Low Energy Beta Emitter Measurement: A Review
Abstract
:1. Introduction
2. Low Energy Beta-Emitter Characteristics
2.1. 3H
2.2. 14C
2.3. 36Cl
2.4. 63Ni
2.5. 90Sr
2.6. 94Nb
2.7. 99Tc
2.8. 129I
2.9. 241Pu
3. Beta Ray
4. Interaction with Matter
- Hard collisions:Inelastic scattering with atomic electrons generates excitation or ionization of electrons, and delta-rays (secondary electrons) are originated. The probability of this interaction is proportional to the atomic number, Z.
- Interactions by Coulomb force with an external nucleus field:Inelastic scattering with nuclei results in photons means Bremsstrahlung. The probability of this interaction process is proportional to Z2.
- Soft collisions:Elastic scattering, in which electrons lose a small amount of energy, is necessary to satisfy the conservation of momentum with a collision. The probability of this interaction is proportional to Z2.
5. Scintillation Process
6. Characteristics of the Scintillator
- High scintillation efficiency of radiation energy:The luminescence efficiency of the scintillator is given by the ratio of energy lost by radiation within the scintillator to energy converted to scintillation, and the luminescence intensity of the scintillator varies depending on the type of scintillator and the quality of radiation. Higher scintillation efficiency increases the luminescence sensitivity of the scintillator due to its high energy absorption and conversion efficiency to photons. The luminescence efficiency of an organic scintillator is a function of the luminescence intensity of the anthracene to the electrons. A high light output means that when radiation with the same energy is incident, the number of photons produced is high, which means that the amount of data is high, which has a significant effect on the resolution. The high light output has high luminescence efficiency because it has excellent linearity proportional to the intensity of light emitted by the scintillator and the energy of incident radiation.
- High transparency:Higher transparency increases the amount of light that reaches the PMT, which increases the efficiency of light collection. It can be obtained by minimizing the self-absorption, internal attenuation of the emitted photons, and high transfer efficiency to the photosensor.
- Short decay time of scintillation:The time taken for a luminescence phenomenon to dissipate, called the scintillation attenuation time, classifies luminescence characteristics according to the time remaining in the material as follows:Fluorescence: Light stops as soon as the energy is cut off.Phosphorescence: Residual light remains even after cutting off the incident energy.A short attenuation time of scintillation can count high dose rates of radiation because of the decrease in the dead time and because the signal pulses are rapidly produced. In addition, the precision is proportional to the attenuation time of the scintillator, which improves the possibility of simultaneous measurement applications due to the short rise time of the signal pulse. Generally, there is an attenuation time of several seconds for an inorganic scintillator and several nanoseconds for organic scintillators.
- The wavelength distribution of the scintillation is suitable for the spectral sensitivity characteristics of the photomultiplier tube.
6.1. Types of Scitillators
- Depending on the condition: solids, liquids, and gases.
- Depending on chemical composition: inorganic and organic scintillator.
6.1.1. Inorganic Scintillator
- NaI(Tl):It has a high density (3.67 g/cm3) and contains high atomic number composition (I, Z = 53), and thus offers efficient detection of γ-rays and excellent linearity. Its use has been expanded to large-capacity detectors such as monitoring nuclear power plants, medical care, and security searches due to its relatively low price. However, it is used to measure γ and medium-hard X-rays rather than measuring α, β, and soft X-rays, which have weak permeability, because they have low mechanical thermal impact and have to be sealed with aluminum to block contact with the air [56].
- BGO (Bismuth Germanate, Bi4Ge3O12):The high atomic number (Z(Bi) = 83) and high density (7.3 g/cm3) result in excellent detection efficiency and are used for γ-ray and X-ray measurements. In addition, the attenuation time of luminescence is very short, and thus it is used as a detector such as in X-ray CT and PET and has excellent mechanical strength and chemical properties. However, it has a low intensity of luminescence, resulting in lower energy resolution than NaI(Tl) [57,58].LiI(Eu) is also used for thermal neutron measurements and ZnS(Ag) is used for α-ray measurements.
6.1.2. Organic Scintillator
6.2. Liquid Scintillator
6.3. Gas Scintillator
7. Inorganic Nanomaterials
7.1. Perovskite (Calcium Titanium Oxide Mineral)
7.2. CdTe Structure of LaF3:Ce/CdTe
7.3. CeF3/ZnO
8. Beta-Ray Detector Technology
8.1. Commercial Plastic Scintillator
8.1.1. Eljen Technology
8.1.2. Saint-Gobain
8.2. Commercial Detector
8.2.1. United States
8.2.2. Netherlands
8.2.3. Japan
8.3. Flow Cell Detector
8.3.1. Korea
8.3.2. Japan
8.3.3. UK
8.3.4. EU
8.4. Beta-Ray Detector Understudying
8.4.1. Myong-Ji University
8.4.2. KAERI
8.4.3. UNIST
8.4.4. CEA
- (1)
- Obtain radiological information based on the ratio of radiation, exposure time, etc., using MS/TR screens where a MS screen and TR screen are stacked.
- (2)
- Scan the screen with a 663 nm laser scanner and then collect the information in digital light units for each compartment.
- (3)
- Use OptiQuant software to quantify the digital light unit and map the two-dimensional radiation traces.
8.4.5. Canada
9. Scintillators
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wrona, D.J.; Stewart-Smith, D.; Bless, A. Trojan Nuclear Plant Decommissioning Plan and License Termination (PGE-1078), 9th ed.; VPN-004-2001; NRC: Washington, DC, USA, 2001. [Google Scholar]
- Dlouhy, Z.; Crégut, A.; Genova, M.; Cross, M.T.; Reisenweaver, D.W.; Laraia, M.; Cross, M.T.; Sivintsev, Y.; Smith, R.I. Radiological Characterization of Shut Down Nuclear Reactors for Decommissioning Purposes, Technical Reports Series No. 389; IAEA: Vienna, Austria, 1998. [Google Scholar]
- The Boeing Company, Santa Susana Field Laboratory. Final Status Survey Report: Characterization and Final Status Survey Radioactive Materials Handling Facility Perimeter; Cabrera Project No.05-1018.00; Cabrera Services: Las Vegas, NV, USA, 2006. [Google Scholar]
- Tatsuhiko, U.; Takao, K.; Masahiro, T.; Satoshi, T.; Takeshi, I.; Katsuyoshi, T. Detection Efficiency of Plastic Scintillator for Gaseous Tritium Sampling and Measurement system. Fusion Eng. Des. 2010, 85, 1474–1478. [Google Scholar]
- Warwick, P. Sample Preparation and Presentation. Anal. Proc. 1990, 27, 109–116. [Google Scholar] [CrossRef]
- Bea, J.W.; Kim, H.R. In situ beta-gamma separation algorithm for cost-effective assessment of radioactive waste resources. Int. J. Energy Res. 2018, 42, 4761–4769. [Google Scholar]
- Shah, K.S.; Squillante, M.R.; Entine, G. HgI2 Low Energy Beta Particle Detector. IEEE Trans. Nucl. Sci. 1990, 37, 152–154. [Google Scholar] [CrossRef]
- Carlsson, S. Liquid Scintillation Counting; Department of Radiation Physlcs Linköping University: Uddevalla, Sweden, 1993. [Google Scholar]
- Genoud, G.; Lehmuskoski, J.; Bell, S.; Palonen, V.; Oinonen, V.; Soivi, M.L.K.; Reinikainen, M. Laser Spectroscopy for Monitoring of Radiocarbon in Atmospheric Sample. Anal. Chem. 2019, 91, 12315–12320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.H.; Son, J.; Kim, T.H.; Kim, Y.K. Characteristics of Plastic Scintillators Fabricated by a Polymerization Reaction. Nucl. Eng. Technol. 2017, 49, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Hamel, M.; Soumaré, M.; Burešová, H.; Bertrand, G.H.V. Tuning the Decay Time of Plastic Scintillator. Dyes Pigm. 2019, 165, 112–116. [Google Scholar] [CrossRef]
- Vo, H.H.; Kanamaru, S.; Marquet, C.; Nakamura, H.; Nomachi, M.; Piquemal, F.; Ricol, J.S.; Sugaya, Y.; Yasuda, K. Energy Resolution of Plastic Scintillation Detector for Beta Rays. IEEE Trans. Nucl. Sci. 2008, 55, 3717–3724. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Kurosawa, S.; Kamada, K.; Takahashi, H.; Fukazawa, Y.; Nikl, M.; Chani, V. Temperature Dependence of Scintillation Properties of Bright Oxide Scintillators for Well-Logging. Jpn. J. Appl. Phys. 2013, 52, 076401. [Google Scholar] [CrossRef]
- Kumar, A.; Waker, A.J. An Experimental Study of the Relative Response of Plastic Scintillators to Photons and Beta Particles. Radiat. Meas. 2012, 47, 930–935. [Google Scholar] [CrossRef]
- Povinec, P. Multiwire Proportional Counters for Low-Level 14C and 3H Measurements. Nucl. Instrum. Methods 1987, 156, 441–446. [Google Scholar] [CrossRef]
- Leskinen, A.; Paatero, S.S.; Räty, A.; Tyrkkö, T.M.; Markku, T.I. Determination of 14C, 55Fe, 63Ni and Gamma Emitters in Activated RPV Steel Samples: A Comparison between calculations and experimental Analysis. J. Radioanal. Nucl. Chem. 2020, 323, 399–413. [Google Scholar] [CrossRef] [Green Version]
- Radiation Safety for Consumer Products. IAEA Safety Standards; Specific Safetey Guide No. SSG-36; IAEA: Vienna, Austria, 2016. [Google Scholar]
- Wang, K.Z.; Sun, L.; Xiong, K.H.; Chen, W.B.; Wang, Y.Y.; Bian, H.H.; Cui, F.M.; Liu, Y.L. Monitoring of Tritium Internal Exposure Doses of Heavy-Water Reactor Workers in Third Qinshan Nuclear Power Plant. J. Int. Dose-Response Soc. 2019, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.S.; Squillante, M.R.; Entine, G. A Low-Energy Beta-Particle Imaging System for Measuring Tritium Distribution. IEEE Trans. Nucl. Sci. 1990, 37, 152–154. [Google Scholar] [CrossRef]
- Decisions on the Adoption of OECD Legal Instruments Radiation Protection Standards for Gaseous Tritium Light Devices; OECD: Paris, France, 1973.
- Hou, X. Tritium and 14C in the Environment and Nuclear Facilities: Sources and Analytical Methods. J. Nucl. Fuel Cycle Waste Technol. 2018, 16, 11–39. [Google Scholar] [CrossRef]
- Kohan, L.M.; Sanguanmith, S.; Meesungnoen, J.; Causey, P.; Stuartb, C.R.; Gerin, J.P.J. Self-Radiolysis of Tritiated Water. 1. A Comparison of the Effects of 60Co γ-Rays and Tritium β-Particles on Water and Aqueous Solutions at Room Temperature. RSC Adv. 2013, 3, 19282–19299. [Google Scholar] [CrossRef]
- Kang, M.J.; Hong, S.B.; Chung, U.S.; Park, J.H.; Chung, K.H.; Choi, G.S.; Lee, C.W. A Correlation of the 60Co and Beta-emitting Radionuclides in the Activated Concrete of KRR-2. J. Nucl. Sci. Technol. 2008, 45, 658–661. [Google Scholar] [CrossRef] [Green Version]
- Sign, T.E. Tritium, Health Physics Society Specialists in Radiation Safety, Herndon. 2020. Available online: https://hps.org/documents/tritium_fact_sheet.pdf (accessed on 3 July 2020).
- Ohuchi, H.; Kondo, Y.; Asakura, Y.; Kawano, T. Tritium measurement in high gamma-ray radiation fields by using an imaging plate. Fusion Sci. Technol. 2011, 60, 944–947. [Google Scholar] [CrossRef]
- Wunderly, S.W. Solid Scintillation Counting: A New Technique for Measuring Radiolabeled Compound. Int. J. Radiat. Appl. Instrum. 1988, 40, 569–573. [Google Scholar] [CrossRef]
- Yoon, S.K.; Seo, H.; Lee, C.; Ahn, S.K.; Kim, H.D. A State of the Art on Technology of Fast Neutron Measurement Based on Organic Scintillators; Korea Atomic Energy Research Institute: DaeJeon, Korea, 2018. [Google Scholar]
- Endo, A.; Harada, Y.; Kawasaki, K.; Kikuchi, M. Measurement of Depth Distributions of 3H and 14C Induced in Concrete Shielding of an Electron Accelerator facility. Appl. Radiat. Isot. 2004, 60, 955–958. [Google Scholar] [CrossRef]
- Miramonti, L. A Plastic Scintillator Detector for Beta Particles. Radiat. Meas. 2002, 35, 347–354. [Google Scholar] [CrossRef]
- Adams, J.P.; Carboneau, M.L.; Allred, W.E. National Low-Level Waste Management Program R, Idaho National Engineering and Environmental Laboratory; DOE/LLW-127; Lockheed Martin Idaho Technologies Company: Idaho Falls, ID, USA, 1995; Volume 11. [Google Scholar]
- Courti, A.; Bouisset, P.; Chavallier, P. Beta Spectrometry for Environmental Radioactivity Measurement. Radioprotection 2002, 37, 911–916. [Google Scholar] [CrossRef]
- Borg, J. Dosimetry of Low-Energy Beta Radiation; Riso National Laboratory: Roskilde, Denmark, 1996. [Google Scholar]
- Konig, W.; Schupfner, R.; Schottelkopf, H. A Fast and Very Sensitive LSC Procedure to Determine Fe-55 in Steel and Concrete. J. Radioanal. Nucl. Chem. 1955, 193, 119–125. [Google Scholar] [CrossRef]
- Adams, J.P.; Carboneau, M.L. Program Radionuclide Report Series; Lockheed Martin Idaho Technologies Company: Idaho Falls, ID, USA, 1999. [Google Scholar]
- Dawson, P.M.; Watson, D.D.; Hylko, J.M. Lessons Learned Following the Successful Decommissioning of a Reaction Vessel Containing Lime Sludge and Technetium-99. In Proceedings of the WM ’02 Conference, Tucson, AZ, USA, 24–28 February 2002. [Google Scholar]
- Warwick, P.; Reading, D.; Croudace, I. Measurement of 36Cl and 129I in Decommissioning Wastes. Analyst 1999, 124, 627–632. [Google Scholar]
- Peterson, J.; MacDonell, M.; Haroun, L.; Monette, F. Radiological and Chemical Fact Sheets to Support Health Risk Analyses for Contaminated Areas; Argonne National Laboratory Environmental Science Division: Argonne, IL, USA, 2007. Available online: https://www.remm.nlm.gov/ANL_ContaminantFactSheets_All_070418.pdf (accessed on 20 September 2020).
- Ragheb, M. Gamma Ray Interaction with Matter. Available online: http://mragheb.com/NPRE%20402%20ME%20405%20Nuclear%20Power%20Engineering/Gamma%20Rays%20Interactions%20with%20Matter.pdf (accessed on 20 September 2020).
- Interactions of Gammas. Available online: https://www.physlab.org/wp-content/uploads/2016/04/Gamma-1.pdf (accessed on 20 September 2020).
- Bae, J.W.; Kim, H.R. Plastic Scintillator Beta Ray Scanner for In-Situ Discrimination of Beta Ray and Gamma Ray Radioactivity in Soil. Nucl. Eng. Technol. 2020, 52, 1259–1265. [Google Scholar] [CrossRef]
- Huffert, A.M.; Meck, R.A.; Miller, K.M. Background as a Residual Radioactivity Criterion for Decommissioning; NUREG-1501; NRC: Washington, DC, USA, 1994. [Google Scholar]
- Alton, T.L. In-Situ Monitoring of Groundwater Radionuclides with Emphasis on Tritium Detection. Ph.D. Thesis, Lancaster University, Lancaster, UK, 2019. [Google Scholar]
- Fichet, P.; Bultel, A.; Markelj, S.; Moreno, C. Review of the Different Techniques to Analyse Tritium; TRANSAT-D2. 1; CEA: Paris, France, 2017. [Google Scholar]
- Furuta, E.; Iwasaki, N.; Kato, Y.; Tomozoe, Y. A New Tritiated Water Measurement Method with Plastic Scintillator Pellets. Isot. Environ. Health Stud. 2016, 52, 560–566. [Google Scholar] [CrossRef]
- Yoshihara, Y.; Furuta, E.; Ohyama, R.; Yokota, S.; Kato, Y.; Yoshimura, T.; Ogiwara, K. Measurement of Tritium with Plastic Scintillator Surface Improvement with Plasma Treatment. Fusion Sci. Technol. 2017, 67, 654–657. [Google Scholar] [CrossRef]
- Matsuyama, M.; Murai, T.; Watanabe, K. Quantitative Measurement of Surface Tritium by Beta-Ray-Induced X-Ray Spectrometry (BIXS). Fusion Sci. Technol. 2017, 41, 505–509. [Google Scholar] [CrossRef]
- Voronina, E.V.; Maslennikova, A.E.; Dulov, E.N. Recording Beta Spectrum with a Scintillation Counter Passing of β-Radiation Through Matter; Kazan Federal University, the Methodical Commission of the Institute of Physics: Kazan, Russia, 2013. [Google Scholar]
- Attix, F.H. Introduction to Radiological Physics and Radiation Dosimetry, 1st ed.; Wiley-VCH: Weinheim, Germany, 1986; pp. 160–168. [Google Scholar]
- Yanagiada, A.T. Inorganic Scintillating Materials and Scintillation Detectors. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2018, 94, 75–97. [Google Scholar] [CrossRef] [Green Version]
- Majkowski, I. Radioactivity Measurements at Regulatory Release Levels; No. 6186; OECD: Paris, France; NEA: Paris, France, 2006. [Google Scholar]
- L’Annunziata, M.F. Radioactivity, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2016; pp. 167–201. [Google Scholar]
- Hajagos, T.J.; Liu, C.; Cherepy, N.J.; Pei, O. High-Z Sensitized Plastic Scintillators: A Review. Adv. Mater. 2018, 30, 1706956. [Google Scholar] [CrossRef]
- Kessler, M.J. Liquid Scintillation Analysis; PerkinElmer: Waltham, MA, USA, 2015. [Google Scholar]
- Maekawa, T.; Sumita, A.; Makino, S. Thin Beta-ray Detectors using Plastic Scintillator Combined with Wavelength-shifting Fibers for Surface Contamination Monitoring. J. Nucl. Sci. Technol. 2012, 35, 886–894. [Google Scholar] [CrossRef]
- Cerrito, L. Radiation and Detectors, 1st ed.; Springer: London, UK, 2017; pp. 157–159. [Google Scholar]
- Zhou, Y.; Zhao, Y. Chemical Stability and Instability of Inorganic Halide Perovskites. Energy Environ. Sci. 2019, 8, 37–58. [Google Scholar] [CrossRef]
- Kim, H.R. Development of the Beta-Ray Distribution Measurement Technology of the Site; Korea Atomic Energy Research Institute: Dae-Jeon, Korea, 2017. [Google Scholar]
- Kang, B.S. Scintillation Detector; Konyang University: Nonsan, South Korea, 2018. [Google Scholar]
- Pourtangestani, K. Optimization of Plastic Scintillator Thicknesses for Online Beta/Gamma Detection; University of Ontario Institute of Technology: Oshawa, ON, Canada, 2010. [Google Scholar]
- Leroy, C.; Rancoita, P.G. Principles of Radiation Interaction in Matter and Detection, 4th ed.; World Scientific: Hackensack, NJ, USA, 2009; pp. 41–48. [Google Scholar]
- Yin, W.J.; Yang, J.H.; Kang, J.; Yan, Y.; Wei, S.H. Halide perovskite materials for solar cells: A theoretical review. J. Mater. Chem. A 2015, 3, 8926–8942. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, J.; Ou, X.; Huang, B.; Almutlaq, J.; Zhumekenov, A.A.; Guan, X.; Han, S.; Liang, L.; Yi, Z.; et al. All-Inorganic Perovskite Nanocrystal Scintillators. Nature 2018, 561, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Kanatzidis, M.G. Prospects for Low-Toxicity Lead-Free Perovskite Solar Cells. Nat. Commun. 2019, 10, 965. [Google Scholar] [CrossRef] [PubMed]
- Hossu, M.; Liu, Z.; Yao, M.; Ma, L.; Chen, W. X-ray Luminescence of CdTe Quantum Dots in LaF3:Ce/CdTe Nanocomposites. Am. Inst. Phys. 2012, 100, 013109. [Google Scholar] [CrossRef]
- Sahi, S.; Chen, W. Luminescence Enhancement in CeF3/ZnO Nanocomposites for Radiation Detection. Radiat. Meas. 2013, 59, 139–143. [Google Scholar] [CrossRef]
- Green Emitting Plastic Scintillator EJ-260, EJ-262 (ElJen Technology). Available online: https://eljentechnology.com/images/products/data_sheets/EJ-260_EJ-262.pdf (accessed on 20 September 2020).
- BC400 BC404 BC408 BC412 BC416 Data Sheet (Saint. Gobain). Available online: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/bc400-404-408-412-416-data-sheet.pdf (accessed on 20 September 2020).
- Calcium Fluoride_CaF2Eu Scintillation Material (Saint. Gobain). Available online: https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/calcium-fluoride-data-sheet_69768.pdf (accessed on 20 September 2020).
- DiPrete, D.P.; Whiteside, T.; Pak, D.J.; DiPrete, C.C. System and Method for Assaying Radiation. U.S. Patent 8,581,195, 21 November 2011. [Google Scholar]
- Alpha, Beta Counting Manual Systems Brochure (Ortec). Available online: https://www.ortec-online.com/-/media/ametekortec/brochures/protean%20ab-manual.pdf (accessed on 20 September 2020).
- Alpha, Beta Automatic Counting Systems Brochure (Ortec). Available online: https://www.ortec-online.com/-/media/ametekortec/brochures/protean%20ab-automatic.pdf (accessed on 20 September 2020).
- MDS Alpha, Beta Counting Multi-Detector System (Ortec). Available online: https://www.ortec-online.com/products/radiochemistry-health-physics-research-industrial/alpha-beta-counters/alpha-beta-counting-s (accessed on 20 September 2020).
- BP17A Beta Probes (ThermoFisher Scientific). Available online: https://www.thermofisher.com/order/catalog/product/BP17B?SID=srch-srp-BP17B (accessed on 20 September 2020).
- BP19AD/BP19BDD Beta Probes (ThermoFisher Scientific). Available online: https://www.thermofisher.com/order/catalog/product/BP19RD?SID=srch-srp-BP19RD (accessed on 20 September 2020).
- HP-380AB Alpha-Beta Scintillation Hand Probes (ThermoFisher Scientific). Available online: https://www.thermofisher.com/order/catalog/product/HP380B?SID=srch-srp-HP380B (accessed on 20 September 2020).
- DP8A/DP8B Alpha-Beta Probes (ThermoFisher Scientific). Available online: https://www.thermofisher.com/order/catalog/product/DP8A?SID=srch-srp-DP8A (accessed on 20 September 2020).
- AMS-4 Continuous Air Monitor (ThermoFisher Scientific). Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG% (accessed on 20 September 2020).
- HP-210 Hand Probe (ThermoFisher Scientific). Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2FSpecifica (accessed on 20 September 2020).
- HP-360 Hand Probe Alpha, Beta, Gamma (ThermoFisher Scientific). Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Asset (accessed on 20 September 2020).
- 51BM0.25/SIP-EJ444-E3-X2 Data Sheet (Scionix). Available online: https://scionix.nl/wp-content/uploads/2019/02/51B0.25_SIP-E3-EJ444-X2.pdf (accessed on 20 September 2020).
- Applying Strontium Resin Method for the Analysis of Strontium-90; Tokyo Electric Power Company: Tokyo, Japan, 2014.
- Counting Loss of Beta-Ray Measuring in Ray Measuring in Fukushima Daiichi Nuclear Power Station; Tokyo Electric Power Company: Tokyo, Japan, 2014.
- Start of Introducing ICP-MS Method for Analyzing Water Samples for Strontium; Tokyo Electric Power Company: Tokyo, Japan, 2014.
- Kim, S.B.; Baglan, N.; Davis, P.A. Current understanding of organically bound tritium (OBT) in the environment. J. Environ. Radioact. 2013, 126, 83–91. [Google Scholar] [CrossRef]
- Radionuclides in Drinking Water: A Small Entity Compliance Guide; EPA: Washington, DC, USA, 2002.
- Laying Down Requirements for the Protection of the Health of the General Public with Regard to Radioactive Substances in Water Intended for Human Consumption. In Proceedings of the Euratom Treaty for Opinion of the European Economic and Social Committee, Brussels, Belgium, 22 October 2013.
- Kang, K.; Bae, J.W.; Kim, H.R. Detection of Tritium Generated by Proton Exchange Membrane Electrolysis by Optimization of Electrolysis Conditions. J. Radioanal. Nucl. Chem. 2019, 322, 1417–1421. [Google Scholar] [CrossRef]
- Kawano, T.; Uda, T.; Yamamoto, T.; Ohashi, H. Tritium Water Monitoring System Based on CaF2 Flow-Cell Detector. Fusion Sci. Technol. 2017, 60, 952–955. [Google Scholar] [CrossRef] [Green Version]
- Kawano, T.; Ohashi, H.; Hamada, Y.; Jamsranjav, E. Comparative Testing of Various Flow-Cell Detectors Fabricated using CaF2 Solid Scintillator. Fusion Sci. Technol. 2017, 67, 404–407. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, C.D.R.; Baeza, A.; Bras, M.; Camara, T.; Cerna, C.; Chauveau, E.; Gil, J.M.; Corbacho, J.A.; Delgado, V.; Diaz, J.; et al. TRITIUM—A Real-Time Monitor System for Water Quality Surveillance; Conference Paper; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Azevedo, C.D.R.; Baeza, A.; Bras, M.; Camara, T.; Cerna, C.; Chauveau, E.; Gil, J.M.; Corbacho, J.A.; Delgado, V.; Diaz, J.; et al. TRITIUM-A Quasi Real-Time Low Activity Tritium Monitoring for Water. EPJ Web Conf. 2020, 225, 03008. [Google Scholar] [CrossRef]
- Park, H.M. Applicability of in situ detectors for radiological assessment of strontium-90 in rivers and lakes. J. Radioanal. Nucl. Chem. 2018, 317, 1051–1057. [Google Scholar] [CrossRef]
- Nam, J.S.; Choi, Y.S.; Hong, S.B.; Seo, B.K.; Moon, J.K.; Choi, J.W. Study on the Characteristics of a Scintillator for Beta-ray Detection using Epoxy Resin. EPJ Web Conf. 2017, 153, 07005. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.S.; Kim, Y.U.; Hong, S.B.; Seo, B.K.; Kim, K.H. Performance Evaluation of a Plastic Scintillator for Making a In-Situ Beta Detector. SAE Mulli 2017, 67, 1080–1085. [Google Scholar] [CrossRef]
- Nam, J.S.; Hong, S.B.; Seo, B.K.; Choi, Y.S.; Moon, J.K. Plastic Scintillator Method of Manufacturing Thereof the Same. Korea Patent No. 10-2018-0079705, 2018. Available online: http://kpat.kipris.or.kr/kpat/biblioa.do?method=biblioFrame (accessed on 20 September 2020).
- Waste Characterization and In Situ Measurement; CEA: Lyon, France, 2017.
- Haudebourg, R.; Fichet, P. A Non-Destructive and On-Site Digital Autography-Based Tool to Identify Contaminating Radionuclide in Nuclear Wastes and Facilities to be Dismantled. J. Radioanal. Nucl. Chem. 2016, 309, 551–561. [Google Scholar] [CrossRef]
- Fichet, P.; Desnoyers, I.; Mougel, C. New Developments of Autoradiography Technique to Improve Alpha and Beta Measurements for Decommissioing Facilities; CEA: Lyon, France, 2016. [Google Scholar]
- Haudebourg, R. Preliminary Identification of Alpha and Beta Contaminations through Digital Autoradiography, International Symposium on Preparation for Decommissioning; CEA: Lyon, France, 2016. [Google Scholar]
- Matthew, R. Development of a Thick Gas Electron Multiplier Based Beta-Ray Detector. Ph.D. Thesis, McMaster University, Hamilton, ON, Canada, 2018. [Google Scholar]
- Sahani, R.M.; Kumari, C.; Pandya, A.; Dixit, A. Efficient Alpha Radiation Detector using Low Temperature Hydrothermally Grown ZnO:Ga Nanorod Scintillator. Nat. Res. 2019, 9, 11354. [Google Scholar] [CrossRef]
Nuclide | Half-Life | Principal Radiation |
---|---|---|
3H | 12.3 y | 0.0186 MeV |
14C | 5.73 × 103 y | 0.156 MeV |
36Cl | 3.01 × 105 y | 0.709 MeV |
63Ni | 100 y | 0.659 MeV |
90Sr/90Y | 29.1 y | 0.546 MeV + 2.28 MeV |
94Nb | 2 × 104 y | 0.47 MeV |
99Tc | 2.13 × 105 y | 0.293 MeV |
129I | 1.6 × 107 y | 0.15 MeV |
241Pu | 14.1 y | 0.21 MeV |
Energy Region | Interaction Phenomena |
---|---|
E < 30 keV | Photoelectron Effect and Auger Electrons |
30 keV < E < 2 MeV | Compton Scattering |
E > 2 MeV | Pair Production |
Organic Scintillator | Inorganic Scintillator | |
---|---|---|
Strength | - short decay time (few ns) - counts signal rapidly - relatively inexpensive price | - high detection efficiency and emission intensity - good energy linearity - stable crystal structure (mechanical, chemically stable) |
Weakness | - bad energy linearity - low atomic number and density - low possibility of photoelectron effect - bad energy linearity | - long decay time (hundreds of ns) - expensive price |
Basic Properties | Characteristics |
---|---|
Light Output (% Anthracene) | 60 |
Scintillation Efficiency (photons/1 MeV e−) | 9200 |
Wavelength of Maximum Emission (nm) | 490 |
Light Attenuation Length (cm) | 350 |
Rise Time (ns) | 1.5 |
Decay Time (ns) | 9.2 |
Polymer Base | Polyvinyltoluene |
Refractive Index | 1.58 |
Light Output | 95% of that at 20 °C |
Properties | BC-400 | BC-404 | BC-408 | BC-428 | CaF2:Eu |
---|---|---|---|---|---|
Light Output (% Anthracene) | 65 | 68 | 64 | 36 | - |
Wavelength of Maximum Emission (nm) | 423 | 408 | 425 | 480 | 435 |
Light Attenuation Length (cm) | 160 | 140 | 210 | 150 | - |
Rise Time (ns) | 0.9 | 0.7 | 0.9 | 1.6 | - |
Decay Time (ns) | 2.4 | 1.8 | 2.1 | 12.5 | 940 |
Polymer Base | PVT | PVT | PVT | PVT | - |
Density (g/cc) | 1.023 | 1.023 | 1.023 | 1.032 | 3.18 |
Refractive Index | 1.58 | 1.58 | 1.58 | 1.58 | 1.47 |
Properties | IPC-650 (IPC-650-HP) | WPC-1050 | WPC-1150-GFW-3 |
---|---|---|---|
90Sr/90Y Efficiency | 55% | 55% | 63% |
Window | Windowless | Aluminized, 80 μg/cm2 | Aluminized, 80 μg/cm2 |
β BKG Performance | 0.7 cpm | 0.7 cpm (0.9 cpm Warranted) | 1.5 cpm |
Guard Detector | X | Gas-Flow Type Proportional Counter | Gas-Flow Type Proportional Counter |
Detector Diameter | 5.7 cm (2.25 inch) | 5.7 cm (2.25 inch) | 8.9 cm (3.5. in) dia Gas Flow Detector |
Shielding | 10.2 cm (4 inch) | 10 cm (2.4 inch) | 10.2 cm (4 inch) |
Detector Type | Hemispherical Style | Pancake Style | Pancake Style |
Notes | - Use in Radiochemical and Health Physics (IPC-650-HP) - Use in Count for Ultra-Low-Level α/β | - Use In Radiochemical and Health Physics | - Use in Health Physics and Environmental Monitoring - Use in Air Sampler of Large Capacity Air Filter |
Properties | MPC-900(GFL/GFW) | MPC-1000(GFL/GFW) |
---|---|---|
90Sr/90Y Efficiency | 55% | 55% |
Window | Aluminized, 80 μg/cm2 (GFW: Windowless) | Aluminized, 80 μg/cm2 (GFW: Windowless) |
β BKG Performance | 35 cpm (55 cpm Warranted) | 0.7 cpm (0.9 cpm Warranted) |
Guard Detector | X | Cosmic Guard Detector (Large Area Gas Flow Proportional Counter) |
Planchet Diameter | 5.1 cm (2 inch) | 5.1 cm (2 inch) |
Shielding | - | 10 cm (2.4 inch) Thick |
Detector Type | Hemispherical Style | Pancake Style |
Notes | - Use in the place where not far and not require high sensitivity for β-ray measurement | - Ultra low-level background radioactive counter |
Model | BP17A | BP19AD | BP19DD | HP380B | HP380AB | DP8A/DP8B |
---|---|---|---|---|---|---|
Probe Type | Beta | Beta | Beta | Beta Scintillation | Alpha-Beta Scintillation | Alpha-Beta |
Window Area [cm2] | 600 | 100 | 100 | 100 | 100 | 600 |
Weight [kg] | 1.5 | 0.5 | 0.5 | 0.59 | 0.59 | 1.55 |
BKG Measurement | s−1 < 3 cpm < 1800 | s−1 < 10 cpm < 600 | s−1 < 8 cpm < 480 | s−1 < 10 cpm < 600 | s−1 < 10 cpm < 600 | s−1 < 30 cpm < 1800 |
Efficiency (%) | ||||||
14C | - | 14 | 21 | 28 | - | - |
36Cl | 26 | 49 | 48 | - | - | 31 |
60Co | 19 | 32 | 34 | - | - | 12 |
90Sr/90Y | 24 | 51 | 51 | 52 | 44 | 36 |
99Tc | - | - | - | - | 18 | - |
241Am | - | - | - | - | 36 | 28 |
Function | Radial Sampling Head | Inline Sampling Head | Noble Gas Sampling Head |
---|---|---|---|
Probe Type | Proportional (Ar/CO2) | ||
Size (cm3) | 24.9 H × 14.2 W × 18.5 D | 24.1 H × 23.6 W × 16.3 D | 29.5 H × 14.2 W × 18.5 D |
4π Efficiency (%) | |||
60Co | 8.5 | 5.75 | - |
90Sr/90Y | 17 | 12 | - |
85Kr | - | - | 6.4 |
133Xe | - | - | 4.4 |
Model | HP-210 | HP-360 | ||
---|---|---|---|---|
Size (cm3) | 16.5 L × 8.9 W × 9.7 H | 24.8 L × 6.8 W × 7 H | ||
Weight (kg) | 0.7–1.9 | 0.23 | ||
Dead Time (μs) | 50 | |||
Mica Window Size (cm. diameter)/Thickness (mg/cm2) | 4.45/1.4–2.0 | |||
β Efficiency (%) | with Screen | 14C | 6 | |
60Co | 16 | |||
90Sr/90Y | 32 | |||
99Tc | 15 | |||
137Cs | 22 | |||
without Screen | 14C | 6 | - | |
60Co | 16 | - | ||
90Sr/90Y | 32 | - | ||
99Tc | 15 | - | ||
137Cs | 22 | - |
Protection | 72% Transmission Stainless Steel grid |
---|---|
Power Supply | +5–16 V (3 mA) |
Electrical Connections | ERA0S302CLL Flying Leads (LEMO) |
Performance | |
Pulse Rise Time (0–100%) | 150 ns (betas) 530 ns (alphas) |
Pulse Fall Time (1/e) | 1.2 μs (betas) 530 ns (alphas) |
Gain | Approximately 75 mV/MeV(betas) Approximately 500 mV/5.48 MeV (alphas) |
Method | Particle Diameter (nm) |
---|---|
Reverse Micelle Method | 20 nm |
Electrodeposition | 500 nm |
Precipitation | 10 ± 2 nm (depend on pH) |
Chemical Coprecipitation | 30–35 nm, 15–20 nm |
Counting Time | 600 s | 1200 s |
---|---|---|
Single Crystal Scintillator | 151,393 ± 406 | 293,481 ± 568 |
Fabricated Scintillator | 173,421 ± 228 | 339,450 ± 305 |
Scintillator | Sum Count (6 h) |
---|---|
3 Layers Flow Cell | 271 ± 31 |
12 Layers of Flow Cell | 11,660 ± 150 |
Scintillator Thickness | 1 mm | 10 mm |
---|---|---|
90Sr | 1.5% | 1.5% |
60Co | 0.067% | 0.21% |
Item | Saint. Gobain | Eljen Technology | Epic Crystal | |||
---|---|---|---|---|---|---|
Scintillator | BC-400 | BC-404 | BC-408 | BC-428 | EJ-260 | Plastic Scintillator |
Light Output, % Anthracene | 65 | 68 | 64 | 36 | 60 | 50–60 |
Emission Wavelength (nm) | 423 | 408 | 425 | 480 | 490 | 415 |
Base Material | Polyvinyltoluen | Polyvinyltoluen | Polysterene | |||
Density (g/cm3) | 1.032 | 1.023 | 1.05 |
Item | Dual Phosphor Type Counter | WPC-1150-GFW-3 | MPC-1000-GFL | MPC-9604 |
---|---|---|---|---|
90Sr/90Y Efficiency | 45% | 63% | 55% | 55% |
Window | Aluminized, 80 μg/cm2 | Aluminized, 80 μg/cm2 | Aluminized, 80 μg/cm2 | Aluminized, 100 μg/cm2 |
β BKG Performance | 40 cpm (65 cpm Warranted) | 1.5 cpm | 0.7 cpm (0.9 cpm Warranted) | 0.4–0.7 cpm (0.9 cpm Warranted) |
Guard Detector | - | Gas-Flow type Proportional Counter | Cosmic Guard Detector (Large-Area Gas Flow Proportional Counter) | Cosmic Guard Detectors |
Detector Diameter | 5.1 cm (2 inc) | 8.9 cm (3.5 inch) | 5.1 cm (2 inch) | 81.3 cm × 41 cm × 41 cm |
Shielding | - | 10.2 cm (4 inch) | 10 cm (2.4 inch) thick | 4 inch 4π Virgin Lead Shield |
Detector Type | ZnS + Plastic Dual Phosphore | Pancake Style | Pancake Style | Gas Flow Type |
Note | • Health physic field requiring rapid count such as smear, air filter count | • Health physic and environment monitoring • Large capacity air sampler | • Extremely low-level background radioacivity counter | • Spectroscopy grade amplifier • RFI guard • Linear low voltage supplier |
Model | BP19DD | AMS-4 | HP-210 | |
---|---|---|---|---|
counter type | Plastic probe | Proportional | Pancake GM | |
Size (cm3) | 100 cm2 | 24.9 H × 14.2 W × 18.5 D | 16.5 L × 8.9 W × 9.7 H | |
Weight (kg) | 0.5 | 3.4 | 0.7–1.9 | |
Efficiency (%) | 14C | 21 | - | 6 |
36Cl | 48 | - | - | |
60Co | 34 | 8.5 | 16 | |
90Sr/90Y | 51 | 17 | 32 | |
99Tc | - | - | 15 | |
137Cs | - | - | 22 |
LSC | UNIST | Lancaster | NIFS | EU | |
---|---|---|---|---|---|
Scintillator | Liquid Scintillator | Plastic Scintillator | CaF2:Eu + PMSD Substrate | Granulated CaF2 | Plastic Scintillator (Epic crystal) |
Photosensor | - | PMT (R878, Hamamatsu) (×2) | SiPM (Sense C-series 60035) | PMT (×2) | PMT (R2154-02, Hamamatsu) (×2) |
Flow Cell Composition | - | Thin Plate (×13) | Thin Plate (Φ 4 cm, 1 mm Thick, 1 mm Gap) (×12) | (Φ 5 mm) Cell (×3) | (Φ 1 mm, Length 25 cm) × 500 fiber |
Flow Cell Tube/Case Material | - | Acryl Case | Aluminum Case | Teflon Tube | PTFE Case |
Anti-Coincidence | - | × | × | O | |
Minimum Detectable Activity | 0.077 Bq/L | 0.01 Bq/mL | - | 10 Bq/mL | Below 0.1 Bq/mL |
Detection Efficiency | 34.4% ± 0.2% | 31.3% ± 1.3%, | - | - | - |
Note | - | • Gas measurement after tritium electrolysis using PEM | • Total count comparison with with scintillator particle radius | - | • Cosmic veto detector |
Myong-Ji University | KAERI | UNIST | EU | McMaster University | |
---|---|---|---|---|---|
Detector Type | Plastic Detector | - | Plastic Detector | Digital Auto Radiography | Gas Proportional Detector |
Scintillator | CaF2:Eu | Plastic (epoxy, Hardener + PPO, POPOP) | Epic crystal | BaFBr:Eu | - |
Scintillator Emission Wavelength (nm) | 435 | 420 | 415 | 390 | - |
Scintillator Composition | Φ 50.8 mm, 1 mm Thick Disc | Φ 50 mm, 4 mm Thick Disc | Φ 50 mm, 1 mm/10 mm Thick Disc | Phosphor Screen | 42 mm × 42 mm, 0.4 mm Thick |
Photosensor | PMT (ADIT Inc, B51B03) | - | PMT | - | - |
Reflector | Teflon Reflector | - | - | - | - |
MDA | 330 Bq/L | - | 34 dpm/100 cm2 | - | - |
Note | - | • 20 times lower emission intensity compared with BC-400 • 3.7% higher transmittance compared with BC-400 | • Detector bundle composited with the two different thicknesses of plastic scintillator | • Single radioisotope detection | • Uncomplicated design and fabrication • Robust system • Inexpensive fabrication expense |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, H.; Min, S.; Seo, B.; Roh, C.; Hong, S.; Cheong, J.H. Low Energy Beta Emitter Measurement: A Review. Chemosensors 2020, 8, 106. https://doi.org/10.3390/chemosensors8040106
Kang H, Min S, Seo B, Roh C, Hong S, Cheong JH. Low Energy Beta Emitter Measurement: A Review. Chemosensors. 2020; 8(4):106. https://doi.org/10.3390/chemosensors8040106
Chicago/Turabian StyleKang, Hara, Sujung Min, Bumkyung Seo, Changhyun Roh, Sangbum Hong, and Jae Hak Cheong. 2020. "Low Energy Beta Emitter Measurement: A Review" Chemosensors 8, no. 4: 106. https://doi.org/10.3390/chemosensors8040106
APA StyleKang, H., Min, S., Seo, B., Roh, C., Hong, S., & Cheong, J. H. (2020). Low Energy Beta Emitter Measurement: A Review. Chemosensors, 8(4), 106. https://doi.org/10.3390/chemosensors8040106