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Abstract: The complex chemical composition of honey presents significant challenges for
its analysis with variations influenced by factors such as botanical source, geographical
location, bee species, harvest time, and storage conditions. This study aimed to employ
high-performance thin-layer chromatography (HPTLC) fingerprinting, coupled with mul-
tivariate data analysis, to characterise the chemical profiles of Australian stingless bee
honey samples from two distinct bee species, Tetragonula carbonaria and Tetragonula hock-
ingsi. Using a mobile phase composed of toluene:ethyl acetate:formic acid (6:5:1) and two
derivatisation reagents, vanillin–sulfuric acid and natural product reagent/PEG, HPTLC
fingerprints were developed to reveal characteristic patterns within the samples. Multivari-
ate data analysis was employed to explore the similarities in the fingerprints and identify
underlying patterns. The results demonstrated that the chemical profiles were more closely
related to harvest time rather than bee species, as samples collected within the same month
clustered together. The quality of the clustering results was assessed using silhouette scores.
The study highlights the value of combining HPTLC fingerprinting with multivariate data
analysis to produce valuable data that can aid in blending strategies and the creation of
reference standards for future quality control analyses.

Keywords: high-performance thin-layer chromatography (HPTLC); stingless bee honey;
Australia; multivariate data analysis; fingerprint; chemometrics; quality control

1. Introduction
Honey is a complex natural product, composed of a wide variety of compounds,

that has been used in traditional medicine for thousands of years due to its range of
biological activities, including antibacterial and antioxidant properties [1,2]. Among the
various types of honey, Australian stingless bee honey, also known as sugarbag honey,
holds a unique place with a rich history of medicinal use by the country’s First Nations
Peoples [3,4]. Despite this, research on the bioactive properties and chemical profile of
Australian stingless bee honey remains limited particularly when compared to the much
more extensively studied honeys produced by European honeybees (Apis mellifera) [5]. This
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is a shortcoming since stingless bee products, attributed to the rich vegetation in tropical
and subtropical regions where stingless bees are found, are often considered superior
sources of biologically active compounds, such as phenolic constituents [6,7].

These compounds have been associated with the health-promoting properties of
stingless bee honey, driving its increasing potential for use in the food, pharmaceutical, and
cosmetic industries over the past two decades [7,8]. In addition to its unique properties,
the collection of stingless bee honey appears to have some distinct advantages over honey
derived from European honey bees. Stingless bees, as their common name suggests, do not
sting and do not tend to abandon their nests (in contrast to European honey bees that can
swarm). Due to their small size, they are also excellent pollinators for crops which have
small flowers (e.g., macadamia) that are difficult to access by the much larger European
honey bees and, possibly most importantly, they do not tend to be susceptible to common
bee diseases that threaten European honey bee colonies around the world and that require
regular pesticide treatments of their hives [6,9]. Despite these benefits, the production
of stingless bee honey is still limited. This is not only because stingless bees produce
significantly less honey compared to European honey bees [10] but also due to the absence
of quality control standards and a lack of comprehensive research, both of which hinder its
broader commercialisation [7,11].

Stingless bee honey is typically sold at significantly higher prices than honey derived
from European honey bees, reflecting the limited supply but also growing demand for the
product. Expanding stingless bee breeding could not only increase honey production but
also foster honey industry in tropical regions, offering ecological, social, and economic
benefits [7,11]. However, achieving these goals also requires the establishment of general
quality standards for stingless bee honey to ensure product authenticity and to prevent
fraudulent practices such as the sale of adulterated or lower-quality honey.

The current lack of standardisation of stingless bee honey presents a major challenge [7,8].
Establishing these standards is complicated by the fact that honey is a complex natural
product with its composition varying widely due to factors such as bee species, floral
sources, climate conditions or harvest time [12].

Given this complexity, non-targeted analytical approaches, such as generating chem-
ical “fingerprints”, are powerful tools for extracting detailed information from natural
products like honey [13,14]. These approaches are, for example, powerful tools for en-
suring food authenticity [15,16]. In addition, fingerprints also offer a representation of
the distribution of chemical constituents in natural products. This is particularly valu-
able for honey, considering that its chemical composition can vary significantly due to
factors such as botanical origin, bee species, geographical origin, seasonality, and storage
conditions [17,18].

Chromatographic and spectroscopic techniques are frequently employed to generate
fingerprints with chromatographic methods being especially useful for separating com-
plex food mixtures and providing reliable qualitative and quantitative data [19,20]. While
techniques such as gas chromatography and liquid chromatography coupled with mass
spectrometry (GC/LC-MS) are well established, they often require extensive instrumenta-
tion and lengthy analysis times, making them less ideal for routine quality control [21,22].
High-performance thin-layer chromatography (HPTLC), by contrast, offers distinct advan-
tages, including faster analysis time and lower costs due to the ability to simultaneously
analyse a large number of samples on a single plate with minimal reagent and solvent
input [22,23]. Additionally, HPTLC’s advanced image recording systems and capacity to
scan samples at multiple wavelengths make it particularly suitable for both qualitative and
quantitative food analysis [15,23].
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The large amount of data generated by HPTLC analysis requires the use of advanced
data analysis techniques such as chemometrics to fully interpret obtained results. Various
chemometric methods, including principal component analysis (PCA), hierarchical cluster
analysis (HCA), k-nearest neighbours (k-NN), artificial neural network (ANN), Uniform
Manifold Approximation and Projection (UMAP), and partial least squares-discriminant
analysis (PLS-DA), are commonly employed to evaluate chromatographic fingerprints and
reveal patterns in complex data sets [22].

To date, chemometrics analysis has been mainly used to confirm the geographic origin
and authenticity of Apis mellifera honey [21,24–26]. However, to the best of our knowledge,
this is the first paper that reports on HPTLC-generated fingerprints of Australian stingless
bee honey and its profiling based on the chemometric analysis of these fingerprints. The
combination of the richness of HPTLC-derived fingerprints with multivariate data analysis
can provide valuable insights into honey samples with similar chemical profiles, facilitating
the creation of blends for quality control. Analysing blends, rather than individual samples,
offers several advantages, including reduced variability across samples, improved cost-
effectiveness and the ability to generate reference samples in the absence of an absolute
standard [27].

To demonstrate the usefulness of this approach and to generate valuable data that
might support quality control efforts in the future, the aim of this study was to analyse
HPTLC-derived fingerprints of 32 Australian stingless bee honey samples. Applying
multivariate data analysis, the samples were profiled to support blending strategies for the
preparation of reference standards for future quality control.

2. Materials and Methods
2.1. Chemicals and Reagents

The chemicals and reagents used in this study and their suppliers are as follows:
vanillin (Sigma Aldrich, St. Louis, MO, USA); 2-aminoethyl diphenylborinate (Chem
Supply, Port Adelaide, SA, Australia); toluene (APS Chemicals, Sydney, NSW, Australia);
4,5,7-trihydroxyflavanone (Alfa Aesar, Lancashire, UK); ethyl acetate, formic acid and
sulfuric acid 98% (Ajax Finechem, Wollongong, NSW, Australia); polyethylene glycol 400
(PharmAust, Welshpool, WA, Australia); methanol (Merck KGaA, Darmstadt, Germany);
ethanol (ChemSupply, Gillman, SA, Australia); dichloromethane (Merck KGaA, Darmstadt,
Germany); and HPTLC calibration mix (UHM) (Sigma Aldrich, p/n 91816).

Silica gel 60 F254 HPTLC glass plates (20 cm × 10 cm) were obtained from Merck
KGaA (Darmstadt, Germany).

2.2. Stingless Bee Honey Samples

For this study, thirty-two stingless bee honey samples from two of the most cultivated
bee species, Tetragonula carbonaria (n = 26) and Tetragonula hockingsi (n = 6), were sourced
directly from a local beekeeper in Burpengary East, Queensland, Australia (Table 1). Sam-
ples were collected in May (n = 12), September (n = 10), and November (n = 10) 2022. All
samples were stored at 4 ◦C until further analysis.

Table 1. Stingless bee honey samples.

Bee Species Sample Harvest Date

Tetragonula carbonaria TC-01 May 2022
TC-02
TC-03
TC-04
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Table 1. Cont.

Bee Species Sample Harvest Date

TC-05
TC-06
TC-07
TC-08
TC-09
TC-10

Tetragonula hockingsi TH-01 May 2022
TH-02

Tetragonula carbonaria TC-13 September 2022
TC-14
TC-15
TC-16
TC-17
TC-18
TC-19
TC-20

Tetragonula hockingsi TH-05 September 2022
TH-06

Tetragonula carbonaria TC-21 November 2022
TC-22
TC-23
TC-24
TC-25
TC-26
TC-27
TC-28

Tetragonula hockingsi TH-07 November 2022
TH-08

2.3. HPTLC Fingerprinting

High-performance thin-layer chromatography (HPTLC) was used to obtain finger-
prints of organic extracts of the honey samples. For the organic extraction, approximately
1 g of each honey was dissolved in 2 mL of deionised water. The aqueous solution was then
extracted three times with 5 mL of dichloromethane. The combined organic extracts were
evaporated at 35 ◦C and stored at 4 ◦C until further analysis. Before high-performance
thin-layer chromatography (HPTLC) analysis, the organic extracts were reconstituted
with 100 µL of dichloromethane. A methanolic solution of 4,5,7-trihydroxyflavanone
(0.5 mg/mL) and the HPTLC calibration mix (UHM) were used as reference standards.

The mobile phase was composed of a mixture of toluene, ethyl acetate, and formic acid
at a ratio of 6:5:1 (v/v/v) [28]. Vanillin spraying reagent (VSA) was prepared by dissolving
1 g of vanillin in 100 mL of 96% ethanol, which was followed by the gradual addition
of 2 mL of 98% sulfuric acid. Natural product spraying reagent (NP) was prepared by
dissolving 1 g of 2-aminoethyl diphenylborinate in 100 mL of methanol. Polyethylene
glycol (PEG) solution was prepared by dissolving 5 g of PEG 400 in 100 mL of 96% ethanol.

The reference standard (4 µL) and the organic extracts of the honey samples (5 µL)
were applied as 8 mm bands at 8 mm from the lower edge of the HPTLC plate (glass
plates 20 × 10 cm, silica gel 60 F254) at a rate of 150 nLs−1 using a semi-automated HPTLC
application device (Linomat 5, CAMAG, Muttenz, Switzerland). The chromatographic
separation was performed in a saturated and activated (33% relative humidity) automated
development chamber (ADC2, CAMAG, Muttenz, Switzerland). Samples were developed
to a distance of 70 mm at ambient temperature. The obtained chromatographic results
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were documented using an HPTLC imaging device (TLC Visualiser 2, CAMAG, Muttenz,
Switzerland) under 254 nm, 366 nm, and white light.

Following initial documentation of the chromatographic results, each plate was deriva-
tised using either the vanillin/sulfuric acid (VSA) reagent or natural product/PEG (NP-
PEG) reagent. For the NP-PEG derivatisation, plates were first sprayed with 3 mL of 1%
NP reagent using a green nozzle at level 3 and then dried for 5 min at 40 ◦C using a TLC
Plate Heater III (CAMAG, Muttenz, Switzerland). The plates were then sprayed again, this
time with 5% PEG reagent using a blue nozzle at level 2, dried for 5 min at 40 ◦C, and the
resulting image was captured at 366 nm. To derivatise using the VSA reagent, plates were
sprayed with 3 mL of 1% vanillin sulfuric acid reagent using a yellow nozzle at level 3,
then heated for 3 min at 115 ◦C using the TLC Plate Heater III, and after cooling for 2 min,
the plates were visualised at 366 nm and white light. The chromatographic images were
digitally processed and analysed using a specialised HPTLC software (visionCATS v3.1,
CAMAG, Muttenz, Switzerland).

2.4. Multivariate Data Analysis
2.4.1. Data Pre-Processing

The initial output from the HPTLC samples consisted of RGB values and absorbance
units (AU) for each sample at the respective wavelengths. The retardation factor (RF) values
were standardised based on the HPTLC calibration mix track, which was obtained after
development at 366 nm. The RF values across all samples were constrained to a range
between 0.100 and 0.805, covering most of the detected bands.

The raw data were stored in CSV format, containing the RGB and AU values for each
sample. These CSV files were processed and converted into a single HDF5 file containing
the data for all the samples analysed for efficient storage and subsequent analysis. The
HDF5 format was chosen for its ability to store large datasets while allowing data to be
quickly read using the free available software PythonTM (v. 3.12), facilitating efficient data
handling and analysis.

2.4.2. Multivariate Analysis Approach

Multivariate data analysis was conducted to discern patterns and relationships within
the dataset. Initially, a simpler approach was applied by performing K-means clustering
using R and R Studio (v. 2024.04.1-748). This was followed by applying a more sophisticated
method, Uniform Manifold Approximation and Projection (UMAP) [29] for dimension
reduction and clustering of the high-dimensional HPTLC data. Finally, the Plotly (v.32.0)
tool was used to create 3D plots to enhance visualisation. The silhouette score was employed
as a metric to assess the quality of the clusters created.

3. Results and Discussion
3.1. HPTLC Fingerprints

The separation and analysis of honey constituents presents significant challenges due
to its complex chemical composition, which can vary widely based on factors such as botan-
ical source, geographical location, bee species, harvest time, and storage conditions [30,31].
Consequently, the complete composition of honey remains largely unexplored, particularly
so in the case of stingless bee honeys. Fingerprinting methods capture the richness of chem-
ical constituents and therefore can serve as the basis for a comprehensive characterisation
of stingless bee honey samples.

Two commonly used derivatisation reagents were selected for the HPTLC analysis.
The NP/PEG system is primarily employed for detecting flavonoids, while vanillin–sulfuric
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acid (VSA) is mainly used to identify a wide range of lipophilic compounds including
terpenoids, sterols and alkaloids [32].

While the resulting chromatograms provide two-dimensional data (Rf vs. intensity),
the HPTLC generated fingerprint images offer greater detail, as the bands vary in colour
in each chosen visualisation condition prior to and also after derivatisation, which can
be recorded numerically in the form of RGB values. When displayed side by side, the
HPTLC fingerprints allow for the visual assessment of both unique characteristics and
shared features.

Figure 1 shows exemplary HPTLC images obtained at 254 nm (Figure 1a) and 366 nm
(Figure 1b) after development with the mobile phase, and at 366 nm (Figure 1c) and white
light (Figure 1d) after derivatisation with VSA, as well as at 366 nm (Figure 1e) after
derivatisation with NP/PEG. Visual examination of the HPTLC fingerprints revealed both
similarities and differences in chemical composition among the honey samples. Several
bands were observed between Rf 0.085 and 0.805, indicating the presence of a range of (most
likely phenolic) compounds. Table 2 highlights some of the main bands found. Images of
the fingerprints of all samples can be found in the Supplementary Material (Figure S1).
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Figure 1. Images of HPTLC fingerprints taken at (a) 254 nm after development; (b) 366 nm after
development; (c) 366 nm after derivatisation with VSA; (d) white light after derivatisation with VSA;
(e) 366 nm after derivatisation with NP/PEG. Track 1—sample TC-01; track 2—sample TC-13; track
3—sample TC-25.

Table 2. Main bands found in Australian stingless bee honey samples.

Rf Colour Visualisation Spray Reagent

0.259 254 nm NA (after development)

0.290 254 nm NA (after development)

0.389 254 nm NA (after development)

0.443 254 nm NA (after development)

0.720 254 nm NA (after development)

0.104 366 nm NA (after development)

0.292 366 nm NA (after development)

0.213 White light VSA

0.251 White light VSA

0.341 White light VSA
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Table 2. Cont.

Rf Colour Visualisation Spray Reagent

0.384 White light VSA

0.677 White light VSA

0.082 366 nm VSA

0.292 366 nm VSA

0.328 366 nm VSA

0.341 366 nm VSA

0.407 366 nm VSA

0.664 366 nm VSA

0.100 366 nm NP-PEG

0.302 366 nm NP-PEG

0.371 366 nm NP-PEG

0.384 366 nm NP-PEG

0.394 366 nm NP-PEG

0.501 366 nm NP-PEG

0.651 366 nm NP-PEG

3.2. Multivariate Data Analysis

As previously mentioned, honey composition can vary widely, challenging its quality
control. Many quality assurance methods for natural products, including honey, rely on the
qualitative and/or quantitative analysis of specific marker compounds [33]. However, stan-
dardising these marker compounds presents challenges, especially when the bioactivity and
sensory qualities of a natural product cannot be attributed to one or a few compounds [34]
but are instead the result of a complex interaction among various constituents [35] or when
key constituents have not yet been chemically identified [36]. Therefore, the use of profile
chromatograms, which capture the typical phytochemical composition of a natural product
for comparison purposes, has become a common approach to support the quality control of
natural products and food items [36–38]. However, the determination of what constitutes
a suitable reference standard for comparative purposes remains a challenge. Since the
chromatographic profile of a single sample might not accurately represent the typical
chemical composition, pooling multiple samples to obtain a chromatographic profile which
is more representative of common features see across samples may provide a more accurate
evaluation [39].

In this approach, multiple samples that are considered representative of the natural
product extract are combined to create a pooled reference sample. While individual samples
in the blend may vary, the overall profile from this pooled reference sample and its asso-
ciated chromatogram reflects the extract’s typical phytochemical characteristics. Pooling
minimises the impact of uncommon constituents while amplifying those constituents that
are common across samples, supporting the effective quality control of complex natural
products. However, a challenge remains in selecting appropriate samples for inclusion
in this pooled reference sample [27]. In this study, multivariate data analysis of HPTLC-
generated fingerprints was therefore explored for its suitability to assist sample pooling
using Australian native bee honey as an example for a complex natural product.

To identify which honey samples to pool, multivariate data analysis was performed
on the RF values, RGB data, and absorbance units, enabling the clustering of samples based
on their HPTLC-generated fingerprints. Cluster analysis, a key technique for classifying
data, was employed to identify groups within the dataset based on similarities within
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clusters and dissimilarities between them [40]. K-means clustering was initially used
because it is one the most commonly used and simplest unsupervised learning algorithms
for cluster analysis. The algorithm starts by setting a target number of clusters (k), which
represents the number of centroids to be determined [40]. This point-based method begins
by randomly placing cluster centres and then iteratively adjusts them to minimise the
clustering error [41].

The initial hypothesis was that the bee species involved in honey production would
significantly influence the HPTLC fingerprints with samples from the same species clus-
tering together. However, as shown in Figure 2, when the number of clusters was set to
two, species did not appear to be a defining factor, as samples from different species were
grouped together. Nevertheless, it was observed that cluster 1 consisted entirely of samples
harvested in September and November, while cluster 2 contained only samples harvested
in May.
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Figure 2. K-means clustering plot (k = 2).

The K-means analysis was then performed again with the number of clusters set to
three. In this case, three distinct clusters emerged which grouped samples mostly according
to their harvest month; thus, it could be concluded that the chemical profiles of the honey
samples were found to be more strongly influenced by the time of harvest rather than by
bee species (Figure 3). This finding is consistent with previous studies: research on honey
from Croatia demonstrated that the beekeeping season significantly influences its elemental
composition [42]. Similarly, a study on stingless bee honey from Malaysia (H. itama and T.
binghami) revealed that harvest time had a notable impact on its physicochemical properties,
antioxidant activity, and antimicrobial effects [43]. Additionally, a study on Italian honeys
reported that seasonality plays a major role in the diversity of pollen collected by honeybees,
which directly leads to variations in honey composition [44].

Uniform Manifold Approximation and Projection (UMAP) [29] was also used for
dimension reduction and clustering of the high-dimensional HPTLC data generated with
both spraying systems. UMAP was chosen for its ability to preserve both local and global
data structures while reducing dimensions, making it a powerful tool for visualising
complex relationships in datasets.
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UMAP’s ability to maintain both the local and global topological structure of the
data allowed for the clear identification of clusters, revealing natural groupings within the
honey samples. This provided a robust visualisation of how different honey samples were
related or distinct from one another. UMAP was particularly effective in distinguishing
subtle differences in chemical composition that may not have been as discernible using
other methods.

Compared to basic K-means analysis, this approach allowed for a more comprehensive
exploration of the relationships between samples by enabling rotation and zooming to
examine the data from different perspectives. The interactive nature of the 3D plots, along
with adjustable visual parameters such as colour scales and point size, facilitated a detailed
and dynamic interpretation of the UMAP clustering results.

Figure 4 shows the UMAPs generated from the fingerprints sprayed with NP-PEG (a)
and VSA (b). The dynamic 3D plots are included in the Supplementary Material Link S1.
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Figure 4. UMAPs of HPTLC fingerprints sprayed with (a) NP-PEG and (b) VSA. Honey samples
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The 3D plots revealed the same consistent pattern that had already been revealed in
the K-means analysis with most samples from the same harvest month clustering together.
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Notably, the clusters formed by fingerprints sprayed with NP-PEG were tighter, likely due
to the points sharing more common features, indicating a stronger relationship among them.

A silhouette score was employed as a validation metric to assess the quality of the
clustering results. The silhouette score is a metric used to evaluate the quality of a clustering
model by measuring how similar an object is to its own cluster compared to other clusters.
It ranges from −1 to 1, where values closer to 1 indicate well-defined clusters, values
around 0 suggest overlapping clusters and negative values suggest poor clustering, where
points may have been assigned to incorrect clusters [45].

This study applied K-means clustering with the number of clusters set to two and
three. For two clusters, the silhouette score was 0.48, indicating well-separated clusters. For
three clusters, the silhouette score slightly decreased to 0.44, but this was still indicating
good clustering. The lower score might be attributed to the proximity of the harvest dates,
particularly in September and November, when it is possible that the same flora present in
September remained available to the bees in November. The UMAP scores, NP-PEG = 0.44,
VSA = 0.49, show the harvest time-based clusters are well-defined clusters, which aligns
with the findings from the K-means clustering and further underscores the influence of
harvest time over bee species. The scores show that the clusters have strong validity.

Therefore, the multivariate data analysis indicates that to create an accurate reference
standard for stingless bee honey samples from the Burpengary East region, it is essential to
pool samples collected in the same month. This combined sample will effectively capture
the key characteristics and natural variations of the product at different times throughout
the year, acknowledging the changing composition of this complex natural product. Such
blends can then be utilised for quality control purposes or for further in-depth analysis
to identify compounds of interest that can serve either as marker compounds or that
contribute significantly to the honey’s bioactivity.

Additionally, this approach has potentially practical implications for the honey in-
dustry, particularly in detecting honey adulteration and preventing fraud. Since honey
is subject to natural variations due to factors such as geographical origin and seasonality,
assessing its authenticity can be challenging. The proposed method addresses these vari-
ations by creating pooled reference samples that more accurately reflect the composition
of honey from a specific area and season. As a result, evaluating profile chromatograms
from these pooled reference samples ensures reliable authentication. While this method
was applied to stingless bee honey from Burpengary East in Queensland, Australia, it is
also applicable for preparing pooled reference samples for other types of honey.

4. Conclusions
The significant variability in honey composition highlights the complexities involved

in developing effective quality assurance methods for natural products. Quality control
using chromatographic fingerprints often relies on pooled samples to represent the typical
chemical profile of a specific sample. However, determining which samples have suffi-
ciently similar fingerprints to be grouped together as a pooled sample remains a challenge.
This study employed multivariate data analysis to interpret the HPTLC fingerprints of
stingless bee honey samples from the Burpengary East region of Australia. Contrary to
initial assumptions, the findings revealed that the time of harvest has a far greater im-
pact on the chromatographic profile than the bee species involved in the production of
the honeys. These results provide valuable insights for future research into the quality
control of stingless bee honey samples from this region and might also serve as the basis for
future more in-depth studies aiming to identify key constituents that can serve as marker
compounds or contribute significantly to the honey’s bioactivity.
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derivatisation with VSA; (d) white light after derivatisation with VSA; (e) 366 nm after derivatisation
with NP/PEG; Link S1: Dynamic 3D plots (UMAPs) of HPTLC fingerprints sprayed with (a) VSA
and (b) NP-PEG.
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