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Abstract: This work reports the fabrication of a new environmentally friendly three-electrode electro-
chemical sensor suitable for on-site voltammetric determination of two toxic emerging ‘technology-
critical elements’ (TCEs), namely indium and thallium. The sensor is fully fabricated by injection-
moulding and features three conductive polymer electrodes encased in a plastic holder; the reference
electrode is further coated with AgCl or AgBr. The sensor is applied to the determination of trace
In(III) and Tl(I) by anodic stripping voltammetry using a portable electrochemical set-up featuring a
miniature smartphone-based potentiostat and a vibrating device for agitation. For the analysis, the
sample containing the target metal ions is spiked with Bi(III) and a bismuth film is electroplated in
situ forming an alloy with the accumulated target metals on the working electrode of the sensor; the
metals are stripped off by applying a square-wave anodic voltametric scan. Potential interferences in
the determination of In(III) and Tl(I) were alleviated by judicious selection of the solution chemistry.
Limits of quantification for the target ions were in the low µg L−1 range and the sensors were applied
to the analysis of lake water samples spiked with In(III) and Tl(I) with recoveries in the range of
95–103%.

Keywords: indium; thallium; anodic stripping voltammetry; injection-moulding; conductive electrodes

1. Introduction

Indium and thallium belong to the group of “energy-critical elements” or “technology-
critical elements” (TCEs); TCEs are elements that had no significant previous industrial
role but whose current industrial use is growing rapidly since they are key components in
the development of new technologies (information and telecommunications technology,
semiconductors, electronic displays, optic/photonic and energy-related technologies) [1–3].
Therefore, TCEs are considered as emerging contaminants and their environmental foot-
print from anthropogenic and industrial activities should be carefully controlled [4,5]. In
particular, the health hazards of both indium [6–8] and thallium [9–11] have been well
documented.

Spectroscopic techniques are the “golden standard” for the determination of trace
concentrations of indium and thallium [12,13]. However, stripping analysis offers a viable
alternative to spectroscopic methods due to its lower cost, rapidity, portability, sensitiv-
ity and scope for on-site analysis. The large majority of stripping methods for In and
Tl determination are based on the use of mercury-based electrodes that offer excellent
sensitivity [2,14]. However, mercury and its vapours are toxic and, over recent years,
“green” metals (i.e., bismuth, antimony and tin) have been increasingly used as electrode
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materials in stripping analysis [15]. Following this trend, different methods have been de-
veloped for the determination of In(III) and Tl(I) on tin [16], bismuth [17,18] and antimony
electrodes [19–21].

Injection-moulding is a universal approach for the fabrication of 3D plastic objects
in different configurations. Injection-moulding involves feeding the plastic material into
a heated barrel, mixing and injecting into a mould cavity, where it cools and hardens to
the configuration of the cavity. In the context of electrode fabrication, injection moulding
has several advantages over other manufacturing methods: low-cost, scope for mass
production, rapidity, wide choice of materials and potential for different geometrical
configurations. Our group has reported on the development and application of injection-
moulded electrochemical sensors to the determination of Pb(II) and Cd(II) [22–24].

In this work, we describe the development of a new type of integrated injection–
moulded sensor which is suitable for field determination of two important and toxic TECs,
namely indium and thallium. The device features a plastic holder with three conductive
polymer electrodes. The surface of the working electrode is plated in situ with a bismuth
film during the analysis. The sensor is adapted to a portable experimental set-up and
applied to on-site assay of trace In(III) and Tl(I).

2. Materials and Methods
2.1. Reagents

All the chemicals were of analytical grade and purchased from Merck (Darmstadt,
Germany) or Sigma-Aldrich (USA). Doubly distilled water was used throughout. Stock so-
lutions containing 10 and 100 mg L−1 of different metals (Bi(III), Cd(II), Sb(III), Pb(II), Sn(II),
Zn(II), In(III), Cu(II) and Tl(I)) were prepared from 1000 mg L−1 standard solutions after
appropriate dilution with doubly distilled water. The stock supporting electrolyte solution
was 2.0 mol L−1 acetate buffer (pH 4.5) prepared from sodium acetate and hydrochloric
acid. Stock aqueous solutions of 2.0 mol L−1 KCl, 2.0 mol L−1 KBr, 2.0 × 10−3 mol L−1

disodium salt of EDTA, and 0.020 mol L−1 of K4[Fe(CN)6] were also prepared.

2.2. Fabrication of the Sensor

The aluminium moulds were fabricated by creating solid models in AutoCAD (Me-
chanical Desktop 2004, Autodesk, San Jose, CA, USA) and were converted into macro
commands for a CNC milling machine (Datron CAT3D M6, Datron Technology, Milton
Keynes, UK). The injection-moulding equipment was Babyplast 6/6 or 6/10 (Cronoplast SL,
Barcelona, Spain). The plastic holder was injection-moulded from polystyrene (Northern
Industrial Plastics Ltd. Chadderton, UK) (moulding temperature: 220 ◦C). The polymer
electrodes were injection-moulded from 40% carbon fibre-loaded high-impact polystyrene
(RTP 487, RTP Company (UK) Plastics Ltd., Bury, UK) (moulding temperature: 220 ◦C).
The three injection-moulded electrodes were inserted into the recesses of the holder using
an overmoulding procedure. A photograph of the sensor together its dimensions is shown
in Figure 1A; the working area of each of the three electrodes immersed in solution was
40 mm2.

The reference electrode of the sensor was coated with Ag by spark discharge. To
achieve this, an Ag wire was connected as a cathode (−) and the reference electrode of the
sensor as an anode (+) to a regulated power supply (0–2.0 KV) and sparking was carried
out at 1.2 kV DC by bringing the Ag wire in close proximity to the reference electrode.
For Tl(I) and In(III) determination, the reference electrode was coated with a AgCl or a
AgBr film, respectively. This was achieved by polarising the Ag-coated reference electrode
to +1.0 V for 30 s in a 1.0 mol L−1 KCl or 1.0 mol L−1 KBr solution using a Pt wire as the
counter electrode and a commercial Ag/AgCl as the reference electrode. After use, the
sensor was stored with the reference electrode immersed in 0.1 mol L−1 KCl or 0.1 mol L−1

KBr solution, respectively.
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Figure 1. (A) Photograph of the three-electrode injection-moulded sensor with dimensions, (B) schematic diagram of the port-
able experimental set-up suitable for field measurements. 
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respectively.  

2.3. Instrumentation and Experimental Set-Up  
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chemical experiments were performed with a Sensit Smart smartphone-controlled minia-
ture potentiostat via the PSTouch for Android software (Palm Sens BV, The Netherlands). 
The potentiostat was connected to the injection-moulded sensor with crocodile clips. The 
sample was placed in a plastic cell and the shaft of a common battery-operated electric 
toothbrush (Oral B) provided agitation by vibration.  

The surface of the working electrode was inspected by means of an optical micro-
scope (Karl Suss PA 200, SUS Microtec). 

2.4. Experimental Procedure  
The solution was spiked with Bi(III) (and with the appropriate concentration of the 

target metals as required) and co-deposition of the bismuth film and the analytes at the 
working electrode was carried out using agitation with vibration. Then, the solution was 
allowed to equilibrate in static solution for 10 s and the stripping step was performed by 
the SW mode. Finally, a cleaning step at +0.20 V for 30 s under stirring was applied to 
clean the electrode by oxidising remains of the bismuth film and target metals on the elec-
trode. The selected experimental conditions for each metal ion are summarised in Table 1. 

  

Figure 1. (A) Photograph of the three-electrode injection-moulded sensor with dimensions, (B) schematic diagram of the
portable experimental set-up suitable for field measurements.

2.3. Instrumentation and Experimental Set-Up

A schematic diagram of the experimental set up is illustrated in Figure 1B. Electrochem-
ical experiments were performed with a Sensit Smart smartphone-controlled miniature
potentiostat via the PSTouch for Android software (Palm Sens BV, The Netherlands). The
potentiostat was connected to the injection-moulded sensor with crocodile clips. The
sample was placed in a plastic cell and the shaft of a common battery-operated electric
toothbrush (Oral B) provided agitation by vibration.

The surface of the working electrode was inspected by means of an optical microscope
(Karl Suss PA 200, SUS Microtec).

2.4. Experimental Procedure

The solution was spiked with Bi(III) (and with the appropriate concentration of the
target metals as required) and co-deposition of the bismuth film and the analytes at the
working electrode was carried out using agitation with vibration. Then, the solution was
allowed to equilibrate in static solution for 10 s and the stripping step was performed by
the SW mode. Finally, a cleaning step at +0.20 V for 30 s under stirring was applied to clean
the electrode by oxidising remains of the bismuth film and target metals on the electrode.
The selected experimental conditions for each metal ion are summarised in Table 1.

Table 1. Experimental conditions for Tl(I) and In(III) determination.

In(III) Tl(I)

Supporting electrolyte 0.10 mol L−1 acetate buffer (pH 4.5) + 2.0 ×
10−5 mol L−1 K4(Fe(CN)6] + 0.80 mol L−1 KBr

0.10 mol L−1 acetate buffer (pH 4.5) + 2.0
× 10−5 mol L−1 EDTA

Deposition potential (V) −1.40

Bi(III) concentration (mg L−1) 0.50 10

Deposition time (s) 240

SW frequency (Hz) 25

SW pulse height (mV) 25

SW step (mV) 4

Cleaning time (s) 30

Cleaning potential (V) +0.20
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3. Results

The deposition of a bismuth film on the conductive polymer working electrode was
examined by optical microscopy. Coating of the electrode’s surface with a bismuth film was
performed using the set-up of Figure 1B placing a 100 mg L−1 Bi(III) solution in 0.1 mol L−1

acetate buffer (pH 4.5) in the sample compartment and depositing bismuth on the working
electrode at −1.40 V for 120 s. Figure 2A illustrates the surface of the working electrode
which is coated with bismuth (left) and the bare electrode surface (right). The presence of a
bismuth film on the electrode surface is clearly visible (appearing as the grey deposit in
Figure 2A (left)). The presence of the bismuth film is also corroborated by an anodic scan
of the bismuth-coated working electrode in which a well-defined oxidation peak of Bi is
obtained (Figure 2B).
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of K4[(Fe(CN)6] which has been shown to selectively complex Cu(II) [27]; as illustrated in 
Figure 4A(a), a well-defined In peak was obtained in the presence of Cu(II). However, the 
presence of K4[(Fe(CN)6] does not suppress the Cd and Pb peaks that overlap with the In 
peak (Figure 4A(b). As shown before, addition of Br- can induce separation of the In and 
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shown to produce the best separation between the Cd and In peaks (Figure 4A(c)). In ad-
dition, the concentration of the Bi(III) solution can also affect the separation between the 
Cd and In peaks [25]. For the determination of In(III), the Bi(III) concentration was studied 
in the range 0.1 to 20 mg L−1 and 0.5 mg L−1 was selected as the Bi(III) concentration that 
leads to better separation between the Cd and In peaks (Figure 4A(d)) while the In peak 
height remains statistically unaffected.  

On the other hand, addition of EDTA alleviates completely the interference by diva-
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ure 4B) [26]; while suppressing the Ca, Pb and Cd peaks. addition of EDTA (Figure 4B(c)) 
does not cause statistically significant change in the Tl peak heigh (Figure 4B(a)).  

Figure 2. (A) Optical microscopy image of the working electrode of an injection-moulded sensor showing the bare surface
(right) and the bismuth-coated surface (left), (B) stripping voltammogram in: (a) 0.10 mol L−1 acetate buffer (pH 4.5),
(b) 0.10 mol L−1 acetate buffer and 10 mg L−1 Bi(III) with deposition at −1.40 V for 20 s.

The main complication in the determination of In(III) and Tl(I) is the interference by
co-existing metal ions which can give rise to overlapping stripping peaks [25,26]. Therefore,
our first objective was to investigate the effect of cations that are known to oxidise at
similar potential to In and Tl or that can exist at relatively higher concentrations (namely
Sn(II), Sb(III), Pb(II), Cd(II), Zn(II) and Cu(II)). Initial experiments were carried out in
the presence of 0.10 mol L−1 acetate buffer (pH 4.5) which is the commonest supporting
electrolyte. Figure 3a shows stripping voltammograms of a 10 mg L−1 Bi(III) solution in
0.10 mol L−1 acetate buffer (pH 4.5) in which only the Bi stripping peak appears. Stripping
voltammograms of Tl(I) and In(III) added separately in 10 mg L−1 Bi(III) solution in
0.10 mol L−1 acetate buffer (pH 4.5) show single stripping peaks of Tl and ln, respectively,
together with the Bi peak (Figure 3b,c). Simultaneous addition of Pb(II), Cd(II), Zn(II) and
In(III) in 10 mg L−1 Bi(III) solution in 0.10 mol L−1 acetate buffer (pH 4.5) shows that there
is serious overlap between the In peak and the Cd peak (Figure 3d) while further addition
of T(l) in the same solution shows serious overlap of the In and Tl peaks and partial overlap
between the Pb and Tl peaks (Figure 3e). Addition of Sn(II) and Sb(III) in the same solution
did not cause any change of the signal (Figure 3f). Finally, addition of Cu(II) in the same
solution caused serious suppression of the total signal (Figure 3g).
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Bi(III) (b) as (a) with 20 µg L−1 Tl(II), (c) as (a) with 20 µg L−1 In(III), (d) as (c) with 50 µg L−1 of
Pb(II), Cd(II) and Zn(II), (e) as (d) with 20 µg L−1 Tl(I), (f) as (e) with 20 µg L−1 Sn(II) and Sb(III),
(g) as (f) with 20 µg L−1 Cu(II). Deposition at −1.40 V for 240 s.

The interference by Cu(II) on In(III) determination can be alleviated by the addition
of K4[(Fe(CN)6] which has been shown to selectively complex Cu(II) [27]; as illustrated in
Figure 4A(a), a well-defined In peak was obtained in the presence of Cu(II). However, the
presence of K4[(Fe(CN)6] does not suppress the Cd and Pb peaks that overlap with the In
peak (Figure 4A(b). As shown before, addition of Br- can induce separation of the In and
Cd peaks by shifting the Cd peak to more negative values [25]. Different concentrations of
KBr were studied in the range 0.1 to 1.0 mol L−1; KBr concentrations ≥0.8 mol L−1 were
shown to produce the best separation between the Cd and In peaks (Figure 4A(c)). In
addition, the concentration of the Bi(III) solution can also affect the separation between the
Cd and In peaks [25]. For the determination of In(III), the Bi(III) concentration was studied
in the range 0.1 to 20 mg L−1 and 0.5 mg L−1 was selected as the Bi(III) concentration that
leads to better separation between the Cd and In peaks (Figure 4A(d)) while the In peak
height remains statistically unaffected.
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Figure 4. (A) Stripping voltammogram in: (a) 0.1 mol L−1 acetate buffer (pH 4.5) containing 10 mg L−1 Bi(III), 20 µg L−1

In(III), 50 µg L−1 Cu(II) and 2.0 × 10−5 mol L−1 K4(Fe(CN)6], (b) as in (a) with 50 µg L−1 Pb(II), Cd(II) and Zn(II), (c) as
in (b) with addition of 0.8 mol L−1 KBr, (d) 0.1 mol L−1 acetate buffer (pH 4.5) containing 0.5 mg L−1 Bi(III), 20 µg L−1

In(III) and 20 µg L−1 Cu(II), Pb(II), Cd(II) and Zn(II), (B) stripping voltammogram in: (a) 0.1 mol L−1 acetate buffer (pH 4.5)
containing 10 mg L−1 Bi(III) and 40 µg L−1 Tl(I), (b) as in (a) with the addition of 50 µg L−1 Cd(II), Pb(II) and Zn(II); (c) as
in (b) with the addition of 50 µg L−1 In(III), Cu(III) and 2.0 × 10−5 mol L−1 EDTA.
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On the other hand, addition of EDTA alleviates completely the interference by di-
valent cations on the determination of Tl(I), due to their strong complexation by EDTA
(Figure 4B) [26]; while suppressing the Ca, Pb and Cd peaks. addition of EDTA
(Figure 4B(c)) does not cause statistically significant change in the Tl peak heigh
(Figure 4B(a)).

As a result of this study, the selected conditions for each target metal are listed in
Table 1. It must be noted that In(III) and Tl(I) cannot be determined simultaneously using
the proposed procedure since their peaks partially overlap. However, it is very unlikely
that the two metals will be found in the same sample

Furthermore, the deposition potential was investigated in the range −0.60 V to
−1.40 V. The stripping peak heights of both cations increased as the deposition potential
became more negative and levelled off at −1.30 V (Figure S1, Supplementary Material) and
−1.40 V was elected as the deposition potential. The deposition time was studied in the
range 0–360 s and a rectilinear increase in the stripping peak heights of Tl and In vs. the
deposition time was observed; a deposition time of 240 s was selected for the sake of more
rapid measurements. (Figure S1, Supplementary Material). The shaft of a battery-operated
electric toothbrush was selected for solution agitation during preconcentration. This ar-
rangement allowed operation of the experimental set-up without any auxiliary power
source. The positioning of the tip of the shaft was important: the tip was placed facing,
and at different distances from, the working electrode. The highest stripping peaks were
obtained at a separation of 1.5 cm between the working electrode and the tip of the shaft.

The metrological features (calibration equation, coefficient of determination and limits
of quantification) of In(III) and Tl(I) determination in the presence of foreign ions were
investigated and summarised in Table 2. Representative voltammograms and calibration
plots for In(III) and Tl(I) are illustrated in Figure 5A,B, respectively. The limit of detection
(LOD) for each metal was calculated from the equation: LOD = 3.3 × sb/S (where sb is
the standard deviation of the intercept of the calibration plot and S is the slope of the
calibration plot) and the limit of quantification (LOQ) from the equation: LOQ = 3 × LOD.
The LODs achieved with the injection-moulded sensors compare favourably with existing
electrodes modified with “green metals” (Table S1, Supplementary Material).

Table 2. Calibration features of In(III) and Tl(I).

In(III) Tl(I)

Linear range (µg L−1) 3.6–100 4.4–100

Slope (µA µg−1 L) 1.02 0.37

Intercept (µA) 0.86 0.43

Coefficient of determination 0.987 0.998

% RSDb * 14.3% 12.1%

% RSDw ** 5.3% 5.6%

LOD (µg L−1) *** 1.2 1.5

LOQ (µg L−1) *** 3.6 4.4

* Between-sensor relative standard deviation (n = 6) at 20 µg L−1; ** within-sensor relative standard deviation
(n = 6) at 20 µg L−1; *** LOQ, limit of quantification; LOD, limit of detection.

The stability of the reference electrode was also assessed. In the case of Tl(I) determi-
nation, the reference electrode was coated with a AgCl layer and stability of the reference
electrode potential was provided by the Cl- ions in the supporting electrolyte (Table 1). In
the case of In(III) determination, which involves addition of Br- ions (Table 1), a Ag/AgCl
is not stable and the reference electrode was coated with a AgBr layer; in this case, stability
of the reference electrode potential was provided by the Br- ions in the supporting elec-
trolyte (Table 1). Under these conditions, the potential of both reference electrodes varied
within ±5% of their mean value in the course of one week. The long-term stability of the
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whole sensors was satisfactory as they could be used for tens of measurements without
statistically significant change in their response towards the target metals.
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The sensors were tested for the determination of In(III) and Tl(I) in a lake water
sample. The concentrations of the target metals were lower than the LOQ of the method
and the accuracy was assessed by means of spiking the sample with either In(III) or Tl(I)
in addition to Cu(II), Zn(II), Pb(II) and Cd(II)) and estimating the recovery using the
method of standard additions (Figure 6); the recoveries were 95 ± 6% (n = 3) for In(III) and
103 ± 5% (n = 3) for Tl(I), which are considered satisfactory for rapid on-site testing.
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4. Conclusions

In conclusion, this work describes a new type of “green” integrated injection-moulded
sensor, which is suitable for on-site analysis of two important TCE elements, In(III) and
Tl(I), in conjunction with a portable electrochemical setup. The sensors, when coated in
situ with a bismuth film, offer LOQs in the low µg L−1 range and adequate selectivity in
the presence of common interfering cations.
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