Potentiometric Carbon Quantum Dots-Based Screen-Printed Arrays for Nano-Tracing Gemifloxacin as a Model Fluoroquinolone Implicated in Antimicrobial Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Chemicals and Reagents
2.3. Pharmaceutical Formulation
2.4. Stock Standard Solution
2.5. Water Samples
2.6. Procedures
2.6.1. Preparation of CQDs
2.6.2. Characterization of the Prepared CQDs
2.6.3. Preparation of CQDs Solution
2.6.4. Preparation of the Ion Pair
2.6.5. Preparation of Homemade Graphite Ink
2.6.6. Preparation of the Homemade Graphite- CQDs Ink
2.6.7. X-ray Sheet Recycling
2.6.8. Sensors Fabrication
2.6.9. Sensors Calibration
2.6.10. Application to Pharmaceutical Formulation
2.6.11. Application to Spiked Water Samples
3. Results and Discussion
3.1. Preparation and Characterization of CQDs
3.2. Fabrication of Screen-Printed Sensors
3.2.1. Preparation of Homemade Conducting Inks
3.2.2. Preparation of the Sensitive Membranes
3.3. Effect of Soaking Time
3.4. Effect of pH
3.5. Performance Characteristics of the Fabricated Sensors
3.6. Sensors’ Selectivity
3.7. Direct Determination of GEMI in Pharmaceutical Tablets
3.8. Direct Determination of GEMI in Spiked Water Samples
3.9. Statistical Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antimicrobial resistance in the age of COVID-19. Nat. Microbiol. 2020, 5, 779. [CrossRef] [PubMed]
- Murray, A.K. The Novel Coronavirus COVID-19 Outbreak: Global Implications for Antimicrobial Resistance. Front. Microbiol. 2020, 11, 1020. [Google Scholar] [CrossRef] [PubMed]
- Gothwal, R.; Shashidhar, T. Antibiotic Pollution in the Environment: A Review. Clean Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Rusu, A.; Hancu, G.; Uivaroşi, V. Fluoroquinolone pollution of food, water and soil, and bacterial resistance. Environ. Chem. Lett. 2015, 13, 21–36. [Google Scholar] [CrossRef]
- Chooramani, G.; Jain, B.; Chauhan, P.S. Prevalence and antimicrobial sensitivity pattern of bacteria causing urinary tract infection; study of a tertiary care hospital in North India. Clin. Epidemiol. Glob. Health 2020, 8, 890–893. [Google Scholar] [CrossRef] [Green Version]
- Felis, E.; Kalka, J.; Sochacki, A.; Kowalska, K.; Bajkacz, S.; Harnisz, M.; Korzeniewska, E. Antimicrobial pharmaceuticals in the aquatic environment-occurrence and environmental implications. Eur. J. Pharmacol. 2020, 866, 172813. [Google Scholar] [CrossRef]
- Verenitch, S.S.; Lowe, C.J.; Mazumder, A. Determination of acidic drugs and caffeine in municipal wastewaters and receiving waters by gas chromatography-ion trap tandem mass spectrometry. J. Chromatogr. A 2006, 1116, 193–203. [Google Scholar] [CrossRef]
- Cosofre, V.V.; Buck, R.P. Recent advances in pharmaceutical analysis with potentiometric membrane sensors. Crit. Rev. Anal. Chem. 1993, 24, 1–58. [Google Scholar] [CrossRef]
- Chen, C.H.; Lin, Y.T.; Lin, M.S. Fabrication of a totally renewable off-channel amperometric platform for microchip electrophoresis. Anal. Chim. Acta 2015, 874, 33–39. [Google Scholar] [CrossRef]
- Fletcher, S. Screen-Printed Carbon Electrodes. Adv. Electrochem. Sci. Eng. 2016, 16, 425–443. [Google Scholar] [CrossRef] [Green Version]
- Khaled, E.; Khalil, M.M.; Abed el Aziz, G.M. Calixarene/carbon nanotubes based screen printed sensors for potentiometric determination of gentamicin sulphate in pharmaceutical preparations and spiked surface water samples. Sens. Actuators B Chem. 2017, 244, 876–884. [Google Scholar] [CrossRef]
- Kakhki, R. Application of Nanoparticles in the Potentiometric Ion Selective Electrodes. Russ. J. Electrochem. 2013, 49, 458–465. [Google Scholar] [CrossRef]
- Abdel-Karim, R.; Reda, Y.; Abdel-Fattah, A. Review—Nanostructured Materials-Based Nanosensors. J. Electrochem. Soc. 2020, 167, 037554. [Google Scholar] [CrossRef]
- Chen, B.; Liu, M.; Li, C.; Huang, C. Fluorescent carbon dots functionalization. Adv. Colloid Interface Sci. 2019, 270, 165–190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, L.; Huang, L.; Zheng, G.; Zhang, P.; Jin, Y.; Jiao, Z.; Sun, X. Study on the fluorescence properties of carbon dots prepared via combustion process. J. Lumin. 2019, 206, 608–612. [Google Scholar] [CrossRef]
- Qu, S.; Wang, X.; Lu, Q.; Liu, X.; Wang, L. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew. Chem. Int. Ed. 2012, 51, 12215–12218. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.S.; Hola, K.; Ambrosi, A.; Zboril, R.; Pumera, M. Graphene and carbon quantum dots electrochemistry. Electrochem. Commun. 2015, 52, 75–79. [Google Scholar] [CrossRef]
- Shankaraiah, G.; Saritha, P.; Bhagawan, D.; Himabindu, V.; Vidyavathi, S. Photochemical oxidation of antibiotic gemifloxacin in aqueous solutions–A comparative study. S. Afr. J. Chem. Eng. 2017, 24, 8–16. [Google Scholar] [CrossRef]
- Al-Mohaimeed, A.M.; Al-Tamimi, S.A.; Alarfaj, N.A.; Aly Fatma, A. New coated wire sensors for potentiometric determination of gemifloxacin in pure form, pharmaceutical formulations and biological fluids. Int. J. Electrochem. Sci. 2012, 7, 12518–12530. [Google Scholar]
- Doyle, E.; Fowles, S.E.; McDonnell, D.F.; McCarthy, R.; White, S.A. Rapid determination of gemifloxacin in human plasma by liquid chromatography-tandem mass spectrometry method. J. Chromatogr. B 2000, 746, 191–198. [Google Scholar] [CrossRef]
- Bera, A.K.; De, A.K.; Pal, B. A Simple, Rapid and Validated Reverse Phase High Performance Liquid Chromatographic Method for the Estimation of Gemifloxacin in Pharmaceutical Dosage Form. J. Chem. Pharm. Res. 2014, 6, 1011–1017. [Google Scholar]
- Robledo, V.R.; Smyth, W.F. A study of the analytical behaviour of selected new molecular entities using electrospray ionisation ion trap mass spectrometry, liquid chromatography, gas chromatography and polarography and their determination in serum at therapeutic concentrations. Anal. Chim. Acta 2008, 623, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Tekkeli, S.E.K.; Önal, A. Spectrofluorimetric methods for the determination of gemifloxacin in tablets and spiked plasma samples. J. Fluoresc. 2011, 21, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Dsugi, N.F.A.; Elbashir, A.A.; Suliman, F.E.O. Supramolecular interaction of gemifloxacin and hydroxyl propyl β-cyclodextrin spectroscopic characterization, molecular modeling and analytical application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 151, 360–367. [Google Scholar] [CrossRef]
- Radi, A.E.; Khafagy, A.; El-Shobaky, A.; El-Mezayen, H. Anodic Voltammetric determination of gemifloxacin using screen-printed carbon electrode. J. Pharm. Anal. 2013, 3, 132–136. [Google Scholar] [CrossRef] [Green Version]
- Abo-talib, N.F. Ion selective electrodes for stability-indicating determination of gemifloxacin mesylate. Anal. Bioanal. Electrochem. 2013, 5, 74–86. [Google Scholar]
- Idress, M.; Elbashir, A. Development and Validation of Potentiometric ZnO Nanorods Modified Ion Selective Electrode for Determination of Gemifloxacin in Pharmaceutical Formulation. Curr. Trends Anal. Bioanal. Chem. 2017, 1, 50–56. [Google Scholar] [CrossRef]
- Abdallah, N.A.; Ibhrahim, H.F.; Hegabe, N.H. Comparative study of molecularly imprinted polymer and magnetic molecular imprinted nanoparticles as recognition sites for the potentiometric determination of gemifloxacin mesylate. Int. J. Electrochem. Sci. 2017, 12, 10894–10910. [Google Scholar] [CrossRef]
- Ambadas, R.R.; Sunita, P.P. Validated UV-spectrophotometric methods for determination of gemifloxacin mesylate in pharmaceutical tablet dosage forms. E-J. Chem. 2010, 7, 344–349. [Google Scholar] [CrossRef]
- Jain, A.; Jain, R.; Jain, S. Preparation of Buffer Solution and Measurement of pH. In Basic Techniques in Biochemistry, Microbiology and Molecular Biology; Springer Protocols Handbooks; Humana: New York, NY, USA, 2020; ISBN 9781493998609. [Google Scholar]
- Siddique, A.B.; Pratap Singh, V.; Chatterjee, S.; Kumar Pramanik, A.; Ray, M. Facile synthesis and versatile applications of amorphous carbon dots. Mater. Today Proc. 2018, 5, 10077–10083. [Google Scholar] [CrossRef]
- Siddique, A.B.; Pramanick, A.K.; Chatterjee, S.; Ray, M. Amorphous Carbon Dots and their Remarkable Ability to Detect 2,4,6-Trinitrophenol. Sci. Rep. 2018, 8, 9770. [Google Scholar] [CrossRef] [PubMed]
- Khaled, E.; Hassan, H.N.A.; Mohamed, G.G.; Ragab, F.A.; Seleim, A.E.A. Disposable potentiometric sensors for monitoring cholinesterase activity. Talanta 2010, 83, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Okamura, M.; Takagaki, A.; Toda, M.; Kondo, J.N.; Domen, K.; Tatsumi, T.; Hara, M.; Hayashi, S. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chem. Mater. 2006, 18, 3039–3045. [Google Scholar] [CrossRef]
- Frag, E.Y.Z.; Mohamed, G.G.; El-Dien, F.A.N.; Mohamed, M.E. Construction and performance characterization of screen printed and carbon paste ion selective electrodes for potentiometric determination of naphazoline hydrochloride in pharmaceutical preparations. Analyst 2011, 136, 332–339. [Google Scholar] [CrossRef] [PubMed]
- Makarova, N.M.; Kulapina, E.G. New potentiometric screen-printed sensors for determination of homologous sodium alkyl sulfates. Sens. Actuators B Chem. 2015, 210, 817–824. [Google Scholar] [CrossRef]
- Abed Al ameer, N.A.; Jameel, W.W.; Hassan, N.S. Studying the Electrical Conductivity of Different Carbon Fillers Reinforced Polyvinyl Chloride Composite Materials. Coll. Eng. J. 2014, 16, 260–268. [Google Scholar]
- Liu, H.; Zhao, X.; Wang, F.; Wang, Y.; Guo, L.; Mei, J.; Tian, C.; Yang, X.; Zhao, D. High-Efficient Excitation-Independent Blue Luminescent Carbon Dots. Nanoscale Res. Lett. 2017, 12, 399. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.C.; Saha, A.; Jana, N.R.; Sarkar, R. Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C 2009, 113, 18546–18551. [Google Scholar] [CrossRef]
- Eaton, P.; Quaresma, P.; Soares, C.; Neves, C.; de Almeida, M.P.; Pereira, E.; West, P. A direct comparison of experimental methods to measure dimensions of synthetic nanoparticles. Ultramicroscopy 2017, 182, 179–190. [Google Scholar] [CrossRef]
- Duan, W.H.; Wang, Q.; Collins, F. Dispersion of carbon nanotubes with SDS surfactants: A study from a binding energy perspective. Chem. Sci. 2011, 2, 1407–1413. [Google Scholar] [CrossRef]
- Cao, L.; Yang, S.T.; Wang, X.; Luo, P.G.; Liu, J.H.; Sahu, S.; Liu, Y.; Sun, Y.P. Competitive performance of carbon “quantum” dots in optical bioimaging. Theranostics 2012, 2, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ma, H.; Zhang, T.; Zhang, Y.; Chuan, L.F. Effects of sodium dodecyl sulfate concentrations on the dispersion of carbon nanofibers in water. Nanosci. Nanotechnol. Lett. 2013, 5, 377–383. [Google Scholar] [CrossRef]
- Geng, Y.; Xiang, Z.; Lv, C.; Wang, Y.; Xin, X.; Yang, Y. High efficiency gold extraction through photo-luminescent vesicles self-aggregated by sodium dodecyl sulfate and carbon quantum dots with a visual fluorescent method for Au (III) detection. Sep. Purif. Technol. 2019, 222, 60–67. [Google Scholar] [CrossRef]
- Rezvani Ivari, S.A.; Darroudi, A.; Arbab Zavar, M.H.; Zohuri, G.; Ashraf, N. Ion imprinted polymer based potentiometric sensor for the trace determination of Cadmium (II) ions. Arab. J. Chem. 2017, 10, S864–S869. [Google Scholar] [CrossRef] [Green Version]
- El-Kosasy, A.M.; Aziz, L.E.; Trabik, Y.A. Comparative study of beta cyclodextrin and calix-8-arene as ionophores in potentiometric ion-selective electrodes for sitagliptin phosphate. J. Appl. Pharm. Sci. 2012, 2, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Suliman, F.E.O.; Elbashir, A.A.; Schmitz, O.J. Study on the separation of ofloxacin enantiomers by hydroxyl-propyl-β-cyclodextrin as a chiral selector in capillary electrophoresis: A computational approach. J. Incl. Phenom. Macrocycl. Chem. 2015, 83, 119–129. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E. Lipophilicity of tetraphenylborate derivatives as anionic sites in neutral carrier-based solvent polymeric membranes and lifetime of corresponding ion-selective electrochemical and optical sensors. Anal. Chim. Acta 1995, 309, 7–17. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 8028, Tetrahydrofuran. 2020. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tetrahydrofuran (accessed on 22 December 2020).
- Salama, F.M.; Attia, K.A.; Said, R.A.; El-Olemy, A.; Abdel-Raoof, A.M. Disposable gold nanoparticle functionalized and bare screen-printed electrodes for potentiometric determination of trazodone hydrochloride in pure form and pharmaceutical preparations. RSC Adv. 2018, 8, 11517–11527. [Google Scholar] [CrossRef] [Green Version]
- Goswami, J.A.; Shah, N.J. Review of drugs and its analytical methods to treat allergic rhinitis in combination with other drugs in different dosage forms. Int. J. Pharm. Pharm. Sci. 2013, 5, 966–975. [Google Scholar]
- Umezawa, Y.; Buhlmann, P.; Umezawa, K.; Tohda, K.; Ammemiya, S. Potentiometric selectivity coefficients of ion-selective electrodes part1. Inorganic cations. Pure Appl. Chem. 2000, 72, 1851–2082. [Google Scholar] [CrossRef]
- Tohda, K.; Dragoe, D.; Shibata, M.; Umezawa, Y. Studies on the Matched Potential Method for Determining the Selectivity Coefficients of Ion-Selective Electrodes Based on Neutral Ionophores: Experimental and Theoretical Verification Koji. Anal. Sci. 2001, 17, 733–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umezawa, Y.; Umezawa, K.; Sato, H. Selectivity coefficients for ion-selective electrodes: Recommended methods for reporting values KpotA, Bvalues (Technical Report). Pure Appl. Chem. 1995, 67, 507–518. [Google Scholar] [CrossRef]
Amounts of Each Component Sensors | Ion Pair (mg) | β–CD (mg) | NaTPB (mg) | PVC (mg) | DOP (mg) | THF (ml) | C-Dots THF Dispersion (mg) |
---|---|---|---|---|---|---|---|
Sensor 1 | 10.00 | -------- | -------- | 190.00 | 450.00 | 5.00 | -------- |
Sensor 2 | -------- | 10.00 | 5.00 | 190.00 | 450.00 | 5.00 | -------- |
Sensor 3 | 10.00 | 10.00 | 5.00 | 190.00 | 450.00 | 5.00 | -------- |
Sensor 4 | 10.00 | -------- | -------- | 190.00 | 450.00 | 5.00 | 170.00 |
Sensor 5 | -------- | 10.00 | 5.00 | 190.00 | 450.00 | 5.00 | 170.00 |
Sensor 6 * | 10.00 | -------- | -------- | 190.00 | 450.00 | 5.00 | -------- |
Sensor 7 * | -------- | 10.00 | 5.00 | 190.00 | 450.00 | 5.00 | -------- |
Parameter | Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | Sensor 6 | Sensor 7 |
---|---|---|---|---|---|---|---|
Slope (mV/decade) | 30.5 | 30 | 30.3 | 28.8 | 29.6 | 29.8 | 32 |
Intercept | 318.5 | 318.0 | 239.3 | 284.3 | 416.6 | 390.6 | 321.8 |
Correlation Coefficient (r) | 0.9966 | 0.9999 | 0.9999 | 0.9983 | 0.9975 | 0.9997 | 0.9965 |
LOD (nM) | 6650 | 969 | 2690 | 3570 | 210 | 660 | 954 |
Linear range (M) | 10−5–10−2 | 10−6–0−3 | 10−5–10−2 | 10−5–10−2 | 10−6–10−2 | 10−6–10−2 | 10−6–10−2 |
pH range | 2.2–3.2 | 2.0–3.3 | 1.9–3.5 | 2.0–3.3 | 1.9–3.3 | 2.0–3.3 | 1.9–3.6 |
Response time (s) | 25 | 27 | 10 | 15 | 20 | 18 | 22 |
Lifetime (month) | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
Accuracy ± standard deviation * | 100.20 ± 0.713 | 99.81 ± 0.321 | 100.18 ± 1.000 | 99.58 ± 0.825 | 99.89 ± 0.242 | 99.87 ± 0.706 | 99.61 ± 0.784 |
Repeatability RSD% * | 0.171 | 0.564 | 0.753 | 0.942 | 0.154 | 1.329 | 0.136 |
Intermediate precision RSD% * | 0.916 | 0.939 | 0.800 | 1.145 | 0.239 | 1.462 | 0.354 |
Interferent | Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | Sensor 6 | Sensor 7 |
---|---|---|---|---|---|---|---|
Tobramycin | 3.26 × 10−1 | 5.70 × 10−2 | 1.65 × 10−1 | 6.49 × 10−2 | 7.63 × 10−3 | 4.00 × 10−2 | 1.50 × 10−1 |
Gentamycin | 1.49 × 10−1 | 1.17 × 10−1 | 1.43 × 10−1 | 5.35 × 10−1 | 1.47 × 10−1 | 9.22 × 10−2 | 3.49 × 10−2 |
KCl | 3.49 ×10−2 | 3.60 × 10−2 | 3.48 × 10−2 | 5.51 × 10−2 | 2.29 × 10−2 | 5.90 × 10−3 | 1.00 × 10−2 |
Moxifloxacin | 2.8 × 10−1 | 8.80 × 10−1 | 7.77 × 10−1 | 2.4 × 10−1 | 3.90 × 10−1 | 1.49 × 10−1 | 9.60 × 10−2 |
ZnSO4 | 1.82 × 10−1 | 1.48 × 10−1 | 7.40 × 10−2 | 3.50 × 10−1 | 7.43 × 10−2 | 1.08 × 10−1 | 1.00 × 10−2 |
Streptomycin | 9.80 × 10−2 | 1.50 × 10−2 | 1.28 × 10−1 | 1.48 × 10−1 | 6.47 × 10−2 | 1.06 × 10−3 | 2.75 × 10−3 |
Matrix | Spiked Conc. (M) | Recovery * % | ||||||
---|---|---|---|---|---|---|---|---|
Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | Sensor 6 | Sensor 7 | ||
Pharmaceutical Formulation | Mean | 100.29 ± 1.336 | 100.92 ± 1.004 | 99.71 ± 0.523 | 99.89 ± 1.506 | 99.60 ± 0.778 | 99.02 ± 1.697 | 101.90 ± 1.513 |
Tap water samples | 10−5 M | 99.80 | 100 | 97.23 | 99.51 | 100.41 | 97.04 | 101.29 |
10−4 M | 100.82 | 98.74 | 97.61 | 100.09 | 102.7 | 100.73 | 101.41 | |
10−3 M | 100.53 | 98.99 | 98.24 | 99.88 | 102.22 | 99.89 | 102.14 | |
Mean | 100.38 ± 0.526 | 99.24 ± 0.667 | 97.69 ± 0.510 | 99.83 ± 0.294 | 101.78 ± 1.208 | 99.22 ± 1.934 | 101.61 ± 0.460 | |
River water samples | 10−5 M | 99.37 | 102.11 | 99.87 | 99.87 | 102.21 | 96.71 | 102.38 |
10−4 M | 100.69 | 108.04 | 99.26 | 98.83 | 103.55 | 95.53 | 102.97 | |
10−3 M | 100.61 | 105.7 | 99.34 | 99.88 | 104.28 | 98.55 | 101.95 | |
Mean | 100.22 ± 0.740 | 105.28 ± 2.987 | 99.49 ± 0.332 | 99.53 ± 0.603 | 103.35 ± 1.050 | 96.93 ± 1.522 | 102.43 ± 0.512 |
Values | Proposed Methods | Published Method [29] | ||||||
---|---|---|---|---|---|---|---|---|
Sensor 1 | Sensor 2 | Sensor 3 | Sensor 4 | Sensor 5 | Sensor 6 | Sensor 7 | ||
Mean | 100.20 | 99.81 | 100.18 | 99.58 | 99.89 | 99.87 | 100.27 | 99.61 |
Standard deviation (SD) | 0.713 | 0.321 | 1.000 | 0.825 | 0.242 | 0.706 | 0.408 | 0.784 |
Variance | 0.508 | 0.103 | 1.000 | 0.681 | 0.059 | 0.498 | 0.166 | 0.615 |
N | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
Student’s t test | 0.96 (2.78) * | 0.41 (2.78) * | 0.78 (2.78) * | 0.05 (2.78) * | 0.59 (2.78) * | 0.43 (2.78) * | 1.30 (2.78) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayad, M.F.; Trabik, Y.A.; Abdelrahman, M.H.; Fares, N.V.; Magdy, N. Potentiometric Carbon Quantum Dots-Based Screen-Printed Arrays for Nano-Tracing Gemifloxacin as a Model Fluoroquinolone Implicated in Antimicrobial Resistance. Chemosensors 2021, 9, 8. https://doi.org/10.3390/chemosensors9010008
Ayad MF, Trabik YA, Abdelrahman MH, Fares NV, Magdy N. Potentiometric Carbon Quantum Dots-Based Screen-Printed Arrays for Nano-Tracing Gemifloxacin as a Model Fluoroquinolone Implicated in Antimicrobial Resistance. Chemosensors. 2021; 9(1):8. https://doi.org/10.3390/chemosensors9010008
Chicago/Turabian StyleAyad, Miriam F., Yossra A. Trabik, Mona H. Abdelrahman, Nermine V. Fares, and Nancy Magdy. 2021. "Potentiometric Carbon Quantum Dots-Based Screen-Printed Arrays for Nano-Tracing Gemifloxacin as a Model Fluoroquinolone Implicated in Antimicrobial Resistance" Chemosensors 9, no. 1: 8. https://doi.org/10.3390/chemosensors9010008
APA StyleAyad, M. F., Trabik, Y. A., Abdelrahman, M. H., Fares, N. V., & Magdy, N. (2021). Potentiometric Carbon Quantum Dots-Based Screen-Printed Arrays for Nano-Tracing Gemifloxacin as a Model Fluoroquinolone Implicated in Antimicrobial Resistance. Chemosensors, 9(1), 8. https://doi.org/10.3390/chemosensors9010008