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Abstract: We propose an ultrasensitive leaky surface acoustic wave (LSAW) immunosensor based
on molybdenum disulfide @ cuprous oxide—gold (MoS2@Cu2O-Au) nanoparticles and subsequent
gold staining for the detection of alpha-fetoprotein (AFP). MoS2@Cu2O-Au nanoparticles, with their
large specific surface area and good biocompatibility, not only capture the secondary antibodies (Ab2)
but also amplify the mass loading effect of the acoustic wave sensor in the detection of AFP. The
immunosensor signals are further amplified upon injection of gold staining solution. The developed
immunosensor achieved a low detection limit of 5.5 and 25.0 pg/mL with and without gold staining,
respectively. The immunosensor demonstrated its efficiency for the quantitative detection of AFP in
complex biological fluids, including human serum and saliva samples, with excellent selectivity and
long-term stability, showing great potential for the quantification of AFP in clinical diagnosis.

Keywords: leaky surface acoustic wave (LSAW); immunosensor; AFP; MoS2@Cu2O-Au; gold
staining

1. Introduction

Cancer poses a serious threat to human health worldwide, and its early diagnosis
has the potential to reduce mortality rates. The detection of tumor markers is an effective
approach for the early diagnosis of cancer [1]. Alpha-fetoprotein (AFP), an embryo-specific
glycoprotein, is a widely accepted biomarker for fetal defects and tumor progression.
The level of AFP in serum of healthy humans is generally below 25 ng/mL, while its
concentration increases up to 500 ng/mL in some diseases, such as the germ cell tumor,
hepatocellular carcinoma (HCC), and yolk sac tumor [2]. The concentration of serum AFP
is considered as a gold standard for the diagnosis of HCC in liver cancer patients. However,
the use of saliva for the detection of tumor markers is noninvasive and more acceptable for
screening than the serum assay. Accordingly, ultrasensitive detection of AFP in body fluids
is crucial for the early diagnosis of cancer.

Numerous detection methods, including fluorescence, electrochemical, colorimetric,
and enzyme-linked immunosorbent assays, have been established for the quantification of
AFP [3–6]. However, several techniques have major drawbacks, such as long analysis time,
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low sensitivity, high background, and high cost. Hence, a simple, real-time, and highly
sensitive detection platform for the quantification of AFP is in high demand.

Surface acoustic wave (SAW) sensors are currently gaining increasing popularity for
the detection of tumor markers in body fluids for the early diagnosis of cancer [7,8]. SAW
sensors have numerous advantages, including simple operation, low cost, rapid response,
high sensitivity, and real-time detection capabilities [9]. These features grant SAW sensors
advantages in detecting a large variety of analytes, such as biological warfare agents, small
molecules, heavy metals, uric acid, and cancer cells [10–14].

SAW devices are categorized into three different types based on the surface waves ex-
ploited, including Rayleigh wave (R-SAW) devices, Lamb wave (LSAW) devices, and Shear
horizontal (SH-SAW) devices [15–17]. Both Rayleigh and Lamb waves are significantly
dampened in liquid media and thus overwhelmingly used for gas sensing. In contrast,
SH-SAWs are less influenced by the liquid environment owing to in-plane mechanical
vibration and are thus mostly used for biosensing applications.

SH-SAW devices fall primarily into two major types. The Love wave surface acoustic
wave (LW-SAW) sensors have a two-layered structure, where a guiding layer is deposited
on top of a piezoelectric material. The leaky surface acoustic wave (LSAW) biosensors do
not require an additional guiding layer and are thus easier to fabricate. LSAW sensors
employ a specific cutting plane of piezoelectric crystals (36◦YX-lithium tantalate (LiTaO3))
to generate the LSAW mode. Unlike conventional Rayleigh waves, LSAW sensors have
a large electromechanical coupling factor, higher dielectric constant values, and high
sensitivity [18,19].

Recently, Chang et al., proposed an LSAW immunosensor for the detection of cy-
closporine A (CsA) in whole-blood samples [20]. The same group later developed a
label-free and highly sensitive LSAW aptasensor for the detection of tumor markers [21].
Xu et al. proposed an LSAW immunosensor for the detection of single-nucleotide poly-
morphisms based on enzymatic signal amplification [22]. Similarly, the LSAW biosensor
platform has been successfully used for the detection of DNA and the human papillo-
mavirus [23,24]. However, no studies to date have reported the ultrasensitive detection of
AFP using LSAW sensors.

SAW sensors are 4–5 times more sensitive than other piezoelectric sensors, such as
quartz crystal microbalances; however, their sensitivity must be further enhanced for the
ultrasensitive detection of cancer biomarkers [25]. Signal amplification associated with the
use of nanomaterial labeling can provide an ultralow limit of detection.

To date, a wide variety of signal amplification systems have been reported for im-
munosensors, including strategies based on metal oxides, enzymes, noble metal nanoparti-
cles, and nanocomposite materials [26–28]. Among the metal oxides, Cu2O has attracted
significant attention as a promising candidate for the fabrication of biosensors owing
to its environmental compatibility, low cost, and large surface area [29]. However, sole
Cu2O nanocrystals are prone to agglomeration and exhibit poor dispersion. The dis-
persion and stability of Cu2O nanocrystals can be improved by combining them with
molybdenum disulfide (MoS2) nanoparticles. MoS2 nanoflowers have been largely used
in the construction of biosensors owing to their large surface area, good conductivity,
and outstanding charge-transport ability [30]. To combine the secondary antibody with
Cu2O@MoS2 nanoparticles and enhance biocompatibility, the combination of AuNPs is a
promising strategy [31,32].

Gold staining is a widely used robust signal amplification strategy for the highly
sensitive detection of biomarkers [33,34]. In this process, AuNPs act as a catalyst to reduce
the gold (III) ions to metallic gold in the presence of reducing agents, such as hydroxylamine
hydrochloride. This reaction leads to the deposition of gold on the AuNPs as nucleation
sites, increasing their mass and size, and thus resulting in remarkable signal amplification
of the immunoassay.

Herein, an ultrasensitive, sandwich-type LSAW immunosensor based on MoS2@Cu2O-
Au nanoparticles and subsequent gold staining as a signal amplification strategy was
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proposed for the detection of AFP, as illustrated in Figure 1. Owing to their good stability,
great biocompatibility, and large specific surface area, MoS2@Cu2O-Au nanoparticles not
only enhance the number of captured antibodies but also increase the mass loading on
the sensor surface, resulting in high sensitivity. The markedly amplified sensitivity was
achieved further by injecting the gold staining solution. The immunoassay was conducted
with varying concentrations of AFP from 0.01 to 50 ng/mL and achieved an ultralow limit
of detection (LOD) of 5.5 and 25 pg/mL with and without gold staining, respectively. The
real-sample detection capabilities of the presented biosensor were evaluated by detecting
AFP in human serum and saliva samples with satisfactory results. Salivary AFP detection is
a promising strategy for the detection of HCC with saliva as the diagnostic fluid alternative
to the serum assay. In addition, the immunosensor exhibited acceptable selectivity and
excellent long-term stability, which has promising applications for clinical diagnosis.
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Figure 1. Schematic representation of sandwich-type SAW immunosensor for detection of AFP.

2. Materials and Methods
2.1. Reagents

Mercaptoacetic acid, N-hydroxy succinimide (NHS), ethyl dimethyl aminopropyl
carbodiimide (EDC), tetrachloroauric acid (HAuCl4), carcinoembryonic antigen (CEA),
bovine serum albumin (BSA), tryptophan, and all the other reagents of analytical grade
were purchased from Sigma-Aldrich (Shanghai, China). Prostate-specific antigen (PSA)
was purchased from RayBiotech, Inc (China). Alpha-fetoprotein (AFP) was purchased from
Novus Biologicals (China). The primary anti-AFP antibody (Ab1), FITC-labeled primary
anti-AFP antibody (Ab1-FITC), and the secondary anti-AFP antibody (Ab2) were purchased
from Abcam, USA. Human serum was obtained from Second People’s Hospital, Shenzhen,
China. Human saliva samples were collected from a healthy donor. Phosphate-buffered
saline (PBS, pH 7.4) was synthesized using Na2HPO4 and KH2PO4. Deionized (DI) water
was used in all experiments.

2.2. Preparation of MoS2@Cu2O-Au-Ab2 Conjugate

The MoS2@Cu2O nanohybrid was prepared according to the procedures reported in
a previous study [30]. In brief, 26 mg of ammonium tetrathiomolybdate ((NH4)2MoS4)
and 80 mg of copper nitrate trihydrate (Cu(NO3)2·3H2O), each in 20 mL of DI water, were
mixed after sonication for 8 min, separately. Subsequently, 200 µL of hydrazine hydrate
(N2H4•H2O) was added dropwise into the aqueous mixture and sonicated again for 25 min.
The aqueous mixture was kept at 200 ◦C for 10 h in a Teflon-lined autoclave in an oven.
The obtained product was rinsed in succession with water and ethanol five times. Finally,
the product was dispersed into 3.0 mL of water and frozen-dried to obtain solid powder.

For comparison, Cu2O nanocrystals were synthesized similarly to the preparation
of MoS2@Cu2O nanohybrid, but with the addition of 150 µL N2H4•H2O and without
added (NH4)2MoS4. Furthermore, MoS2 nanoflowers were also synthesized in a similar
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manner as in the preparation of the MoS2@Cu2O nanohybrid, but with the addition of
50 µL N2H4•H2O and without Cu(NO3)2•3H2O.

The preparation of gold nanoparticles was based on previous reports [35]. Briefly,
HAuCl4 aqueous solution (0.01%, 100 mL) was heated to boil with vigorous stirring.
Afterwards, trisodium citrate solution (1%, 2.5 mL) was added into the boiling HAuCl4
solution, resulting in a color change from light yellow to deep red. After the color change,
heating was continued for another 15 min. The resultant solution was allowed to cool to
ambient temperature and stored at 4 ◦C for further use.

In the following step, 10 mg synthesized MoS2@Cu2O powder was dispersed in 10 mL
of freshly prepared AuNPs solution under constant stirring for 24 h. The resultant product
was rinsed with DI water and ethanol to remove excess AuNPs. Finally, the sediments were
dried in a vacuum oven and referred to as MoS2@Cu2O-Au. MoS2@Cu2O-Au nanoparticles
were characterized by scanning electron microscopy (SEM, Zeiss EVO-MA) and transmis-
sion electron microscopy (TEM, Titan 3 Themis G2, ThermoFisher Scientific). The elemental
mapping for SEM images was carried out by energy-dispersive X-ray spectroscopy (EDS).

Four milligrams of MoS2@Cu2O-Au conjugate was ultrasonically dispersed in 1.0 mL
ultrapure water. Subsequently, 20 µg/mL Ab2 (1 mL) was added in solution dropwise and
shaken at 4 ◦C for 12 h. The mixture was centrifuged and rinsed with DI water to remove
unbound Ab2. Then, the precipitates were redispersed in 1 mL DI water and stored at 4 ◦C.

2.3. Fabrication of SAW Device

The SAW devices were fabricated on a single-side, polished, 36◦-rotated Y-cut and
X-propagation LiTaO3 wafers. The SAW sensors were designed at a center frequency of
175 MHz. The input and output interdigital transducer (IDT) of each sensor contained
36 finger pairs with an electrode width and wavelength of 6 and 24 µm, respectively. First,
the wafers were rinsed sequentially with acetone, isopropyl alcohol, followed by DI water,
and dried with nitrogen gas. The IDT patterns were fabricated as follows. A negative
photoresist (sunlift1303) was spin-coated on the piezoelectric wafer after solvent cleaning.
After prebaking (65 ◦C/30 s and 95 ◦C/90 s), the coated wafer was exposed to a UV light
source for 2.1 s, followed by another baking round (65 ◦C/20 s and 95 ◦C/20 s). Finally, the
wafer was treated with the developer solution for 25 s, followed by washing with acetone.

The delay line area (space between two IDTs) with dimensions of 9.2 mm × 7.2 mm
was used for the immunoreaction. The Ti/Au (20/50 nm) thin film was deposited by
electron beam physical evaporation on the delay line of SAW devices.

2.4. Immobilization of Ab1 on Delay Line of SAW

First, the Au-coated delay line area of the SAW sensor was cleaned with Piranha
solution (30% H2O2: concentrated H2SO4 = 1:3) for 5 min. Then, the sensor was rinsed
with DI water and ethanol, followed by drying with nitrogen gas. The same cleaning
steps were used after each chemical treatment. Afterwards, the delay line was soaked in
mercaptoacetic acid (50 mM) for 16 h and rinsed with ethanol and DI water to remove
the excess. In the following step, the delay line was treated with a 1:1 mixture solution of
NHS (100 mM) and EDC (400 mM) in pure methanol for 2 h to activate the surface. After
solvent cleaning and drying, the delay line was incubated with 100 µg/mL of Ab1 at 4 ◦C
overnight. Then, it was treated with 3% BSA in PBS for 3 h to block nonspecific adsorption.
Finally, the delay line of the SAW sensor was washed with PBS, followed by drying with
nitrogen gas. The immobilization of Ab1 on delay line of SAW sensor was confirmed using
contact angle measurement system (CAG100 Contact Angle Goniometer, Beijing United
Test Co., Ltd., Beijing, China), QCM frequency measurements (QCM-I, MicroVacuum Ltd.,
Budapest, Hungary), optical microscopy (CX40 Biological Optical Microscope, Ningbo
Sunny Technology Co., Ltd., Zhejiang, China), and scanning electron microscopy (SEM,
Zeiss EVOMA).
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2.5. SAW-Based Sandwich Immunoassay

The SAW measurement system comprises an injection pump, microfluidic chamber,
network analyzer, and personal computer (PC), as shown in Figure 2. A specially designed
microfluidic channel was fabricated to obtain automated quantitative sample injection.
The injection pump (TS-1B syringe pump system, Longer Precision Pump Co., Ltd, Hebei,
China) was used for injecting sample solutions on the surface of the SAW sensor placed in
the microfluidic chamber, at a flow velocity of 25 µL/min (Figure 2).
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Figure 2. Experimental setup of SAW immunosensor, including a syringe pump, microfluidic
chamber, network analyzer, and PC.

The immunoreaction was performed as follows. First, 10 mM PBS was allowed to
flow on the sensor surface placed in the microfluidic chamber at 25 µL/min to obtain
a stable signal of the center frequency. Then, the AFP sample solution (in PBS) was
incubated with MoS2@Cu2O-Au-Ab2 conjugates, and this mixture was allowed to flow on
the sensor surface at 5 µL/min. After PBS washing, the gold staining solution comprising
20 mM hydroxylamine hydrochloride and 10 mM gold (III) chloride trihydrate was injected.
Finally, the delay line was washed again with PBS until an equilibrate signal of center
frequency was achieved.

AFP solutions of 0.01 to 50 ng/mL concentrations were tested using this immunoassay.
Each concentration of AFP was tested in triplicate, and the shift in the center frequency
for the immunoreaction was recorded as the mean ± standard deviation (SD) to evaluate
the repeatability. The center frequency change for each test was recorded using a network
analyzer, Keysight Technologies, E5071C. Data were recorded in real time by a specific
program based on LabVIEW software.

3. Results and Discussion
3.1. Characterization of MoS2@Cu2O-Au

The morphology of MoS2@Cu2O-Au nanoparticles at various stages of synthesis was
characterized by scanning electron microscopy (SEM). Figure 3A shows the SEM image
of the as-synthesized Cu2O nanocrystals with an average size of ~80–120 nm. Similarly,
the SEM and TEM images of as-synthesized MoS2 exhibited a flower-like morphology
with a large surface area (Figure 3B,E). Upon the addition of Cu2O nanocrystals to the
solution during MoS2 nanoflower synthesis, Cu2O nanocrystals were dispersed with
MoS2 nanoflowers, which results in the formation of coral-like MoS2@Cu2O nanohybrids
(Figure 3C). The uniform dispersion of the MoS2@Cu2O nanohybrid was further confirmed
by TEM (Figure 3G). When gold nanoparticles (AuNPs) were added to the MoS2@Cu2O
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nanohybrid, the surface morphology changed significantly (Figure 3D,H). Numerous
AuNPs were loaded on the MoS2@Cu2O nanohybrid by vigorous shaking, as observed
in the TEM image of MoS2@Cu2O-Au (Figure 3H). The diameter of AuNPs is ~13 nm,
measured using the TEM image (Figure 3F).
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The elemental composition of MoS2@Cu2O-Au was characterized by SEM-EDS ele-
mental mapping, as shown in Figure S1. From these images, the presence of Au, Mo, O,
Cu, and S elements in this material is clearly observed, which is further verified by the
energy-dispersive X-ray (EDX) spectra of MoS2@Cu2O-Au in Figure S2. The elemental
mapping indicates successful synthesis of MoS2@Cu2O-Au nanoparticles.

3.2. Preparation and Characterization of Self-Assembled Monolayer (SAM)

The scheme of a sandwich-type SAW immunosensor for the detection of AFP is
presented in Figure 1. First, an oriented mercaptoacetic acid monolayer can be directly
formed on the Au-coated SAW surface via strong Au-S bonds, with the tail carboxylic
groups oriented at the interface [36]. Upon activation with EDC and NHS, carboxylic
groups were replaced with ester groups. Finally, ester groups were replaced by amine
groups of primary antibodies (Ab1), which resulted in the immobilization of Ab1 on
the SAW surface as a SAM layer. The immobilization of Ab1 on the sensor surface was
characterized by QCM frequency measurements based on previous reports [28]. Figure 4A
shows the typical sensorgram for each step of QCM electrode fabrication. The bare electrode
(Au coated) was adopted as a reference (Curve a). Curve b shows the decrease in the QCM
frequency due to the binding of MPA on the sensor surface, resulting from its reaction with
the gold-coated electrode. The frequency decreased further as the electrode was incubated
with NHS/EDC, showing coupling of the molecules on the sensor surface (Curve c). A
significant frequency shift was observed when Ab1 was injected on the electrode surface,
indicating mass loading on the sensor surface (Curve d). These results confirmed the
immobilization of Ab1 onto the electrode surface.
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Figure 4. QCM responses (A) of bare electrode (a), MPA-treated electrode a (b), NHS/EDC-treated
electrode B (c), and Ab1-functionalized electrode C (d); SEM images of delay line before (B) and after
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SEM images were also used to verify the immobilization of the Ab1 on the delay line of
the SAW surface. Figure 4C clearly shows the added thin layer of SAM on the SAW surface
compared to the blank control in Figure 4B. These results are in agreement with previous
reports [37]. The successful formation of SAM was confirmed further by measuring the
contact angle of water droplets on the delay line of the SAW surface (Figure 5). As shown
in Figure 5B, the contact angle was reduced from 79◦ to 26◦ after the formation of SAM.
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The contact angles were drastically reduced after the formation of the SAM bioreceptor
because of the adsorption of hydrophilic antibody molecules. The adsorbed polar biological
molecules attract water molecules, resulting in a reduced contact angle after the formation
of SAM. These results demonstrate the successful capture of Ab1 on the delay line of the
SAW surface, as anticipated.

Optical microscopy images were further used to verify the immobilization of Ab1 on
the delay line of the SAW surface. As shown in Figure S3Ab, the SAM-coated delay line
distinctly shows the captured antibody molecules, which are absent from the blank control
group. The capture of antibody molecules on the delay line was further confirmed using
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FITC-labeled primary antibody (Ab1-FITC). As presented in Figure S3Bb, the fluorescent
effect was observed only after the formation of SAM, indicating the successful capture of
antibodies on the SAW surface, whereas the blank control remained dark, suggesting that
no antibody was captured.

3.3. Real-Time Detection Studies with SAW Immunosensor

The typical response–time curve of the SAW immunosensor is presented in Figure 6A.
At first, PBS was pumped through the chamber until stabilization of the center frequency
baseline. Then, the AFP antigen mixed with MoS2@Cu2O-Au-Ab2 conjugate was allowed
to selectively bind with the specific antibodies in the flow cell, causing a large shift in the
center frequency. The signals were amplified further, as the gold staining solution was
introduced on the sensor surface, inducing gold deposition onto the captured AuNPs.
The real-time detection curve indicates the successful binding of target AFP with specific
antibodies and subsequent mass enhancement by gold staining. The frequency shift
observed upon injection of AFP solution incubated with Ab2 (without conjugation with
MoS2@Cu2O-Au nanoparticle) is shown in Figure S4.
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Figure 6. Real-time detection of AFP (A); frequency shifts observed upon injection of gold staining
solution (after the injection of AFP solution mixed with MoS2@Cu2O-Au-Ab2 conjugates) at varying
concentrations from top to bottom in the order of 0, 0.01, 0.03, 0.1, 0.5, 1.0, 10, 20, and 50 ng/mL of
AFP. The inset shows the magnification of the curve for 0, 0.01, and 0.03 ng/mL concentrations of
AFP (B); frequency shifts observed as a function of AFP concentration with (solid line) and without
gold staining (dotted line) on a log-log coordinate (C).

3.4. Quantification of AFP

To investigate the sensitivity of sandwich-type SAW immunosensor, various concen-
trations of AFP ranging from 0.01 to 50 ng/mL were tested and exposed to respective
concentrations of gold staining solution. The real-time frequency shifts of the gold staining
at different concentrations of AFP are presented in Figure 6B.

The center frequency shifts at saturation with different concentrations of AFP were
extracted from real-time curves (Figure 6B) and normalized to fit into one plot (Figure
6C). In this graph, the center frequency value for each concentration is blank (without
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AFP) subtracted. In double logarithmic coordinates, a linear relationship between the
center frequency shift and AFP concentration is obtained, with a correlation coefficient of
0.9942 (Figure 6C, solid line). The limit of detection (LOD) was estimated at 5.5 pg/mL for
AFP with gold staining, calculated as the blank frequency shift by PBS + 3 × noise [38].
The LOD of the present immunosensor was significantly better than various piezoelectric
immunosensors reported for the detection of AFP [39–41].

The analytical properties of the immunosensor were also tested without gold staining.
A linear dependence was observed between the center frequency shift and AFP concentra-
tion ranging from 0.03 to 50 ng/mL on a log-log coordinate with the correlation coefficient
of 0.9958. The LOD was estimated at 25 pg/mL for AFP in the absence of gold staining
(Figure 6C, dotted line).

The excellent performance of the LSAW immunosensor might be attributed to two
factors. First, MoS2@Cu2O-Au nanoparticles with high specific surface area and great
biocompatibility not only increased the number of captured Ab2 but also magnified the
mass loading on the sensor surface, resulting in high sensitivity even without gold staining.
Similarly, gold staining as a signal amplification strategy further improved the sensitivity
of immunosensor, resulting in an extremely low LOD for AFP.

3.5. Immunosensor Selectivity

The selectivity of the immunosensor has been evaluated for its vital role in examining
biological fluids in situ without separation. The selectivity analysis was conducted by
testing AFP and other interfering substances, such as the carcinoembryonic antigen (CEA),
tryptophan, prostate-specific antigen (PSA), and BSA, each at a concentration of 10 ng/mL.
As shown in Figure 7A, the immunosensor did not exhibit any considerable affinity for
the nonspecific analytes. A large frequency shift was observed only for the target AFP,
while no significant frequency shift was detected corresponding to any nonspecific targets,
indicating an acceptable selectivity of the developed immunosensor.
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Figure 7. Comparison of gold staining amplified responses of the SAW immunosensor for AFP
with nonspecific targets: concentrations of analytes were 10 ng/mL AFP, 10 ng/mL PSA, 10 ng/mL
CEA, 10 ng/mL L-tryptophan, 10 ng/mL BSA, and 0 ng/mL AFP. (A) Storage stability of the SAW
immunosensor at 4 ◦C. Error bars show the mean ± SD of three measurements (B).

3.6. Detection of AFP in Biological Fluids

To evaluate the practical applicability of the proposed immunosensor, the results
of APF detection in human serum and saliva samples were used as an effective analysis
base. First, serum and saliva samples were diluted with PBS (2.5 fold); then, a standard
concentration of AFP was added to each sample. Subsequently, the spiked samples were
tested by the LSAW immunosensor, and the results are listed in Table 1. The obtained
recovery values are in the satisfactory range of 95–108%.
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Table 1. Detection of AFP in human saliva and serum samples.

Sample Added
(ng/mL)

Found
(ng/mL)

Recovery (%)
n = 3

Human serum 0.50 0.53 (±0.03) 106
2.0 2.17 (±0.13) 108
5.0 5.11 (±0.45) 102

Human saliva 0.5 0.47 (±0.02) 94
2.0 2.07 (±0.15) 103
5.0 4.75 (±0.31) 95

Moreover, the commercially available ELISA method was employed as a reference
method to validate the LSAW immunosensor. The data show good agreement between
the two methods with high accuracy (Table 2). These results suggest that the proposed
immunosensor is reliable for the detection of AFP in complex biological fluids.

Table 2. Comparison of the ELISA method for detection of human serum and saliva samples.

Sample Elisa
(ng/mL)

Proposed Method
(ng/mL)

Human serum 0.47 (± 0.01) 0.53 (± 0.03)
2.13 (± 0.17) 2.09 (± 0.12)
5.42 (± 0.37) 5.25 (± 0.47)

Human saliva 0.52 (± 0.04) 0.49 (± 0.02)
2.19 (± 0.12) 2.18 (± 0.14)
5.38 (± 0.40) 4.69 (± 0.30)

The analytical properties of the LSAW immunosensor have been compared with
previous reports in terms of their detection of AFP, and the results are summarized in
Table S1. The LOD of the LSAW immunosensor was either comparable or superior to other
detection methods, and our assay worked efficiently for different kinds of biological fluids,
a factor not addressed in most of the reported methods in terms of AFP detection.

The LSAW immunosensor not only quantitatively detects the concentration of AFP
but also monitors the capture of AFP by its specific antibodies in real time. Real-time
detection provides information about the dynamics of antibody–antigen interaction and
may facilitate real-time drug testing technology.

Moreover, the immunosensor operates under a continuous flow mode, making it par-
ticularly suitable for the direct detection of tumor markers in clinical samples, eliminating
the need for pretreatment of clinical samples. This enables rapid analysis of clinical samples
with a considerable reduction in the assay cost.

3.7. Long-Term Stability

Long-term stability of the LSAW immunosensor was tested for 5 weeks. The fabri-
cated immunosensor was stored at 4 ◦C and tested for 50 ng/mL of AFP intermittently
every week. According to Figure 7B, the center frequency response was about 70% of
the initial value after 5 weeks, confirming excellent long-term storage stability of the
SAW immunosensor.

4. Conclusions

We developed an ultrasensitive, sandwich-type leaky surface acoustic wave (LSAW)
immunosensor based on coral MoS2@Cu2O-Au nanoparticles and subsequent gold staining
for the real-time detection of alpha-fetoprotein (AFP) in biological fluids. A markedly en-
hanced sensitivity of the immunosensor was achieved by labeling the secondary antibodies
with MoS2@Cu2O-Au nanoparticles. The detection sensitivity was increased further by
employing gold staining as a signal amplification strategy. The proposed immunosensor
exhibited long-term stability and satisfactory selectivity with an ultralow detection limit
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for AFP. These merits make our LSAW sensing platform prospective as an impressive novel
method for ultrasensitive detection of AFP in clinical applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/chemosensors9110311/s1, Figure S1: Elemental mapping of MoS2@Cu2O-Au, Figure S2:
EDX spectra of MoS2@Cu2O-Au, Figure S3: Optical microscopic images of the delay line before and
after immobilization of Ab1 and FITC-Ab1, Figure S4: Frequency shift observed upon injection of
AFP solution incubated with Ab2, Table S1: Comparison of other methods for detection of AFP with
SAW based immunosensor.
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