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Abstract: A comprehensive study of a range of flavonoids and coumarins is presented in this
article. The work uses an approach that evaluates the activity of these compounds by various
mechanisms: the electron transfer (ET), the hydrogen atom transfer (HAT), and the mechanism of
metal chelation. The studies were carried out using the methods of the cyclic voltammetry and the
potentiometry. The electrochemical behavior of these compounds was studied by the method of
cyclic voltammetry; the main types of voltammograms, depending on the oxidation mechanisms,
were identified. Various versions of potentiometric sensor systems have been used to detect analytical
signal in approaches implemented in ET, HAT and metal chelation mechanisms. The antioxidant
capacity was studied by the electron-transfer mechanism. Compounds with antioxidant properties
were selected; half-reaction periods for these compounds have been determined. It has been shown
that electron-donating and complexing properties directly depend on the mutual arrangement of
hydroxyl groups in the molecule. The antiradical ability of the compounds has been studied. It was
shown that all studied compounds inhibit peroxyl radicals. Series on the change in antioxidant and
antiradical properties of compounds have been compiled. There is no correlation between the results
of the study of antioxidant properties obtained using sensory systems that reveal various antioxidant
mechanisms. The need to use an integrated approach in the study of antioxidant properties is shown.

Keywords: flavonoids; coumarins; sensory systems; antioxidant capacity; antiradical capacity; cyclic
voltammetry; potentiometry

1. Introduction

In recent decades, the search for natural sources of biologically active substances
has become highly acute despite the large number of synthetic drugs used in modern
medicine [1,2]. It is known that the use of herbal drugs is explained not only by their
high biological activity, but also by the absence of adverse reactions inherent in syn-
thetic drugs [3,4]. One of the most important types of biological activity is antioxidant
activity [5,6].

Numerous studies indicate that exogenous antioxidants play an important role as
a health-protecting factor [5–7]. The main sources of natural antioxidants are medicinal
and food plants. Derivatives of flavonoids and coumarins are a rather promising class of
plant physiologically active compounds [8–11]. Its conjugated π-electron system of these
compounds allows the ready donation of electron or hydrogen atoms [12]. This class of
compounds also has other types of biological activity in addition to antioxidant properties.
The sources of some derivatives of flavonoids and coumarins and their type of biological
activity are shown in Table 1.
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Table 1. Sources and directions of the biological activity of some derivatives of flavonoids and coumarins.

Compounds Source Biological Activity

Quercetin
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Compounds Source Biological Activity 
Quercetin 

 
Red grapes 

 

circulation system protection, anti-allergic, 
anti-inflammatory, anti-cancer, anti-diabetes, 
cataract prevention, cardiovascular protection, 
anti-ulcer, anti-diabetes [13–15] 

Luteolin 

 

anti-inflammatory, neuroprotective, anti-cancer 
[10,16,17] 

Dihydromyricetin 

 

anti-cancer, anti-inflammatory, anti-microbial, 
hepatoprotective, lipid and glucose metabolism 
regulation [18,19] 

Apigenin 

 
Scutellaria baicalensis Georgi 

 

vasorelaxant effects, decrease in heart pressure, 
dose-dependent lowering concentrations of 
low-density lipoprotein cholesterol, 
triglycerides and total content of cholesterol in 
their serum, anti-inflammatory [8,20,21] 

Chrysin 

 

anti-inflammatory, antihypertensive activity, 
neuroprotective, anticancer properties, 
possessed protective effects against toxic agents 
[8,22,23] 

Baicalein 

 

anti-viral, neuroprotective and enhancing 
cognitive functions, anti-inflammatory, anti-
cancer, hepatoprotection, anti-hypertensive, 
cardioprotective, antiplatelet, anticoagulant, 
and profibrinolytic activities [8,24,25]. 

Genistein 

 

Genista tinctorial 

anti-carcinogenic effects, nephroprotective 
activity against kidney injury induced by 
cisplatin and its hepatoprotective activity 
against “nonalcoholic fatty liver disease”, anti-
inflammatory activity [26–28] 

Red grapes
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peroxides to stable products [36–42]. AOs in the human body can be classified into three
types of reactions in terms of their chemical transformation. Accordingly, the mechanisms
of antioxidant action can be divided into three types: the electron transfer (ET-mechanism),
the proton transfer (HAT-mechanism), and the mechanism of complexation (Chelating-
mechanism) [39–43]. It should be noted that all three mechanisms are realized with the
participation of electrons: only electron transfer (ET); hydrogen atom transfer, which in
aqueous media can be considered as electron transfer accompanied by proton transfer
(HAT); chelation, which is the transfer of an electron pair from a ligand to a metal. From
this point of view, electrochemical methods are quite promising for studying antioxidant
properties by various mechanisms. In this case, processes with the participation of electrons,
as a rule, are accompanied by a change in the electrochemical parameters of the system—in
particular, the potential of the system. Antioxidant properties following one or another
mechanism can be studied depending on the proposed version of the electrochemical
sensor system.

Earlier [44–46], we developed approaches and potentiometric sensor systems based
on non-radical and radical oxidants, which make it possible to implement ET, HAT, and the
chelating metals mechanism. High degrees of correlation with independent conventional
methods, the Folin assay, the DPPH assay (inhibition of the stable radical of 2,2-diphenyl-1-
picrylhydrazyl), the TAS (total antioxidant status) Randox, and others [44–48] have been
shown. The measurement results were calculated by the shift or regular change in the
system potential and expressed as the integral parameter of the antioxidant capacity or the
antiradical capacity, respectively. In the strict sense, the potential is solution components
activity function in the field of electrochemical research, in particular, in the potentiometry.
The term "activity" means "the effective (apparent) concentration of the components, taking
into account the various interactions between them in solution". In the sensor systems
that we have proposed, the potential is directly related to the thermodynamic activity of
the solution components used as oxidizing agents and reacting with antioxidants via the
mechanisms of the electron transfer and the electron–proton transfer. However, in this case,
the parameter should be called “capacity”.

By the term “capacity”, we mean the integral parameter indirectly related to the
thermodynamic activity of antioxidants through the potential of the sensory system. The
“capacity” reflects the total content of antioxidants capable of interacting with the reagent
in the reactions of electron transfer—the antioxidant capacity (AOC) and in the reactions of
the hydrogen atom transfer—the antiradical capacity (ARC). This approach is consistent
with the antioxidant research recommendation that “antioxidant capacity measures the
thermodynamic conversion efficiency of an oxidant probe upon reaction with an antioxi-
dant” [49].

The aim of this work is the comprehensive study of individual substances flavonoids
and coumarins of natural and synthetic origin using approaches that allow assessing
the activity of these compounds by various mechanisms: the ET-mechanism, the HAT-
mechanism and the chelating metals mechanism.

2. Materials and Methods
2.1. Reagents and Objects of Analysis

All reagents were of analytical grade: K3[Fe(CN)6], K4[Fe(CN)6], KH2PO4, Na2HPO4·12H2O,
(Reachim®, Moscow, Russia); 2,2-azobis(2-methylpropionamidine)dihydrochloride, quercetin,
luteolin, dihydromyricetin, apigenin, chrysin, baicalein, genistein, silybin, nordalbergin,
4-methylesculetin, 4-methyldaphnetin, 4-methyl-5,7-dihydroxycoumarin, 7,8-dihydroxy-
4-methyl-chroman- 3-toluene-2-one (Sigma-Aldrich®, St. Louis, MI, USA). Solutions of
antioxidants were prepared in ethanol (Rosbio®, St. Petersburg, Russia).

2.2. Cyclic Voltammetry

Voltammetric measurements were carried out using µAUTOLAB Type III poten-
tiostat/galvanostat (Metrohm Autolab, Holland). A glassy carbon electrode (Metrohm,



Chemosensors 2021, 9, 112 5 of 15

Holland) was used as a working electrode, a silver chloride electrode (Metrohm, Holland)
as a reference electrode, and a glassy carbon rod (Metrohm, Holland) as an auxiliary elec-
trode. Cyclic voltammograms were obtained in a phosphate buffer solution–ethanol 1:1
with a scan rate of 0.05 V/s. The scanning rate was selected based on the conditions for
obtaining pronounced and reproducible peaks of oxidation of the studied compounds.
The antioxidant concentration CAO was 0.1 mM. Cyclic voltammetry experiments were
replicated three times.

2.3. Sensor System for Determining Antioxidant Capacity (AOC)

Potentiometric measurements were carried out using the pH-meter “Expert-pH”
(Econics-Expert, Moscow, Russia) with the function of measuring EMF and RS-232 interface.
The measurements were taken by means of EPV-1 redox-platinum electrode and EVL-1
mol/dm3 silver—silver chloride electrode (Ag/AgCl/3 mol/dm3 KCl) (Gomelsky ZIP,
Gomel, Belarus).

The determination of total antioxidant capacity (AOC) was carried out by the poten-
tiometric method using the interaction reaction of antioxidants with the oxidizing agent
K3[Fe(CN)6]. The antioxidant capacity is the effective concentration of K3[Fe(CN)6] re-
acted with an antioxidant. The AOC expressed in universal units (mol-eq/L) and was
calculated by Formulas (1) and (2) [44–48]. The number of equivalents in the AO molecule
as a rule corresponds to the number of functional antioxidant groups involved in the
electron-transfer process.

AOC =
COx − αcRed

1 + α
· q (1)

α = (COx/CRed)10(E2−E1)F/2.3RT (2)

where cOx is the K3[Fe(CN)6] concentration, mol/L; cRed is the K4[Fe(CN)6] concentration,
mol/L; E1 is a potential measured before the introduction of a test sample, V; E2 is the
potential measured after the addition of the test sample, V.; R is the universal gas constant,
R = 8.31 J/K·mol; T is the temperature, K.

Studies were performed at pH = 7.4 in PBS. The concentrations of K3[Fe(CN)6] /
K4[Fe(CN)6] in an electrochemical cell were 0.01 mol/L / 0.0001 mol/L, respectively. The
antioxidant concentration in the electrochemical cell CAO was 0.1 mM.

The reaction half-life (t1/2, s) of studied compounds with the oxidizing agent was
determined by the potentiometric method from the kinetic curve of the AOC change on
time, as the time during which 50% of the obtained antioxidant capacity was recorded
(AOC1/2 = AOE/2 mol/L) [44].

2.4. Sensor System for Determining Antiradical Capacity (ARC)

The basis for the definition of total antiradical capacity (ARC) is a regular change in
the redox potential of the reaction of antioxidants with peroxyl radicals generated during
the thermal decomposition of 2,2′-azobis (2-amidinopropane) dihydrochloride [46,47].

The determination of the antiradical capacity (ARC) was carried out to the Formula (3):

ARC = Wi·τ (3)

where ARC is the antiradical capacity, mol-eq/L; Wi is the the generation rate of peroxyl
radicals, mol/L·s (Wi = 2 × 10−7 M/s); τ is the induction period, s.

The number of equivalents in the AO molecule usually corresponds to the number of
functional antioxidant groups involved in the inhibition of one radical chain.

The induction period is determined as the time from the introduction of the antioxidant
into the initiator solution to the point corresponding to the maximum rate of change of the
potential (dE/dt)max, which is defined as the maximum of the derivative function in the
dependence of the redox potential on time.

Studies were performed at pH = 7.4 in PBS and 37 ◦C.



Chemosensors 2021, 9, 112 6 of 15

The LOIP LT-205a circulating thermostat (LOIP, St. Petersburg, Russia) was used for
temperature control cells (37 ◦C). The initiator concentration in the electrochemical cell is
0.1 M; the antioxidant concentration in the cell is 0.1 mM.

3. Results

A number of natural derivatives of flavonoids and coumarins were studied in the work:
quercetin, luteolin, dihydromyricetin, apigenin, chrysin, baicalein, genistein, silybin; as well
as derivatives of coumarin of natural (nordalbergin) and synthetic origin (4-methylesculetin,
4-methyldaphnetin, 4-methyl-5,7-dihydroxycoumarin, 7,8-dihydroxy-4-methyl-chroman-
3-toluene-2-one.

3.1. The Investigation of Electrochemical Activity by Cyclic Voltammetry

According to results of cyclic voltammetry, it can be noted that the type of voltammo-
gram directly depends on the relative position of hydroxyl groups in the molecule. The
obtained voltammograms can be conditionally divided into three groups by type:

• The presence of an oxidation peak in the potential range of 0.21 to 0.28 V (Figure 1).
Such compounds include luteolin, nordalbergin, 4-methylesculetin, 4-methyldaphnetin,
and 7,8-dihydroxy-4-methyl-chroman-3-toluene-2-one. Compounds of this group
contain in their structure a catechol fragment, which is characterized by reversible
oxidation-reduction and an uncomplicated process of electron transfer from the an-
tioxidant molecule [46,50–52].
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Figure 1. Cyclic voltammograms of 7,8-dihydroxy-4-methyl-chroman-3-toluene-2-one (1), Luteolin
(2), 4-Methylesculetin (3), 4-Methyldaphnetin (4), and Nordalberginluteolin (5) recorded on a glassy
carbon electrode, reference electrode—silver chloride electrode, C(AO) = 0.1 mM. Background:
phosphate buffer solution–ethanol 1:1. Scan rate is 0.05 V/s.

• The presence of two peaks of oxidation: the position of the first peak is in the potential
range of 0.08 to 0.11 V and the position of the second peak is in a more positive range
of potentials. These compounds include quercetin, dihidromyricetin, and baicalein
(Figure 2). The compounds contain a catechol/pyrogall fragment. The presence of
two peaks may indicate a stepwise oxidation process [50–53]. In this case, oxidation
in the second stage can be difficult.
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The stepwise oxidation of quercetin has been established in other studies (Scheme 1) [54].
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Scheme 1. Quercetin oxidation reaction.

• The last group is characterized by the presence of an oxidation peak in a rather positive
potential range (0.50 to 0.80 V) (Figure 3). These compounds include silybin, chrysin,
genistein, apigenin, and 4-methyl-5,7-dihydroxycoumarin. The compounds of this
group contain a resorcinol fragment, which is characterized by hindered electron
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transfer from functional OH groups of molecules and, as a rule, lack of antioxidant
action by the electron transfer mechanism [46,50–53].

Chemosensors 2021, 9, x FOR PEER REVIEW 8 of 16 
 

 

electron transfer from functional OH groups of molecules and, as a rule, lack of 
antioxidant action by the electron transfer mechanism [46,50–53].  

 
Figure 3. Cyclic voltammograms of Chrysin (1), Genistein (2), Silybin (3), Apigenin (4), 4-methyl-5,7-dihydroxycoumarin 
(5) recorded on a glassy carbon electrode, reference electrode—silver chloride electrode, CAO = 0.1 mM. Background: phos-
phate buffer solution–ethanol 1:1. Scan rate is 0.05 V/s. 

The obtained patterns are consistent with both the literature data [50–56] and with 
the patterns obtained by us in the study of other polyphenolic compounds [46]. 

The values of the potentials of the antioxidant oxidation peaks are presented in Table 
2. 

Table 2. Potentials of antioxidant oxidation peaks. 

Group 
Number Name Eox, V Ereox, V 

1 

Luteolin 0.25 0.21 
Nordalbergin 0.28 0.18 

4-Methylesculetin 0.28 0.21 
4-methyldaphnetin 0.22 0.16 

7,8-dihydroxy-4-methyl-chroman-3-toluene-2-one 0.21 0.16 

2 
Quercetin 0.11 0.46 - 

Dihydromyricetin 0.11 0.80 - 
Baicalein 0.07 0.68 - 

3 

Silybin 0.50 0.77 - 
Chrysin 0.80 - 

Genistein 0.58 0.56 - 
Apigenin 0.66 - 

4-methyl-5,7-dihydroxycoumarin 0.59 - 

Figure 3. Cyclic voltammograms of Chrysin (1), Genistein (2), Silybin (3), Apigenin (4), 4-methyl-5,7-
dihydroxycoumarin (5) recorded on a glassy carbon electrode, reference electrode—silver chloride
electrode, CAO = 0.1 mM. Background: phosphate buffer solution–ethanol 1:1. Scan rate is 0.05 V/s.

The obtained patterns are consistent with both the literature data [50–56] and with the
patterns obtained by us in the study of other polyphenolic compounds [46].

The values of the potentials of the antioxidant oxidation peaks are presented in
Table 2.

Table 2. Potentials of antioxidant oxidation peaks.

Group Number Name Eox, V Ereox, V

1

Luteolin 0.25 0.21
Nordalbergin 0.28 0.18

4-Methylesculetin 0.28 0.21
4-methyldaphnetin 0.22 0.16

7,8-dihydroxy-4-methyl-chroman-
3-toluene-2-one 0.21 0.16

2
Quercetin 0.11 0.46 -

Dihydromyricetin 0.11 0.80 -
Baicalein 0.07 0.68 -

3

Silybin 0.50 0.77 -
Chrysin 0.80 -

Genistein 0.58 0.56 -
Apigenin 0.66 -

4-methyl-5,7-dihydroxycoumarin 0.59 -
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3.2. The Research of the Total Antioxidant Capacity by Potentiometric Sensor System

The potentiometric method using the K3[Fe(CN)6]/K4[Fe(CN)6] system applies elec-
tron transfer-based assays (4):

n[Fe(CN)6]3− + In = n[Fe(CN)6]4− + InOx (4)

where In—inhibitor, InOx—oxidized inhibitor.
In this case, the choice of K3[Fe(CN)6] as an oxidizing agent is justified theoretically

and experimentally, as the optimal model for studying antioxidant properties of compounds
by the electron-transfer mechanism [44–48]. This method is aimed at measuring the
recovery ability of compounds and is a very important parameter, because it reflects redox
characteristics of studied compounds and the thermodynamic possibility of interaction
with ROS. Methods for assessing antioxidant properties using potassium hexacyanoferrate
(III) as an oxidizing agent model are quite widespread and tested on objects of various
nature.

It should be noted that kinetic characteristics are important in the study of biologi-
cally active substances, since they allow the identification of compounds of fast and long
action [57,58].

Each group of compounds has its own advantages. On the one hand, compounds, that
undergo fairly rapid transformations in the human body can produce a rapid therapeutic
effect. On the other hand, compounds that react slowly can cause a long-acting action and
maintain the constant level of this substance in the human body. Thus, the increased and
decreased concentration of the substance is eliminated.

The potentiometric method presented in this work allows us to evaluate not only the
thermodynamic parameters of the interaction reaction of antioxidants with the oxidizing
agent, such as the antioxidant capacity, but also kinetic parameters, for example, the half-
reaction periods of the studied antioxidants with the iron (III). The values of the antioxidant
capacity and half-reaction periods of the studied antioxidants with the iron (III) are shown
in Table 3.

Table 3. AOC and half-reaction periods of studied antioxidants (CAO = 10−4 M, n = 5, p = 0.95).

No. Name AOC, 10−4 M-eq RSD, % τ1/2, c

1 Quercetin 5.26 ± 0.26 4.66 10
2 4-Methylesculetin 3.56 ± 0.12 3.53 4
3 Chrysin not found
4 Genistein not found
5 Silybin not found
6 Luteolin 3.90 ± 0.12 3.43 4
7 Apigenin not found
8 4-methyldaphnetin 5.00 ± 0.09 1.75 363

9 7,8-dihydroxy-4-methyl-chroman-
3-toluene-2-one 4.10 ± 0.08 2.44 4

10 4-methyl-5,7-dihydroxycoumarin not found
11 Nordalbergin 3.69 ± 0.06 1.56 1
12 Baicalein 2.46 ± 0.02 0.65 1
13 Dihydromyricetin 5.67 ± 0.06 1.09 6

It can be seen from Table 2 that rather low values of the half-reaction periods are
characteristic for all tested compounds that showed activity, with the exception of 4-
methyldaphnetin. Accordingly, these compounds have a high reaction rate of interaction
with the iron (III). This is quite expected, since many natural compounds are characterized
by the rapidity of transformation. In this case, rather high values of the reaction rate of
interaction with the iron (III) were recorded for a number of synthesized compounds. This
is quite important information for the classification of these compounds in terms of the
action speed and the possibility of long-acting action [58].
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Thus, data on the presence of antioxidant properties of studied compounds by the
electron-transfer mechanism are completely correlated with data of the cyclic voltammetry.
Compounds containing hydroxyl groups in the ortho-position in their molecules are direct
donors of electrons in the electron-transfer reactions, while the electron donation is difficult
if hydroxyl groups are in the meta position. Such compounds, as a rule, do not exhibit
pronounced antioxidant properties by the electron-transfer mechanism.

The correlations between the value of the oxidation peak potential (the first peak
for compounds with stepwise oxidation) and the AOC value are shown in Figure 4. The
electron-transfer process is facilitated for most compounds. Accordingly, the peak of
antioxidant oxidation is located in the more negative region (Eox); the compound AOC
(r = 0.84, n = 7, rCrit = 0.63) is higher. The baicalein is an exception.
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Figure 4. Correlation between the oxidation peak potential and the AOC.

In the literature, oxidation schemes are usually described with the participation of
two or three electrons for similar structures. However, quite high values of stoichiometric
coefficients in the reaction with potassium hexacyanoferrate (III) were obtained by studying
the antioxidant properties of the compounds. Such values are associated not only with the
electron-transfer mechanism, but also with the mechanism of possible complexation with
iron ions [12,42,59]. It is known that peroxides decompose with the formation of a highly
reactive hydroxyl radical in the presence of metals of variable valence [60,61]. This process
plays a key role in DNA damage. Polyphenolic compounds containing catechol or gall
structures are able to form stable complexes with metals of variable valency and inhibit
radical processes at the stage of chain branching (Scheme 2):
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According to the scheme, iron ions are able to coordinate up to three molecules of
compounds (in this case, flavonoids and coumarins) containing hydroxyl groups in the
ortho-position. It is known that these complexes are quite stable. The values of the total
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stability constants for some natural flavonoids are from 27 to 46. In particular, the stability
constant (β) of iron (III) complexes with quercetin (Qu) from the compounds studied in
this work is reliably known [42].

β =
[Fe(Qu)3]

3−[
Fe3+

]
·
[
Qu2−

]3 = 1044

These values are significantly higher than the values of iron complexes with known
complexing agents, such as EDTA, o-phenanthroline, 2,2′-dipyridyl, salicylic acid, etc. [63].
As for the stability of iron cyanide complexes, they are commensurate with the stability
of iron complexes with some flavonoids [44]. It should be noted that the ability to form
donor-acceptor bonds with metals is directly related to the electron-donor properties
of an antioxidant; therefore, it is logical that antioxidants with hydroxyl groups in the
ortho-position in a molecule are characterized by both electron-transfer reactions and
complexation reactions with iron. Therefore, the antioxidant capacity determined in this
experiment is an integral value, which is the result of both the iron reduction in the
potassium hexacyanoferrate (III) and its chelation.

3.3. The Research of the Total Antiradical Capacity (ARC) by Potentiometric Sensor System

The antiradical capacity of the studied compounds with respect to peroxyl radicals
was determined by hydrogen atom transfer-based assays using potentiometry according to
the reaction:

ArOH + RO2
• → ArO• + ROOH

It should be noted that antioxidants play a key role in the regulation of oxidation in
chemical and biochemical systems, as inhibitors of free radical oxidation reactions [5–7].
From this point of view, the use of radical-generating systems as an oxidizer, as a model
reaction of continuous generation of radicals in the human body, is the closest to real physi-
ological conditions [47,64,65]. Therefore, this method is quite close to real radical processes
and allows one to evaluate antiradical properties of compounds from the standpoint of the
hydrogen atom transfer-based mechanism.

The AOC and ARC values of the studied compounds are shown in Figure 5.
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As can be noted that results of determining the antioxidant capacity (AOC) and
antiradical capacity (ARC) do not correlate with each other. The value change dynamics
of AOC and ARC in the order of increase are shown in Table 4. Data on the change of
antioxidant properties in the series of some flavonoids obtained experimentally by us are
consistent with data obtained by other researchers by calculation [50].

Table 4. AOC and ARC of flavonoids and coumarins (CAO = 10−4 M, n = 5, p = 0.95).
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As can be noted, the results of determining the antioxidant capacity (AOC) and anti-
radical capacity (ARC) do not correlate with each other. This is due to the difference in the
mechanisms that are implemented in these methods. The AOC value provides information
on the antioxidant activity mediated by the ET-mechanism and the chelation mechanism.
The ARC parameter is responsible for the antioxidant activity via the HAT-mechanism.
Since antioxidants in the human body are able to realize their biological action by each of
the mechanisms, the use of a method based on one of the mechanisms will provide limited
information about the antioxidant properties of the compound. The existence of various
mechanisms of AO action and the data that the ability to scavenge radicals is directly
related to the donor ability of a compound to hydrogen atoms and does not correlate only
with redox potentials [66] suggest that it is necessary to use integrated approaches to obtain
complete information about antioxidant properties of the studied compounds [67]. For
example, silybin, chrysin, genistein, apigenin, 4-methyl-5,7-dihydroxycoumarin substances,
which did not show AOC, have a rather high ability to inhibit radical reactions, while from
the point of view of inhibition of radical reactions, all studied compounds are promising.

4. Conclusions

This work was the first to conduct the comprehensive study of a number of deriva-
tives of flavonoids and coumarins, which may be potential sources of exogenous natural
antioxidants, using potentiometric sensor systems implementing electron-transfer, hy-
drogen atom transfer and chelating metals mechanisms. The antioxidant capacity of
the electron-transfer mechanism is possessed by: Dihydromyricetin > Quercetin > 4-
Methyldaphetin > 7,8-dihydroxy-4-methyl-chroman-3-toluene-2-one > Luteolin > Nordal-
bergin > 4-Methylesculetin > Baicalein. The correlation between oxidation potential and
AOC has been established. These compounds are promising from the point of view of
their chelating ability. All the studied compounds showed their ability to inhibit gener-
ation reactions of peroxyl radicals and ARC decreased in the series: 4-Methylesculetin
> Chrysin > Luteolin > Dihydromyricetin > Apigenin > Nordalbergin > Genistein > 7,8-
Dihydroxy-4-methyl-chroman-3-toluene-2-one > 4-Methyldaphetin > Quercetin > 4-Methyl-
5,7-dihydroxycoumarin > Baicalein. Thus, the studied natural flavonoids and coumarins
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are promising exogenous antioxidants, and their sources are quite promising raw materials
for extraction and consumption. In addition, it was shown that the synthetic derivatives
of the coumarins, studied in this work, are potential antioxidants, regardless of the main
therapeutic effect.

The prospect of using potentiometry for the study of compounds with antioxidant
properties, realized by various mechanisms of antioxidant action, is shown. However,
taking into account the mechanisms variety of the biological action of antioxidants in
the body and the fact that the ability to transfer an electron, hydrogen atom and electron
pairs from an antioxidant to a model oxidizer or AOM does not always correlate with
each other, the integrated approach is required to obtain objective information about
antioxidant properties of the studied object, which will be based on the use of several
methods that implement and combine various mechanisms of the chemical transformation
of antioxidants.
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