pH-Dependent Selective Colorimetric Detection of Proline and Hydroxyproline with Meldrum’s Acid-Furfural Conjugate
Abstract
:1. Introduction
2. Materials and Methods
2.1. UV-Vis Measurements
2.2. NMR-Measurements
2.3. MAFC-Synthesis
3. Results and Discussion
3.1. pH-Dependency of MAFC Reaction with All AA at Neutral and Alkaline pH
3.2. LOD in MAFC based Proline Sensing
3.3. Job Plot of MAFC-Proline Reaction
3.4. Time-Dependent Study of MAFC-AA Reaction
3.5. pH Dependency of MAFC-Hydroxyproline Reaction
3.6. LOD in MAFC Based Hydroxyproline Sensing
3.7. NMR Studies on MAFC-AA Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Table of Content
References
- Helmy, S.; Leibfarth, F.A.; Oh, S.; Poelma, J.E.; Hawker, C.J.; Read de Alaniz, J. Photoswitching using visible light: A new class of organic photochromic molecules. J. Am. Chem. Soc. 2014, 136, 8169–8172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Mai, P.; Borowiec, J.; Zhang, Y.; Lei, Y.; Schober, A. Donor-acceptor Stenhouse adduct-grafted polycarbonate surfaces: Selectivity of the reaction for secondary amine on surface. R. Soc. Open Sci. 2018, 5, 180207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, Y.J.; Page, Z.A.; Knight, A.S.; Treat, N.J.; Hemmer, J.R.; Hawker, C.J.; Read de Alaniz, J. A Versatile and Highly Selective Colorimetric Sensor for the Detection of Amines. Chemistry 2017, 23, 3562–3566. [Google Scholar] [CrossRef] [Green Version]
- Jia, S.; Du, J.D.; Hawley, A.; Fong, W.-K.; Graham, B.; Boyd, B.J. Investigation of Donor-Acceptor Stenhouse Adducts as New Visible Wavelength-Responsive Switching Elements for Lipid-Based Liquid Crystalline Systems. Langmuir 2017, 33, 2215–2221. [Google Scholar] [CrossRef] [PubMed]
- Helmy, S.; Oh, S.; Leibfarth, F.A.; Hawker, C.J.; Read de Alaniz, J. Design and synthesis of donor-acceptor Stenhouse adducts: A visible light photoswitch derived from furfural. J. Org. Chem. 2014, 79, 11316–11329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeußel, L.; Mai, P.; Sharma, S.; Schober, A.; Ren, S.; Singh, S. Colorimetric Method for Instant Detection of Lysine and Arginine Using Novel Meldrum’s Acid-Furfural Conjugate. ChemistrySelect 2021, 6, 6834–6840. [Google Scholar] [CrossRef]
- Dean, K.E.S.; Klein, G.; Renaudet, O.; Reymond, J.-L. A green fluorescent chemosensor for amino acids provides a versatile high-throughput screening (HTS) assay for proteases. Bioorg. Med. Chem. Lett. 2003, 13, 1653–1656. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Ma, N.; Jia, X. Poly(ionic liquid) Based Chemosensors for Detection of Basic Amino Acids in Aqueous Medium. Front. Chem. 2017, 5, 69. [Google Scholar] [CrossRef] [Green Version]
- Shahrajabian, M.; Ghasemi, F.; Hormozi-Nezhad, M.R. Nanoparticle-based Chemiluminescence for Chiral Discrimination of Thiol-Containing Amino Acids. Sci. Rep. 2018, 8, 14011. [Google Scholar] [CrossRef] [Green Version]
- Pu, F.; Huang, Z.; Ren, J.; Qu, X. DNA/ligand/ion-based ensemble for fluorescence turn on detection of cysteine and histidine with tunable dynamic range. Anal. Chem. 2010, 82, 8211–8216. [Google Scholar] [CrossRef]
- Zhou, Y.; Yoon, J. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem. Soc. Rev. 2012, 41, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Corradini, R.; Paganuzzi, C.; Marchelli, R.; Pagliari, S.; Sforza, S.; Dossena, A.; Galaverna, G.; Duchateau, A. Design and synthesis of fluorescent beta-cyclodextrins for the enantioselective sensing of alpha-amino acids. Chirality 2003, 15, S30–S39. [Google Scholar] [CrossRef]
- Kwong, H.-L.; Wong, W.-L.; Lee, C.-S.; Yeung, C.-T.; Teng, P.-F. Zinc(II) complex of terpyridine-crown macrocycle: A new motif in fluorescence sensing of zwitterionic amino acids. Inorg. Chem. Commun. 2009, 12, 815–818. [Google Scholar] [CrossRef]
- Li, Z.; Lou, X.; Li, Z.; Qin, J. A new approach to fluorescence “turn-on” sensing of alpha-amino acids. ACS Appl. Mater. Interfaces 2009, 1, 232–234. [Google Scholar] [CrossRef] [PubMed]
- Patel, G.; Menon, S. Recognition of lysine, arginine and histidine by novel p-sulfonatocalix4arene thiol functionalized gold nanoparticles in aqueous solution. Chem. Commun. 2009, 24, 3563–3565. [Google Scholar] [CrossRef]
- Morgan, A.A.; Rubenstein, E. Proline: The distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome. PLoS ONE 2013, 8, e53785. [Google Scholar] [CrossRef] [Green Version]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.; Frank, L. Metabolism of proline and the hydroxyprolines. Annu. Rev. Biochem. 1980, 49, 1005–1061. [Google Scholar] [CrossRef] [PubMed]
- Boctor, F.N. An improved method for colorimetric determination of proline with isatin. Anal. Biochem. 1971, 43, 66–70. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Im, M.K.; Lee, M.R.; Kim, C.S.; Lee, K.-H. Highly sensitive enclosed multilayer paper-based microfluidic sensor for quantifying proline in plants. Anal. Chim. Acta 2020, 1105, 169–177. [Google Scholar] [CrossRef]
- Forlani, G.; Funck, D. A Specific and Sensitive Enzymatic Assay for the Quantitation of L-Proline. Front. Plant Sci. 2020, 11, 582026. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-J.; Kim, H.-J. Highly selective and sensitive fluorescence turn-on probe for proline. Tetrahedron Lett. 2010, 51, 4670–4672. [Google Scholar] [CrossRef]
- Liu, J.-B.; Liu, L.-J.; Dong, Z.-Z.; Yang, G.-J.; Leung, C.-H.; Ma, D.-L. An Aldol Reaction-Based Iridium(III) Chemosensor for the Visualization of Proline in Living Cells. Sci. Rep. 2016, 6, 36509. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Friedel, K.; Himmerlich, M.; Lei, Y.; Schlingloff, G.; Schober, A. Spatiotemporal Photopatterning on Polycarbonate Surface through Visible Light Responsive Polymer Bound DASA Compounds. ACS Macro Lett. 2015, 4, 1273–1277. [Google Scholar] [CrossRef]
- Fan, G.-L.; Liu, Y.-L.; Wang, H. Identification of thermophilic proteins by incorporating evolutionary and acid dissociation information into Chou’s general pseudo amino acid composition. J. Theor. Biol. 2016, 407, 138–142. [Google Scholar] [CrossRef]
- Roberts, C.A.; Allen, S.; Helmy, S. Using Donor–Acceptor Stenhouse Adducts to Teach Photochromism in the Undergraduate Laboratory. J. Chem. Educ. 2021, 98, 1736–1740. [Google Scholar] [CrossRef]
- Doumani, N.; Bou-Maroun, E.; Maalouly, J.; Tueni, M.; Dubois, A.; Bernhard, C.; Denat, F.; Cayot, P.; Sok, N. A New pH-Dependent Macrocyclic Rhodamine B-Based Fluorescent Probe for Copper Detection in White Wine. Sensors 2019, 19, 4514. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.-D.; Chen, T.-Y.; Chen, X.Q.; Bao, X. Multiresponsive Donor-Acceptor Stenhouse Adduct: Opportunities Arise from a Diamine Donor. Org. Lett. 2019, 21, 7445–7449. [Google Scholar] [CrossRef] [PubMed]
- Berg, R.A.; Prockop, D.J. The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem. Biophys. Res. Commun. 1973, 52, 115–120. [Google Scholar] [CrossRef]
- Stoilov, I.; Starcher, B.C.; Mecham, R.P.; Broekelmann, T.J. Measurement of elastin, collagen, and total protein levels in tissues. Methods Cell Biol. 2018, 143, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Pohlídal, A.; Husek, P.; Palicka, V.; Slabík, D.; Hill, M.; Matucha, P. Novel and traditional biomarkers of bone turnover in postmenopausal women. Clin. Chem. Lab. Med. 2003, 41, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Gabr, S.A.; Alghadir, A.H.; Sherif, Y.E.; Ghfar, A.A. Hydroxyproline as a Biomarker in Liver Disease. In Biomarkers in Liver Disease; Patel, V.B., Preedy, V.R., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 471–491. ISBN 978-94-007-7675-3. [Google Scholar]
Assay Method | Sensor Substance | LOD [µM] | LMR [µM] | Advantages/Disadvantages | |
---|---|---|---|---|---|
Colorimetric | Isatin | - | <220 | - stability 1 h - pH 4.1 - inconsistent results through slightes contamination - colored product extraction necessary + no interference with other amino acids | [19] |
Colorimetric | Ninhydrine | 100 | 100–36,000 | - interferences in biological samples - low pH - harsh chemical - reagent stability 24 h t = 1 h, 100 °C + interferences with other amino acids | [20] |
Fluorescence turn-on | Aldol functionalized coumarin | 1.2 | - | - t = 6 h + high selectivity | [23] |
Luminescence | [Ir(ppy)2(5-CHOphen)]PF6 | 0.75 | 2–100 | - metal based - t = 40 min - interferences with other amino acids + detection in living cells & blood + detection in highly autofluorescent samples | [24] |
Enzymatic | Recombinant enzymes from Arabidopsis thaliana and Oryza sativa | - | 100–350 | + higher specifity than ninhydrin methods - bacterial cultures necessary - narrow pH range + t = 10–15 min + no harmful chemicals + low volume | [22] |
Colorimetric | Ninhydrin | 23 | 23–100 | - lengthy preparation - strong acids needed + Sample volume 100 µL | [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeußel, L.; Aziz, C.; Schober, A.; Singh, S. pH-Dependent Selective Colorimetric Detection of Proline and Hydroxyproline with Meldrum’s Acid-Furfural Conjugate. Chemosensors 2021, 9, 343. https://doi.org/10.3390/chemosensors9120343
Zeußel L, Aziz C, Schober A, Singh S. pH-Dependent Selective Colorimetric Detection of Proline and Hydroxyproline with Meldrum’s Acid-Furfural Conjugate. Chemosensors. 2021; 9(12):343. https://doi.org/10.3390/chemosensors9120343
Chicago/Turabian StyleZeußel, Lisa, Carlos Aziz, Andreas Schober, and Sukhdeep Singh. 2021. "pH-Dependent Selective Colorimetric Detection of Proline and Hydroxyproline with Meldrum’s Acid-Furfural Conjugate" Chemosensors 9, no. 12: 343. https://doi.org/10.3390/chemosensors9120343
APA StyleZeußel, L., Aziz, C., Schober, A., & Singh, S. (2021). pH-Dependent Selective Colorimetric Detection of Proline and Hydroxyproline with Meldrum’s Acid-Furfural Conjugate. Chemosensors, 9(12), 343. https://doi.org/10.3390/chemosensors9120343