Functionalization of Screen-Printed Sensors with a High Reactivity Carbonaceous Material for Ascorbic Acid Detection in Fresh-Cut Fruit with Low Vitamin C Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. HRCM and MWCNT Characterization
2.3. Functionalization and Morphological Characterization of SPEs
- -
- The HRCM was micronized with an ultracentrifugal mill RETSCH ZM 200 (RETSCH GmbH Retsch-Allee 1-5 42781 Haan Germany) for 1 min at 201.24 g (6000 rpm with rotor radius = 0.5 cm) in order to break the agglomerates and reduce the particles size to <40 µm;
- -
- The HRCM and MWCNTs were suspended in DMF in accordance with [51], and the following suspensions were obtained: 5, 10, and 50 mg/mL of MWCNTs/DMF and 5 and 10 mg/mL of HRCM/DMF;
- -
- The suspensions were ultrasonicated at a frequency of 45 kHz for 3 h by an ultrasonic cleaner (USC 1200 DVWR international bvba, sprl B-3001 Leuven);
- -
- Before the deposition of the HRCM and MWCNTs, the surface of the WE of a group of SPEs was activated by 10 cycles of CV at an applied potential (Eapp) from −1.4 to +1.7 V at a scan rate of 100 mV/sec in a 0.1 M sodium bicarbonate solution [52] to promote nanostructuring. A second group of sensors was instead nanostructured without activation of the transducer.
2.4. Electrochemical Characterization of SPEs
2.5. AA Electrochemical Detection in Real Samples
2.6. Statistical Analysis
3. Results
3.1. Morphological Characterization of HCRM and MWCNT and Functionalized SPEs
3.2. Electrochemical Characterization of SPEs
3.2.1. Preliminary Investigation of the Voltametric Behavior of AA at Functionalized SPEs
3.2.2. Study of the Mechanism of AA Electrochemical Oxidation on the WEs Surface
3.2.3. Calculation of the Electroactive Area of Functionalized SPEs
3.2.4. Chronoamperometry
3.3. AA Calibration, LOD and Aging of SPEs
3.4. AA Electrochemical Detection in Watermelon and Apple Juice Samples
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.K.; Kader, A.A. Preharvest and Postharvest Factors Influencing Vitamin C Content of Horticultural Crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.; Herrero, M.; Mendiola, J.A.; Oliva-Teles, M.T.; Ibáñez, E.; Delerue-Matos, C.; Oliveira, M.B.P.P. Fresh-Cut Aromatic Herbs: Nutritional Quality Stability during Shelf-Life. LWT—Food Sci. Technol. 2014, 59, 101–107. [Google Scholar] [CrossRef]
- Gil, M.I.; Amodio, M.L.; Colelli, G. Chapter 7—CA/MA on Bioactive Compounds; Gil, M.I., Beaudry, R.B.T.-C., Fresh, M.A., for Produce, F.-C., Eds.; Academic Press: London, UK, 2020; pp. 131–146. ISBN 978-0-12-804599-2. [Google Scholar]
- Barberis, A.; Fadda, A.; Schirra, M.; Bazzu, G.; Serra, P.A. Detection of Postharvest Changes of Ascorbic Acid in Fresh-Cut Melon, Kiwi, and Pineapple, by Using a Low Cost Telemetric System. Food Chem. 2012, 135, 1555–1562. [Google Scholar] [CrossRef]
- Spinardi, A.; Ferrante, A. Effect of Storage Temperature on Quality Changes of Minimally Processed of Baby Lettuce. J. Food Agric. Environ. 2012, 10, 38–42. [Google Scholar]
- Cocetta, G.; Baldassarre, V.; Spinardi, A.; Ferrante, A. Effect of Cutting on Ascorbic Acid Oxidation and Recycling in Fresh-Cut Baby Spinach (Spinacia Oleracea L.) Leaves. Postharvest Biol. Technol. 2014, 88, 8–16. [Google Scholar] [CrossRef]
- Tsironi, T.; Dermesonlouoglou, E.; Giannoglou, M.; Gogou, E.; Katsaros, G.; Taoukis, P. Shelf-Life Prediction Models for Ready-to-Eat Fresh Cut Salads: Testing in Real Cold Chain. Int. J. Food Microbiol. 2017, 240, 131–140. [Google Scholar] [CrossRef]
- Spissu, Y.; Barberis, A.; D’hallewin, G.; Orrù, G.; Scano, A.; Serra, G.R.; Pinna, M.; Pinna, C.; Marceddu, S.; Serra, P.A. An Ascorbate Bluetooth© Analyzer for Quality Control of Fresh-Cut Parsley Supply Chain. Antioxidants 2021, 10, 1485. [Google Scholar] [CrossRef]
- Barberis, A.; Cefola, M.; Pace, B.; Azara, E.; Spissu, Y.; Serra, P.A.; Logrieco, A.F.; D’hallewin, G.; Fadda, A. Postharvest Application of Oxalic Acid to Preserve Overall Appearance and Nutritional Quality of Fresh-Cut Green and Purple Asparagus during Cold Storage: A Combined Electrochemical and Mass-Spectrometry Analysis Approach. Postharvest Biol. Technol. 2019, 148, 158–167. [Google Scholar] [CrossRef]
- Barberis, A.; Deiana, M.; Spissu, Y.; Azara, E.; Fadda, A.; Serra, P.A.; D’hallewin, G.; Pisano, M.; Serreli, G.; Orrù, G.; et al. Antioxidant, Antimicrobial, and other Biological Properties of Pompia Juice. Molecules 2020, 25, 3186. [Google Scholar] [CrossRef] [PubMed]
- Barberis, A.; Spissu, Y.; Bazzu, G.; Fadda, A.; Azara, E.; Sanna, D.; Schirra, M.; Serra, P.A. Development and Characterization of an Ascorbate Oxidase-Based Sensor–Biosensor System for Telemetric Detection of AA and Antioxidant Capacity in Fresh Orange Juice. Anal. Chem. 2014, 86, 8727–8734. [Google Scholar] [CrossRef] [PubMed]
- Barberis, A.; Spissu, Y.; Fadda, A.; Azara, E.; Bazzu, G.; Marceddu, S.; Angioni, A.; Sanna, D.; Schirra, M.; Serra, P.A. Simultaneous Amperometric Detection of Ascorbic Acid and Antioxidant Capacity in Orange, Blueberry and Kiwi Juice, by a Telemetric System Coupled with a Fullerene- or Nanotubes-Modified Ascorbate Subtractive Biosensor. Biosens. Bioelectron. 2015, 67, 214–223. [Google Scholar] [CrossRef]
- Wang, J.; Musameh, M. Carbon Nanotube Screen-Printed Electrochemical Sensors. Analyst 2004, 129, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Desimoni, E.; Brunetti, B. About Estimating the Limit of Detection by the Signal to Noise Approach. Pharm. Anal. Acta 2015, 6, 355. [Google Scholar]
- Wang, J.; Tian, B.; Nascimento, V.B.; Angnes, L. Performance of Screen-Printed Carbon Electrodes Fabricated from Different Carbon Inks. Electrochim. Acta 1998, 43, 3459–3465. [Google Scholar] [CrossRef]
- Fanjul-Bolado, P.; Hernández-Santos, D.; Lamas-Ardisana, P.J.; Martín-Pernía, A.; Costa-García, A. Electrochemical Characterization of Screen-Printed and Conventional Carbon Paste Electrodes. Electrochim. Acta 2008, 53, 3635–3642. [Google Scholar] [CrossRef]
- Talarico, D.; Arduini, F.; Constantino, A.; Del Carlo, M.; Compagnone, D.; Moscone, D.; Palleschi, G. Carbon Black as Successful Screen-Printed Electrode Modifier for Phenolic Compound Detection. Electrochem. Commun. 2015, 60, 78–82. [Google Scholar] [CrossRef]
- Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A Voltammetric Sensor for Simultaneous Determination of Vitamin C and Vitamin B6 in Food Samples Using ZrO2 Nanoparticle/Ionic Liquids Carbon Paste Electrode. Food Anal. Methods 2015, 8, 549–557. [Google Scholar] [CrossRef]
- He, B.-S.; Zhang, J.-X. Rapid Detection of Ascorbic Acid Based on a Dual-Electrode Sensor System Using a Powder Microelectrode Embedded with Carboxyl Multi-Walled Carbon Nanotubes. Sensors 2017, 17, 1549. [Google Scholar] [CrossRef] [Green Version]
- Marian, I.O.; Sãndulescu, R.; Bonciocat, N. Diffusion Coefficient (or Concentration) Determination of Ascorbic Acid Using Carbon Paste Electrodes in Fredholm Alternative. J. Pharm. Biomed. Anal. 2000, 23, 227–230. [Google Scholar] [CrossRef]
- García-Miranda Ferrari, A.; Foster, C.W.; Kelly, P.J.; Brownson, D.A.C.; Banks, C.E. Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms. Biosensors 2018, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Hussain, C.M.; Mitra, S. Micropreconcentration Units Based on Carbon Nanotubes (CNT). Anal. Bioanal. Chem. 2011, 399, 75–89. [Google Scholar] [CrossRef]
- Zhang, B.-T.; Zheng, X.; Li, H.-F.; Lin, J.-M. Application of Carbon-Based Nanomaterials in Sample Preparation: A Review. Anal. Chim. Acta 2013, 784, 1–17. [Google Scholar] [CrossRef]
- Pérez-López, B.; Merkoçi, A. Carbon Nanotubes and Graphene in Analytical Sciences. Microchim. Acta 2012, 179, 1–16. [Google Scholar] [CrossRef]
- Scida, K.; Stege, P.W.; Haby, G.; Messina, G.A.; García, C.D. Recent Applications of Carbon-Based Nanomaterials in Analytical Chemistry: Critical Review. Anal. Chim. Acta 2011, 691, 6–17. [Google Scholar] [CrossRef] [Green Version]
- Hrapovic, S.; Liu, Y.; Male, K.B.; Luong, J.H.T. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes. Anal. Chem. 2004, 76, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Puggioni, G.; Calia, G.; Arrigo, P.; Bacciu, A.; Bazzu, G.; Migheli, R.; Fancello, S.; Serra, P.A.; Rocchitta, G. Low-Temperature Storage Improves the Over-Time Stability of Implantable Glucose and Lactate Biosensors. Sensors 2019, 19, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.-J.; Lyu, Y.-K.; Choi, H.N.; Lee, W.-Y. Amperometric Tyrosinase Biosensor Based on Carbon Nanotube–Titania–Nafion Composite Film. Electroanalysis 2007, 19, 1048–1054. [Google Scholar] [CrossRef]
- Amatatongchai, M.; Laosing, S.; Chailapakul, O.; Nacapricha, D. Simple Flow Injection for Screening of Total Antioxidant Capacity by Amperometric Detection of DPPH Radical on Carbon Nanotube Modified-Glassy Carbon Electrode. Talanta 2012, 97, 267–272. [Google Scholar] [CrossRef]
- Lawal, A.T. Synthesis and Utilisation of Graphene for Fabrication of Electrochemical Sensors. Talanta 2015, 131, 424–443. [Google Scholar] [CrossRef]
- Cinti, S.; Arduini, F. Graphene-Based Screen-Printed Electrochemical (Bio)Sensors and Their Applications: Efforts and Criticisms. Biosens. Bioelectron. 2017, 89, 107–122. [Google Scholar] [CrossRef]
- Peplow, M. Graphene: The Quest for Supercarbon. Nature 2013, 503, 327–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanovskii, A.L. Graphene-Based and Graphene-like Materials. Russ. Chem. Rev. 2012, 81, 571–605. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Wick, P.; Louw-Gaume, A.E.; Kucki, M.; Krug, H.F.; Kostarelos, K.; Fadeel, B.; Dawson, K.A.; Salvati, A.; Vázquez, E.; Ballerini, L.; et al. Classification Framework for Graphene-Based Materials. Angew. Chem. Int. Ed. 2014, 53, 7714–7718. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small 2011, 7, 1876–1902. [Google Scholar] [CrossRef] [PubMed]
- Compton, O.C.; Nguyen, S.T. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small 2010, 6, 711–723. [Google Scholar] [CrossRef]
- Song, H.; Zhang, X.; Liu, Y.; Su, Z. Developing Graphene-Based Nanohybrids for Electrochemical Sensing. Chem. Rec. 2019, 19, 534–549. [Google Scholar] [CrossRef]
- Zou, Z.; Xi, W.; Hu, Y.; Nie, C.; Zhou, Z. Antioxidant Activity of Citrus Fruits. Food Chem. 2016, 196, 885–896. [Google Scholar] [CrossRef]
- Ping, J.; Wang, Y.; Ying, Y.; Wu, J. Application of Electrochemically Reduced Graphene Oxide on Screen-Printed Ion-Selective Electrode. Anal. Chem. 2012, 84, 3473–3479. [Google Scholar] [CrossRef]
- Ping, J.; Wu, J.; Wang, Y.; Ying, Y. Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid Using High-Performance Screen-Printed Graphene Electrode. Biosens. Bioelectron. 2012, 34, 70–76. [Google Scholar] [CrossRef]
- Mehta, J.; Vinayak, P.; Tuteja, S.K.; Chhabra, V.A.; Bhardwaj, N.; Paul, A.K.; Kim, K.-H.; Deep, A. Graphene Modified Screen Printed Immunosensor for Highly Sensitive Detection of Parathion. Biosens. Bioelectron. 2016, 83, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Somnet, K.; Thimoonnee, S.; Karuwan, C.; Kamsong, W.; Tuantranont, A.; Amatatongchai, M. Ready-to-Use Paraquat Sensor Using a Graphene-Screen Printed Electrode Modified with a Molecularly Imprinted Polymer Coating on a Platinum Core. Analyst 2021, 146, 6270–6280. [Google Scholar] [CrossRef]
- Materón, E.M.; Wong, A.; Freitas, T.A.; Faria, R.C.; Oliveira, O.N. A Sensitive Electrochemical Detection of Metronidazole in Synthetic Serum and Urine Samples Using Low-Cost Screen-Printed Electrodes Modified with Reduced Graphene Oxide and C60. J. Pharm. Anal. 2021, 11, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.S.; Bang, H.; Lee, E.J.; Crosby, K.; Patil, B.S. Variation of Carotenoid, Sugar, and Ascorbic Acid Concentrations in Watermelon Genotypes and Genetic Analysis. Hortic. Environ. Biotechnol. 2012, 53, 552–560. [Google Scholar] [CrossRef]
- Bhattacharjee, C.; Saxena, V.K.; Dutta, S. Watermelon Juice Concentration Using Ultrafiltration: Analysis of Sugar and Ascorbic Acid. Food Sci. Technol. Int. 2017, 23, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Felicetti, E.; Mattheis, J.P. Quantification and Histochemical Localization of Ascorbic Acid in ‘Delicious’, ‘Golden Delicious’, and ‘Fuji’ Apple Fruit during on-Tree Development and Cold Storage. Postharvest Biol. Technol. 2010, 56, 56–63. [Google Scholar] [CrossRef]
- Kim, A.-N.; Lee, K.-Y.; Rahman, M.S.; Kim, H.-J.; Kerr, W.L.; Choi, S.-G. Thermal Treatment of Apple Puree under Oxygen-Free Condition: Effect on Phenolic Compounds, Ascorbic Acid, Antioxidant Activities, Color, and Enzyme Activities. Food Biosci. 2021, 39, 100802. [Google Scholar] [CrossRef]
- Petrik, V.I. Mass Production of Carbon Nanostructures. U.S. Patent 7842271B2, 30 November 2010. [Google Scholar]
- Manea, F.; Motoc, S.; Pop, A.; Remes, A.; Schoonman, J. Silver-Functionalized Carbon Nanofiber Composite Electrodes for Ibuprofen Detection. Nanoscale Res. Lett. 2012, 7, 331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zare, H.R.; Nasirizadeh, N. Fabrication, Characterization and Analytical Performance of the Hydroxylamine Sensor Based on an Oracet Blue Multi-Walled Carbon Nanotubes Film Deposited on an Electrode Surface. J. Braz. Chem. Soc. 2012, 23, 1070–1077. [Google Scholar] [CrossRef] [Green Version]
- da Cruz, A.G.B.; Wardell, J.L.; Rocco, A.M. A Novel Material Obtained by Electropolymerization of Polypyrrole Doped with [Sn(Dmit)3]2−, [Tris(1,3-Dithiole-2-Thione-4,5-Dithiolato)-Stannate]2−. Synth. Met. 2006, 156, 396–404. [Google Scholar] [CrossRef]
- Regulation (EC) No 852/2004 of the European Parliament and of the Council of 29 April 2004 on the Hygiene of Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32004R0852 (accessed on 31 October 2021).
- Ball, G.F.M. Vitamin C BT—Bioavailability and Analysis of Vitamins in Foods; Ball, G.F.M., Ed.; Springer: Boston, MA, USA, 1998; pp. 517–560. ISBN 978-1-4899-3414-7. [Google Scholar]
- Barberis, A.; Bazzu, G.; Calia, G.; Puggioni, G.M.G.; Rocchitta, G.G.; Migheli, R.; Schirra, M.; Desole, M.S.; Serra, P.A. New Ultralow-Cost Telemetric System for a Rapid Electrochemical Detection of Vitamin C in Fresh Orange Juice. Anal. Chem. 2010, 82, 5134–5140. [Google Scholar] [CrossRef]
- Suliborska, K.; Baranowska, M.; Bartoszek, A.; Chrzanowski, W.; Namieśnik, J. Determination of Antioxidant Activity of Vitamin C by Voltammetric Methods. Proceedings 2019, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Park, E.; Zhang, L.; Edirisinghe, I.; Burton-Freeman, B.; Sandhu, A.K. Pharmacokinetic Parameters of Watermelon (Rind, Flesh, and Seeds) Bioactive Components in Human Plasma: A Pilot Study to Investigate the Relationship to Endothelial Function. J. Agric. Food Chem. 2020, 68, 7393–7403. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Salces, R.M.; Ndjoko, K.; Queiroz, E.F.; Ioset, J.R.; Hostettmann, K.; Berrueta, L.A.; Gallo, B.; Vicente, F. On-Line Characterisation of Apple Polyphenols by Liquid Chromatography Coupled with Mass Spectrometry and Ultraviolet Absorbance Detection. J. Chromatogr. A 2004, 1046, 89–100. [Google Scholar] [CrossRef]
- Blanco, E.; Foster, C.W.; Cumba, L.R.; do Carmo, D.R.; Banks, C.E. Can Solvent Induced Surface Modifications Applied to Screen-Printed Platforms Enhance Their Electroanalytical Performance? Analyst 2016, 141, 2783–2790. [Google Scholar] [CrossRef] [Green Version]
- Kalyan Kumar, M.; Sagarika Deepthy, T.; Chirasree Roy, C.; Saha, H. Electrochemical Characterization of Some Commercial Screen-Printed Electrodes in Different Redox Substrates. Curr. Sci. 2015, 109. [Google Scholar] [CrossRef]
- Aflatoonian, M.R.; Tajik, S.; Aflatoonian, B.; Beitollahi, H. Electrochemical Measurements of Ascorbic Acid Based on Graphite Screen Printed Electrode Modified with La3+/Co3O4 Nanocubes Transducer. J. Electrochem. Sci. Eng. 2019, 9, 197–206. [Google Scholar] [CrossRef]
- Ferreira, M.; Varela, H.; Torresi, R.; Tremiliosi-Filho, G. Electrode Passivation Caused by Polymerization of Different Phenolic Compounds. Electrochim. Acta 2006, 52, 434–442. [Google Scholar] [CrossRef]
C-SPE | HRCM-SPE | MW-SPE | ||||
---|---|---|---|---|---|---|
Functionalization | - | mg HRCM/mL of DMF | mg of MWCNTs/mL of DMF | |||
5 | 10 | 5 | 10 | 50 | ||
Slope (nA/µM) | 0.77 ± 0.01 e | 2.89 ± 0.09 a | 2.18 ± 0.06 c | 1.47 ± 0.02 d | 2.48 ± 0.04 b | 2.34 ± 0.05 b |
LOD (µM) | 0.55 ± 0.08 c | 0.15 ± 0.02 e | 0.98 ± 0.12 b | 0.53 ± 0.08 c | 0.28 ± 0.04 d | 2.24 ± 0.27 a |
AA Concentration (µM) in Watermelon and Apple Samples | ||||
---|---|---|---|---|
HPLC | C-SPEs | HRCM-SPEs | MW-SPEs | |
(AA) at Time 0 | ||||
Watermelon | 153 ± 6.2 b | 147 ± 3.8 b | 160 ± 7.1 ab | 165 ± 7.1 a |
Apple | 227 ± 7.7 ab | 219 ± 6.7 b | 235 ± 8.3 a | 240 ± 7.4 a |
(AA) at expiration date | ||||
Watermelon | 73 ± 5.1 a | 70 ± 3.7 b | 71 ± 5.2 ab | 76 ± 3.1 a |
Apple | 102 ± 5.3 a | n. d. | 99 ± 6.9 a | 108 ± 5.5 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spissu, Y.; Barberis, A.; Bazzu, G.; D’hallewin, G.; Rocchitta, G.; Serra, P.A.; Marceddu, S.; Vineis, C.; Garroni, S.; Culeddu, N. Functionalization of Screen-Printed Sensors with a High Reactivity Carbonaceous Material for Ascorbic Acid Detection in Fresh-Cut Fruit with Low Vitamin C Content. Chemosensors 2021, 9, 354. https://doi.org/10.3390/chemosensors9120354
Spissu Y, Barberis A, Bazzu G, D’hallewin G, Rocchitta G, Serra PA, Marceddu S, Vineis C, Garroni S, Culeddu N. Functionalization of Screen-Printed Sensors with a High Reactivity Carbonaceous Material for Ascorbic Acid Detection in Fresh-Cut Fruit with Low Vitamin C Content. Chemosensors. 2021; 9(12):354. https://doi.org/10.3390/chemosensors9120354
Chicago/Turabian StyleSpissu, Ylenia, Antonio Barberis, Gianfranco Bazzu, Guy D’hallewin, Gaia Rocchitta, Pier Andrea Serra, Salvatore Marceddu, Claudia Vineis, Sebastiano Garroni, and Nicola Culeddu. 2021. "Functionalization of Screen-Printed Sensors with a High Reactivity Carbonaceous Material for Ascorbic Acid Detection in Fresh-Cut Fruit with Low Vitamin C Content" Chemosensors 9, no. 12: 354. https://doi.org/10.3390/chemosensors9120354
APA StyleSpissu, Y., Barberis, A., Bazzu, G., D’hallewin, G., Rocchitta, G., Serra, P. A., Marceddu, S., Vineis, C., Garroni, S., & Culeddu, N. (2021). Functionalization of Screen-Printed Sensors with a High Reactivity Carbonaceous Material for Ascorbic Acid Detection in Fresh-Cut Fruit with Low Vitamin C Content. Chemosensors, 9(12), 354. https://doi.org/10.3390/chemosensors9120354