Quantitative Fiber-Enhanced Raman Sensing of Inorganic Nitrogen Species in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Solutions
2.2. Experimental Setup and Operation
2.3. Calculation of Standard Uncertainty, LOD, and LOQ for Multivariate PLSR
3. Results
3.1. Setup Characterization
3.2. Calibration Model
3.3. Measurement of Unknown Concentrations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2017; United Nations Children’s Fund (UNICEF): New York, NY, USA; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Peters, N.E.; Meybeck, M.; Chapman, D.V. Effects of human activities on water quality. In Encyclopedia of Hydrological Sciences; Anderson, M.G., McDonnell, J.J., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Thirstrup, C.; Deleebeeck, L.C. Review of electrolytic conductivity sensors. IEEE Trans. Instrum. Meas. 2020. under review. [Google Scholar]
- Rice, E.W.; Baird, R.B.; Eaton, A.D. (Eds.) Inorganic nonmetallic constituents. In Standard Methods for the Examination of Water and Wastewater; Part 4000; American Public Health Association: Washington, DC, USA; American Water Works Association: Washington, DC, USA; Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Lewis, I.R.; Edwards, H.G.M. (Eds.) Handbook of Raman Spectroscopy: From the Research Laboratory to the Process Line; Marcel Dekker: New York, NY, USA, 2017. [Google Scholar]
- Das, R.S.; Agrawal, Y.K. Raman spectroscopy: Recent advancements, techniques and applications. Vib. Spectrosc. 2011, 57, 163–176. [Google Scholar] [CrossRef]
- Nakamoto, N. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley and Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Brewer, P.G.; Malby, G.; Pasteris, J.D.; White, S.N.; Peltzer, E.T.; Wopenka, B.; Freeman, J.; Brown, M.O. Development of a laser Raman spectrometer for deep-ocean science. Deep Sea Res. Part I Oceanogr. Res. Pap. 2004, 51, 739–753. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Luan, Z.; Du, Z.; Xi, S.; Wang, B.; Cao, L.; Lian, C.; Yan, J. In situ Raman quantitative detection of methane concentrations in deep-sea high-temperature hydrothermal vent fluids. J. Raman Spectrosc. 2020, 51, 2328–2337. [Google Scholar] [CrossRef]
- Furuya, N.; Matsuyuki, A.; Higuchi, S. Determination of nitrate ion in waste and treated waters by laser Raman spectrometry. Water Res. 1979, 13, 371–374. [Google Scholar] [CrossRef]
- Lombardi, D.R.; Wang, C.; Sun, B.; Fountain, A.W.; Vickers, T.J.; Mann, C.K.; Reich, F.R.; Douglas, J.G.; Crawford, B.A.; Kohlasch, F.L. Quantitative and Qualitative Analysis of Some Inorganic Compounds by Raman Spectroscopy. Appl. Spectrosc. 1994, 48, 875–883. [Google Scholar] [CrossRef] [Green Version]
- Murata, K.; Kawakami, K.; Matsunaga, Y.; Yamashita, S. Determination of sulfate in brackish waters by laser Raman spectroscopy. Anal. Chim. Acta 1997, 344, 153–157. [Google Scholar] [CrossRef]
- Fontana, M.D.; Ben Mabrouk, K.; Kauffmann, T.H. Raman spectroscopic sensors for inorganic salts. Spectrosc. Prop. Inorg. Organomet. Compd. 2013, 44, 40–67. [Google Scholar]
- Cunningham, K.M.; Goldberg, M.C.; Weiner, E.R. Investigation of Detection Limits for Solutes in Water Measured by Laser Raman Spectrometry. Anal. Chem. 1977, 49, 70–75. [Google Scholar] [CrossRef]
- Ianoul, A.; Coleman, T.; Asher, S.A. UV Resonance Raman Spectroscopic Detection of Nitrate and Nitrite in Wastewater Treatment Processes. Anal. Chem. 2002, 74, 1458–1461. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A.; Lieberman, S.H. Detection of nitrate and sulfate anions by normal Raman spectroscopy and SERS of cationic-coated, silver substrates. Anal. Chem. 2000, 54, 1126–1135. [Google Scholar] [CrossRef]
- Gajaraj, S.; Fan, C.; Lin, M.; Hu, Z. Quantitative detection of nitrate in water and wastewater by surface-enhanced Raman spectroscopy. Anal. Chem. 2013, 185, 5673–5681. [Google Scholar] [CrossRef] [PubMed]
- Walrafen, G.E.; Stone, J. Intensification of Spontaneous Raman Spectra By Use of Liquid Core Optical Fibers. Appl. Spectrosc. 1972, 26, 585–589. [Google Scholar] [CrossRef]
- Yan, D.; Popp, J.; Pletz, M.W.; Frosch, T. Highly Sensitive Broadband Raman Sensing of Antibiotics in Step-Index Hollow-Core Photonic Crystal Fibers. ACS Photonics 2017, 4, 138–145. [Google Scholar] [CrossRef]
- Yan, D.; Frosch, T.; Kobelke, J.; Bierlich, J.; Popp, J.; Plets, M.W.; Frosch, T. Fiber-Enhanced Raman Sensing of Cefuroxime in Human Urine. Anal. Chem. 2018, 90, 13243–13248. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, F.; Irizar, J.; Hulbert, L.; Helmy, A.S. A comparative study of Raman enhancement in capillaries. J. Appl. Phys. 2011, 109, 113104. [Google Scholar] [CrossRef]
- Altkorn, R.; Koev, I.; Pelletier, M.J. Raman Performance Characteristics of Teflon™-AF 2400 Liquid-Core Optical-Fiber Sample Cells. Appl. Spectrosc. 1999, 53, 1169–1176. [Google Scholar] [CrossRef]
- Frosch, T.; Yan, D.; Popp, J. Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs. Anal. Chem. 2013, 85, 6264–6271. [Google Scholar] [CrossRef]
- Edition, F. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Faber, K.; Kowalski, B. Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares. J. Chemom. 1997, 11, 181–238. [Google Scholar] [CrossRef]
- Olivieri, A.C. Analytical Figures of Merit. In Introduction to Multivariate Calibration: A Practical Approach; Springer International Publishing: Cham, Switzerland, 2018; pp. 159–177. [Google Scholar]
- Duraipandian, S.; Knopp, M.M.; Pollard, M.R.; Kerdoncuff, H.; Petersen, J.C.; Müllertz, A. A fast and novel internal calibration method for quantitative Raman measurements on aqueous solutions. Anal. Methods 2018, 10, 3589–3593. [Google Scholar] [CrossRef]
- Ben Mabrouk, K.; Kauffmann, T.H.; Aroui, H.; Fontana, M.D. Raman study of cation effect on sulfate vibration modes in solid state and in aqueous solutions. J. Raman Spectrosc. 2013, 44, 1603–1608. [Google Scholar] [CrossRef]
- Duraipandian, S.; Petersen, J.C.; Lassen, M. Authenticity and concentration analysis of extra virgin olive oil using spontaneous Raman spectroscopy and multivariate data analysis. Appl. Sci. 2019, 9, 2433. [Google Scholar] [CrossRef] [Green Version]
Solution | Gravimetric (mM) | FERS (mM) |
---|---|---|
NaNO | 0.391(2) | 0.40(4) |
NaNO | 0.668(3) | 0.68(4) |
KNO | 0.394(2) | 0.42(4) |
KNO | 0.668(3) | 0.62(4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerdoncuff, H.; Deleebeeck, L.C.; Lassen, M. Quantitative Fiber-Enhanced Raman Sensing of Inorganic Nitrogen Species in Water. Chemosensors 2021, 9, 29. https://doi.org/10.3390/chemosensors9020029
Kerdoncuff H, Deleebeeck LC, Lassen M. Quantitative Fiber-Enhanced Raman Sensing of Inorganic Nitrogen Species in Water. Chemosensors. 2021; 9(2):29. https://doi.org/10.3390/chemosensors9020029
Chicago/Turabian StyleKerdoncuff, Hugo, Lisa C. Deleebeeck, and Mikael Lassen. 2021. "Quantitative Fiber-Enhanced Raman Sensing of Inorganic Nitrogen Species in Water" Chemosensors 9, no. 2: 29. https://doi.org/10.3390/chemosensors9020029
APA StyleKerdoncuff, H., Deleebeeck, L. C., & Lassen, M. (2021). Quantitative Fiber-Enhanced Raman Sensing of Inorganic Nitrogen Species in Water. Chemosensors, 9(2), 29. https://doi.org/10.3390/chemosensors9020029