example, Zhu et al. [152] reported an
LIG electrode coated with Ni and Au for non-enzymatic electrochemical glucose sensors,
which exhibited higher sensitivity in a relatively mild alkaline solution (pH = 10) compared
to stronger alkaline solutions reported in the literature. This can be achieved through
the design of morphologies (including nanotubes, nanosheets, and nanoflowers) and
structures (containing a hollow, core–shell array as well as other structures). The other
strategy is to form composite materials by introducing other components: (i) loading noble
metal nanoparticles, such as Au, Pt, and Ag; (ii) hybridization with carbon materials, like
MWCNTs, GO, and CNFs, or with conductive polymers, such as PPy, PANI, and PEDOT;
and (iii) introducing other MOs or MSs to construct heterojunctions.

In addition, with the development of flexible materials, the research on glucose moni-
toring systems based on electrochemical sensing platforms and wearable electronic devices
has become a new hotspot. Shamili et al. [153] used MWCNT, PEDOT: PSS (polystyrene sul-
fonate), and Fe3O4 nanoparticles to prepare flexible screen-printed electrodes, which were
then modified with Prussian blue nanoparticles and GOX. The designed flexible wearable
sensor demonstrated reliability in detecting glucose levels in the sweat of volunteers before
and after meals (Figure 11a–c). Shrestha et al. [154] developed a self-adhesive hydrogel for
sweat glucose monitoring that does not require any other adhesives or surface treatments
(Figure 11d–g). The key indicators for designing wearable non-enzymatic electrochemical
glucose sensors include cost, comfort (e.g., weight, size, flexibility, elasticity, and minimal
skin irritation), functionality (e.g., low power consumption and waterproofing), and reli-
able signal transmission and processing (e.g., fast response, smart interconnection, high
sensitivity, selectivity, and anti-interference capabilities). Microelectromechanical systems
(MEMS) technology possesses the characteristics of miniaturization, lightweight, high inte-
gration, mass production, low cost, and multi-functionality. MEMS can be easily integrated
into wearable devices, paving the way for the development of wearable non-enzymatic
electrochemical glucose sensors [155]. It is foreseeable that the next generation of non-
enzymatic electrochemical glucose sensors is expected to advance toward miniaturization
and wearability, thereby achieving rapid, painless, and real-time blood sugar detection.
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three different times. (d) Images of different sweat production methods (treadmill, cycle ergometer, 
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Co1.22xNixO4/fMWCNT nanozyme. Relationship between the blood glucose concentration and sweat 
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(g) different sweat production methods. (a–c) Reproduced with permission [153]. Copyright 2024, 
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