The Shell Structure Effect on the Vapor Selectivity of Monolayer-Protected Gold Nanoparticle Sensors
Abstract
:1. Introduction
2. Experimental Section
2.1. Nanoparticle Material Synthesis
2.2. Quartz Crystal Microbalance and Chemiresistor Devices
2.3. Vapor Generation System
3. Results and Discussion
3.1. Response Signals of MPC-Coated Sensors
3.2. Calibration Curves of MPC-Coated Sensors
3.3. Response Patterns of the MPC-Coated Sensor Array
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Mizukoshi, A.; Kumagai, K.; Yamamoto, N.; Noguchi, M.; Yoshiuchi, K.; Kumano, H.; Yanagisawa, Y. A novel methodology to evaluate health impacts caused by VOC exposures using real-time VOC and holter monitors. Int. J. Environ. Res. Public Health 2010, 7, 4127–4138. [Google Scholar] [CrossRef]
- Lin, Z.D.; Young, S.J.; Hsiao, C.H.; Chang, S.J. Adsorption sensitivity of Ag-decorated carbon nanotubes toward gas-phase compounds. Sens. Actuator B Chem. 2013, 188, 1230–1234. [Google Scholar] [CrossRef]
- Taurino, A.M.; Capone, S.; Siciliano, P.; Toccoli, T.; Boschetti, A.; Guerini, L.; Iannotta, S. Nanostructured TiO2 thin films prepared by supersonic beams and their application in a sensor array for the discrimination of VOC. Sens. Actuator B Chem. 2003, 92, 292–302. [Google Scholar] [CrossRef]
- Chen, K.J.; Lu, C.-J. A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV–vis spectrum. Talanta 2010, 81, 1670–1675. [Google Scholar] [CrossRef]
- Brust, M.; Bethell, D.; Schiffrin, D.; Kiely, C. Novel gold-dithiol nano-networks with non-metallic electronic properties. Adv. Mater. 1995, 7, 795–797. [Google Scholar] [CrossRef]
- Zamborini, F.P.; Leopold, M.C.; Hicks, J.R.; Kulesza, P.J.; Malik, M.A.; Murray, R.W. Electron hopping conductivity and vapor sensing properties of flexible network polymer films of metal nanoparticles. J. Am. Chem. Soc. 2002, 124, 8958–8964. [Google Scholar]
- Wohltjen, H.; Snow, A.W. Colloidal metal−insulator−metal ensemble chemiresistor sensor. Anal. Chem. 1998, 70, 2856–2859. [Google Scholar] [CrossRef]
- Konvalina, G.; Haick, H. Sensors for breath testing from nanomaterials to comprehensive disease detection. Acc. Chem. Res. 2013. [Google Scholar] [CrossRef]
- Hakim, M.; Broza, Y.Y.; Barash, O.; Peled, N.; Phillips, M.; Amann, A.; Haick, H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012, 112, 5949–5966. [Google Scholar] [CrossRef]
- Dovgolevsky, E.; Konvalina, G.; Tisch, U.; Haick, H. Monolayer-capped cubic platinum nanoparticles for sensing nonpolar analytes in highly humid atmospheres. J. Phys. Chem. C 2010, 114, 14042–14049. [Google Scholar] [CrossRef]
- Evan, S.D.; Johnson, S.R.; Cheng, Y.L.; Shen, T. Vapour sensing using hybrid organic–inorganic nanostructured materials. J. Mater. Chem. 2000, 10, 183–188. [Google Scholar] [CrossRef]
- Segev-Bar, M.; Shuster, G.; Haick, H. Effect of perforation on the sensing properties of monolayer-capped metallic nanoparticle films. J. Phys. Chem. C 2012, 116, 15361–15368. [Google Scholar]
- Rowe, M.P.; Plass, K.E.; Kim, K.; Kurdak, C.; Zellers, E.T.; Matzger, A.J. Single-phase synthesis of functionalized gold nanoparticles. Chem. Mater. 2004, 16, 3513–3517. [Google Scholar] [CrossRef]
- Kim, S.K.; Chang, H.; Zellers, E.T. Microfabricated gas chromatograph for the selective determination of trichloroethylene vapor at sub-parts-per-billion concentrations in complex mixtures. Anal. Chem. 2011, 83, 7198–7206. [Google Scholar] [CrossRef]
- Han, L.; Daniel, D.R.; Maye, M.M.; Zhong, C.-J. Core−shell nanostructured nanoparticle films as chemically sensitive interfaces. Anal. Chem. 2001, 73, 4441–4449. [Google Scholar] [CrossRef]
- Pang, P.F.; Guo, Z.D.; Cai, Q.Y. Humidity effect on the monolayer-protected gold nanoparticles coated chemiresistor sensor for VOCs analysis. Talanta 2005, 65, 1343–1348. [Google Scholar] [CrossRef]
- Konvalina, G.; Haick, H. Effect of Humidity on nanoparticle-based chemiresistors: A comparison between synthetic and real-world samples. ACS Appl. Mater. Interfaces 2012, 4, 317–325. [Google Scholar]
- Steinecker, W.H.; Rowe, M.P.; Zellers, E.T. Model of vapor-induced resistivity changes in gold−thiolate monolayer-protected nanoparticle sensor films. Anal. Chem. 2007, 79, 4977–4986. [Google Scholar] [CrossRef]
- García-Berríos, E.; Gao, T.; Theriot, J.C.; Woodka, M.D.; Brunschwig, B.S.; Lewis, N.S. Response and discrimination performance of arrays of organothiol-capped Au nanoparticle chemiresistive vapor sensors. J. Phys. Chem. C 2011, 115, 6208–6217. [Google Scholar]
- Yang, C.-Y.; Li, C.-L.; Lu, C.-J. A vapor selectivity study of microsensor arrays employing various functionalized ligand protected gold nanoclusters. Anal. Chim. Acta 2006, 565, 17–26. [Google Scholar] [CrossRef]
- Li, C.-L.; Lu, C.-J. Establishing linear solvation energy relationships between VOCs and monolayer-protected gold nanoclusters using quartz crystal microbalance. Talanta 2009, 79, 851–855. [Google Scholar] [CrossRef]
- Li, C.-L.; Chen, Y.-F.; Liu, M.H.; Lu, C.-J. Utilizing diversified properties of monolayer protected gold nano-clusters to construct a hybrid sensor array for organic vapor detection. Sens. Actuator B Chem. 2012, 169, 349–359. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Huang, R.-X.; Lu, C.-J.; Tian, W.-C. The Shell Structure Effect on the Vapor Selectivity of Monolayer-Protected Gold Nanoparticle Sensors. Chemosensors 2014, 2, 85-96. https://doi.org/10.3390/chemosensors2010085
Huang R-X, Lu C-J, Tian W-C. The Shell Structure Effect on the Vapor Selectivity of Monolayer-Protected Gold Nanoparticle Sensors. Chemosensors. 2014; 2(1):85-96. https://doi.org/10.3390/chemosensors2010085
Chicago/Turabian StyleHuang, Rui-Xuan, Chia-Jung Lu, and Wei-Cheng Tian. 2014. "The Shell Structure Effect on the Vapor Selectivity of Monolayer-Protected Gold Nanoparticle Sensors" Chemosensors 2, no. 1: 85-96. https://doi.org/10.3390/chemosensors2010085
APA StyleHuang, R. -X., Lu, C. -J., & Tian, W. -C. (2014). The Shell Structure Effect on the Vapor Selectivity of Monolayer-Protected Gold Nanoparticle Sensors. Chemosensors, 2(1), 85-96. https://doi.org/10.3390/chemosensors2010085