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Abstract: This study used a thiolated calix[4]arene derivative modified on gold nanoparticles and a
screen-printed carbon electrode (TC4/AuNPs/SPCE) for Pb2+ and Cu2+ determination. The surface
of the modified electrode was characterised via Fourier-transform infrared spectroscopy (FTIR),
field emission scanning electron microscopy (FESEM), cyclic voltammetry (CV), and electrochemical
impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was used for the detection of
Pb2+ and Cu2+ under optimum conditions. The limit of detection (LOD) for detecting Pb2+ and Cu2+

was 0.7982× 10−2 ppm and 1.3358× 10−2 ppm, respectively. Except for Zn2+ and Hg2+, the presence
of competitive ions caused little effect on the current response when detecting Pb2+. However, all
competitive ions caused a significant drop in the current response when detecting Cu2+, except
Ca2+ and Mg2+, suggesting the sensing platform is more selective toward Pb2+ ions rather than
copper (Cu2+) ions. The electrochemical sensor demonstrated good reproducibility and excellent
stability with a low relative standard deviation (RSD) value in detecting lead and copper ions. Most
importantly, the result obtained in the analysis of Pb2+ and Cu2+ had good recovery in river water,
demonstrating the applicability of the developed sensor for real samples.

Keywords: calixarene; screen printed-carbon electrode (SPCE); differential pulse voltammetry (DPV);
heavy metal; lead (Pb2+); copper (Cu2+)

1. Introduction

Heavy metals, which have been recently termed “potentially toxic elements” [1], are
a serious environmental problem that have caught global attention as they pose a great
threat to life on earth [2–4]. Mining, logging, and agricultural activities are the possible
causes that have increased heavy metal concentrations in rivers, resulting in polluted
waters [5]. Lead (Pb) is a bluish-grey metal found in the crust of the earth. Investigations
have verified that the human nervous system is the most prominent target of Pb poisoning,
with symptoms such as headaches, memory loss, and lack of attention. Moreover, pregnant
women who are exposed to or who consume Pb will pass Pb to the fetus, thus possibly
causing premature childbirth and low weight in the fetus. Moreover, children exposed to
Pb may suffer from abnormalities in brain development [6].

Copper (Cu), one of the most abundant metals and essential trace elements on earth,
plays a vital role in various biological processes [7,8]. Despite being categorised as a
heavy metal, Cu is essential to human health; it is permissible for adults to consume a
daily intake of Cu that varies between 0.9 mg and 2.2 mg. However, Cu becomes toxic at
high concentrations of above 1.3 mg L−1, possibly causing changes to the nervous system,
depression, lung cancer, and gastrointestinal irritation [3]. Furthermore, exposure to Cu
may also lead to hypertension, lethargy, gastrointestinal bleeding, and DNA damage [9].

Considering the adverse effects caused by heavy metals, various analytical methods
have been introduced to detect heavy metal ions. These methods include atomic absorption
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spectrometry [10], fluorescence spectrophotometry (FL) [11], and inductively coupled
plasma mass spectroscopy (ICP-MS) [12]. However, great challenges still exist, as these
techniques require pre-treatment processes, a long analysis time, a qualified operator to
handle the equipment, and costly instrumentation [13,14]. Electroanalytical techniques are
a promising alternative for target analyte quantification [15]. Electrochemical approaches
are employed to determine heavy metal ions due to their short analysis time, simplicity,
low cost, sensitivity, good selectivity, portability, and enablement of in situ analysis without
any sophisticated instrumentation. Besides, the method also offers ease of operation and
low maintenance cost [16,17]. Due to these advantages, the electrochemical technique is
deemed more beneficial for field analysis [16].

Initially, the mercury drop electrode was used for the stripping analysis in heavy
metal ion tracings; however, it has been found not suitable for sensing applications due
to its toxicity [18]. Carbon-based electrode materials were then introduced after several
alternatives because carbon materials can improve the selectivity and sensitivity of target
analytes through surface modification based on selective functionalities, i.e., potential
affinity toward selective metal ions [19].

Recently, significant focus has been made to fabricate and modify single-use, dispos-
able electrodes, such as the screen-printed electrode (SPE). This electrode has great benefits
in many research areas because of its broad potential range, low sample volume (µL), low-
cost production, and adaptability. Besides, this electrode can be easily modified by using
different commercially available inks for working, counter, and reference electrodes [16,19].

Various materials have been used to modify the SPCE surface for the electrochemical
determination of heavy metal ions, including nanomaterials [20], metal oxides [21], metal
films [22], polymers [23], carbon nanotubes [24], carbon dots [25], reduced graphene
oxide [26], and biomaterials [27]. Nowadays, molecular recognition of host–guest chemistry
has incited great research enthusiasm [28]. Calixarenes (the host) have attracted great
potential interest because they can react with guest molecules, such as cations, anions, and
neutral molecules, to form stable host–guest complexes [28]. These compounds have a
strong recognition ability [29], which enables them to maintain their complexation ability
in a mixed monolayer [30]. Nevertheless, their non-conducting property limits their
utilization in electrical devices.

Nanomaterials such as carbon-based materials, metal oxides, and gold nanoparticles
(AuNPs) possess high electroactive surface areas that are able to improve sensing per-
formance by facilitating electron transfer between surface electrodes and analytes [31,32].
Specifically, AuNPs have attractive optical, electronic, catalytic, and thermal properties [33]
and gained great interest in various fields, including chemistry, physics, biology, material
sciences, medicine, and other interdisciplinary fields, due to their potential applications.
Our previous work has shown that integration of a nanomaterial, which in this case was
reduced graphene oxide (rGO), into calixarene derivatives enhanced the conductivity of
the host, leading to low detection limit of analytes [34].

In the present work, AuNPs were used due to their promising properties in enhancing
sensor performance. Thiolated calixarene derivatives with short alkanethiol spacers (two
C3) were used as a host for target molecule sensing and the chemisorption of thiolated
calix[4]arene on AuNPs modified on a screen-printed carbon electrode (SPCE) (as shown
in Scheme 1) enabled us to produce a compact layer and improve the conductivity in the
analytical measurement of Pb2+ and Cu2+ using differential pulse voltammetry (DPV). The
modified electrode was then applied in real sample analysis.
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carefully with deionised water and left to dry at room temperature prior to use. 

  

Scheme 1. The electrode modification pathway for the electrochemical determination of Pb2+

and Cu2+.

2. Materials and Methods

Gold (III) chloride hydrate was purchased from Sigma-Aldrich (St. Louis, MI, USA).
Potassium chloride (KCl), chloroform (CHCl3), and copper (II) sulphate were purchased
from R&M Chemicals (Petaling Jaya, Malaysia). Phosphate buffer saline (PBS) solution and
potassium ferrocyanides (K4[Fe(CN)6]) were purchased from Bendosen (Kuala Lumpur,
Malaysia). Standard lead solution (1000 ppm) was purchased from Merck (Kenilworth,
NJ, USA). Deionised water (18.2 MΩ) was used throughout the experiments. Thiolated
calix[4]arene (TC4) was synthesised and obtained from Dr. Irene Ling (Monash University
Malaysia). Screen-printed carbon electrodes (C110) with a 4 mm diameter were purchased
from Metrohm Malaysia Sdn Bhd, consisting of working and counter electrodes from
carbon-based material and a reference electrode from silver-based material.

Measurements of pH were performed using a FiveEasy pH meter F20 from Mettler
Toledo (Columbus, OH, USA). Chronoamperometry (CA), cyclic voltammetry (CV), and
differential pulse voltammetry (DPV) were performed using an AUTOLAB instrument
Model uAutolab Type III (Eco Chemie B.V., Utrecht, The Netherlands) followed by data
analysis using Nova 1.11 software. Electrochemical impedance spectroscopy (EIS) mea-
surements were taken using an AUTOLAB PGSTAT204 potentiostat model connected
to an FRA impedance potentiometric FRA32M module. The Fourier-transform infrared
(FTIR) spectra were analysed using a Thermo Scientific Nicolet 6700 FT-IR spectrometer
(Thermo Scientific, MA, USA) from 400 cm−1 to 4000 cm−1 using the attenuated total
reflection (ATR) method. Field emission scanning electron microscopy (FESEM) images
and energy dispersive X-ray (EDX) graphs were obtained using a FEI Nova Nanosem
230 instrument (FEI, Eindhoven, Holland). Inductively coupled plasma data were collected
using a PerkinElmer Optima 2000 DV (PerkinElmer, Shelton, MA, USA).

2.1. Surface Modification of Screen-Printed Carbon Electrode
2.1.1. Electrodeposition of AuNPs on SPCE(AuNPs/SPCE)

Gold nanoparticles (AuNPs) were electrodeposited on a screen-printed carbon elec-
trode using a previous method [35]. Gold (III) chloride hydrate (HAuCl4) salt was dissolved
in deionised water to form a 2 mM gold–salt solution. The solution was then electrode-
posited onto the working electrode surface via chronoamperometry, with an applied
potential of −0.3 V, at 300 s. The AuNPs/SPCE was then washed carefully with deionised
water and left to dry at room temperature. AuNPs/SPCE was then electrochemically
activated in 0.1 M PBS using cyclic voltammetry (CV) by scanning from 0.8 V to 1.3 V for
5 cycles with a scan rate of 100 mV/s. Finally, the AuNPs/SPCE was washed carefully
with deionised water and left to dry at room temperature prior to use.
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2.1.2. Modification of AuNPs/SPCE with TC4

The surface of the AuNPs/SPCE was further modified with TC4 by drop-casting
2 µL of 0.2 g/L of TC4 dissolved in chloroform on the AuNPs/SPCE for 3 h. The modified
electrode was left to dry at room temperature in a dessicator prior to detection.

2.2. Electrochemical Analysis of Analytes

The analytical performance of the analytes was studied using CV, DPV, and EIS. CV
was performed by immersing the electrode in 0.1 M KCl containing 1 mM of K3[Fe(CN)6]
solution within the range −0.5 V to 0.5 V with a scan rate of 100 mV/s for 10 cycles.
Meanwhile, EIS analysis was performed in the same solution from 100 kHz to 0.1 Hz,
10 per decade, and at 0.005 V amplitude. DPV was used to analyse 1 ppm Pb2+ in 0.1 M
KCl at a potential of −1.2 V (Pb2+) and −1.1 V (Cu2+), a deposition time of 120 s, and a
scan rate of 100 mV/s.

Recovery Study

The recovery study was conducted using electrochemical and ICP-OES techniques.
In the electrochemical technique, the collected samples were first purified via filtration
to eliminate solid impurities or suspended particulate matter. Subsequently, 2.5 mL of
this solution was added to 2.5 mL of 0.1 M KCl solution. The recovery measurement
was taken by spiking Pb2+ and Cu2+ solutions, respectively, into the mixture solution
without further treatment.

In the ICP-OES technique, standard solutions were prepared for instrument calibration.
For sample preparation, 20 mL of sample was first filtered by a cellulose nitrate membrane
filter, 0.45 µm, followed by spiking Pb2+ and Cu2+ solutions, respectively, into the samples.
The samples were analysed, and the data directly showed the concentration value of Pb2+

and Cu2+ presence in the samples.

3. Results and Discussion
3.1. Characterisations of Modified Electrodes
3.1.1. Fourier-Transform Infrared Spectroscopy

Fourier-transform infrared spectroscopy was used to verify the modification of the
thiolated calix[4]arene (TC4) on the AuNPs/SPCE surface. As shown in Figure 1, the
FTIR spectra of both the bare SPCE and the AuNPs/SPCE showed an unnoticeable peak.
Upon modification with TC4, bands started appearing at 3360.56 cm−1, indicating O–H
stretching, whereas bands appearing at 2954.46 cm−1 and 2903.53 cm−1 represented C–H
stretching. The bands present at 1723.75 cm−1 and 1421.18 cm−1 signified C–H bending
(overtone) and O–H bending, respectively. A weaker band intensity was observed for
the TC4-modified electrode as compared to the TC4 compound because of TC4′s low
concentration on AuNPs/SPCE.

3.1.2. Field Emission Scanning Electron Microscopy and Energy Dispersive X-ray

Figure 2 shows the surface morphologies of the modified electrode analysed via
FESEM. It can be seen that the surface morphologies changed as a result of the different
modification step. The bare screen-printed carbon electrode (Figure 2a) showed a densely
packed rough surface, with no signs of holes on the surface layer, which is consistent
with previous literature [36]. Once the gold was electrodeposited on SPCE, cauliflower-
shaped particles were observed—dispersed homogenously on the surface of the carbon
working electrode, as shown in Figure 2b. These cauliflower-shaped particles may be
due to the agglomeration of the electrodeposited gold nanoparticles. The modification of
AuNPs/SPCE with TC4 shows a similar image but rougher surface (Figure 2c). This result
may be due to the size of TC4 compound, which is small and difficult to observe because
of the rough carbon background.
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(b) AuNPs/SPCE, and (c) TC4/AuNPs/SPCE.

Elemental composition analysis was further conducted using energy dispersive X-ray
analysis. Figure 2 also shows the EDX graph and Table S1 shows the element analysis of



Chemosensors 2021, 9, 157 6 of 14

bare SPCE, AuNPs/SPCE, and TC4/AuNPs/SPCE. Elements C and Au presented after the
carbon working electrode was modified with gold nanoparticles, whereas elements C, O, S,
and Au presented after TC4 was modified on AuNPs/SPCE. Hence, it can be concluded
that TC4 successfully modified on AuNPs/SPCE.

3.1.3. Electrochemical Behaviour of the Modified Electrode

The electrochemical characteristics of the modified electrodes were investigated via
cyclic voltammetry in a solution containing 1 mM of a K3[Fe(CN)6] redox probe and 0.1 M
of KCl solution. Figure 3 shows the cyclic voltammograms of the bare SPCE, AuNPs/SPCE,
and TC4/AuNPs/SPCE. A pair of reversible redox peaks in the cyclic voltammogram
were observed, ascribed to the one-electron electrochemical process of Fe(CN)6

3−/4− [37].
The modification of SPCE with AuNPs improved the redox peak current, attributed to
the conductive properties of AuNPs. However, the peak current decreased slightly after
AuNPs/SPCE was modified with TC4. This is because TC4 on the AuNPs/SPCE surface
could not recognise anions, and thus blocked the electron transfer between Fe(CN)6

3−/4−

and the electrode surface [37]. The behaviour of the modified electrodes was further sup-
ported by the EIS data (Figure S1). The impedance data was analysed via the Randles circuit
(insert of Figure S1), consisting of the solution resistance (Rs), the charge transfer resistance
(Rct), the Warburg, and the double-layer capacitance (Cdl). The resistances for the bare
SPCE, the AuNPs/SPCE, and the TC4/AuNPs/SPCE were 89.2 kΩ, 28.3 kΩ, and 47.9 kΩ,
respectively. The AuNPs/SPCE possessed the lowest resistance because of its significantly
large specific surface area and the inherent excellent conductivity of the gold nanoparticles
that promoted the electron transfer and mass exchange of electroactive species on the film
surface [35]. Nevertheless, further modification of TC4 on the AuNPs/SPCE surface led to
increased resistance, attributed to the nonconducting property of thiolated calix[4]arene.
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Figure 3. Cyclic voltammograms of bare SPCE, AuNPs/SPCE, and TC4/AuNPs/SPCE in 0.1 M KCl
solution containing 1 mM of K3[Fe(CN)6] at a scan rate of 100 mV/s.

3.2. Optimization Study

This study optimized the various voltammetric parameters, such as pH, deposition
potential, and deposition time, to obtain the maximum current response and low detection
limits. Figure 4a shows the peak current response of TC4/AuNPs/SPCE in Pb2+ and Cu2+

from pH 5 to pH 9. When the pH increased, the peak signals of Pb2+ and Cu2+ increased
until pH 8. The stripping signals then gradually decreased upon reaching pH 9. The
pH values below pH 5 were not considered in this study due to the competitive ligand
binding in the TC4 cavity between hydrogen ions and the positively charged analytes [38].
Hence, there would be lesser concentrations of Pb2+ and Cu2+ adsorbed onto the surface.
As the pH increases, the deprotonation of the –OH group in the lower rim of TC4 will
generate phenoxide anions, which tend to form complexes with Pb2+ and Cu2+. However,
the high pH value caused the metal ions to hydrolise; hence, the metal ions precipitated as
hydroxides [17,39].

M2+ (aq) + 2OH−(aq) → M(OH)2 (s) (1)

where, M = Pb or Cu [40].
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The effect of the deposition potential on the current responses of Pb2+ and Cu2+ was
studied in the range of −1.4 V to −1.0 V and −1.3 V to −0.9 V, respectively (Figure 4b).
The peak currents increased when the potential was varied from −1.0 V to −1.2 V (Pb2+)
and from −0.9 V to −1.1 V (Cu2+). The maximum peaks were achieved at −1.2 V and
−1.1 V to detect Pb2+ and Cu2+, respectively. However, a deposition potential more
negative than−1.2 V and−1.1 V led to a decrease in the peak current attributed to hydrogen
evolution [41]. Therefore, −1.2 V and −1.1 V are the optimal deposition potentials for
detecting Pb2+ and Cu2+.

Figure 4c shows the stripping current value of Pb2+ and Cu2+ as the accumulation
time varied. The increased current response from 60 s to 120 s and 30 s to 120 s, respectively,
is attributed to the increased respective amount of Pb2+ and Cu2+ on the modified electrode
surface. After 120 s, a plateau was observed. The peak current was found to decrease after
120 s because of the surface saturation of the modified electrode [16]. Hence, 120 s was
selected as the optimal accumulation time for Pb2+ and Cu2+.

3.3. Mechanism of Detection

Under optimal conditions, the stripping current of bare SPCE, AuNPs/SPCE, and
TC4/AuNPs/SPCE toward 1.0 ppm analytes was compared and the results presented in
Figure 5. The current for detecting Pb2+ and Cu2+ using TC4/AuNPs/SPCE was higher
than that of the bare SPCE and AuNPs/SPCE. Hence, TC4/AuNPs/SPCE is favourable for
both Pb2+ and Cu2+ detection. For the interaction mechanism, the hydroxyl groups (as the
electron donor) located at the lower rim of TC4 are the potential elements for coordinating
Pb2+ and Cu2+ ions (electron acceptor) through electrostatic interaction that help induce
complex formation (Figure 6).
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3.4. Detection of Pb2+ and Cu2+

The DPV responses of TC4/AuNPs/SPCE toward different concentration of Pb2+ and
Cu2+ were recorded under optimal experimental conditions (Figure 7). Based on Figure 7a,c,
the current response increased proportionally with increased Pb2+ and Cu2+ concentrations
from 0.2 ppm to 1.0 ppm. The calibration plots (as shown in Figure 7b,d presented as
straight-line graphs with a good linear regression coefficient of 0.9714 (Pb2+) and 0.9926
(Cu2+). The limit of detection (LOD) was calculated based on the formula 3σ/S, where σ is
the standard deviation of the blank and “S” is the slope of the calibration plot [14]. The LOD
for Pb2+ and Cu2+ was 0.7982 × 10−2 ppm and 1.3358 × 10−2 ppm, respectively, which is
beyond the permissible level set by the World Health Organization (WHO), at 0.01 ppm
(Pb2+) and 1.0 ppm (Cu2+). Table 1 shows the performance of recently developed sensors
of Pb2+ and Cu2+ as compared to the proposed sensor, TC4/AuNPs/SPCE. According to
the tabulated data, the developed electrochemical sensor, is reliably used for Pb2+ and Cu2+

detection as the LOD values achieved were lower than the permissible level.

Chemosensors 2021, 9, x FOR PEER REVIEW 9 of 14 
 

 

Figure 6. Schematic representation of the binding and complexation mode of TC4/AuNPs/SPCE 
with Pb2+ and Cu2+. 

3.4. Detection of Pb2+ and Cu2+ 
The DPV responses of TC4/AuNPs/SPCE toward different concentration of Pb2+ and 

Cu2+ were recorded under optimal experimental conditions (Figure 7). Based on Figure 
7a,c, the current response increased proportionally with increased Pb2+ and Cu2+ concen-
trations from 0.2 ppm to 1.0 ppm. The calibration plots (as shown in Figure 7b,d pre-
sented as straight-line graphs with a good linear regression coefficient of 0.9714 (Pb2+) 
and 0.9926 (Cu2+). The limit of detection (LOD) was calculated based on the formula 3σ/S, 
where σ is the standard deviation of the blank and “S” is the slope of the calibration plot 
[14]. The LOD for Pb2+ and Cu2+ was 0.7982 × 10−2 ppm and 1.3358 × 10−2 ppm, respectively, 
which is beyond the permissible level set by the World Health Organization (WHO), at 
0.01 ppm (Pb2+) and 1.0 ppm (Cu2+). Table 1 shows the performance of recently developed 
sensors of Pb2+ and Cu2+ as compared to the proposed sensor, TC4/AuNPs/SPCE. Ac-
cording to the tabulated data, the developed electrochemical sensor, is reliably used for 
Pb2+ and Cu2+ detection as the LOD values achieved were lower than the permissible 
level. 

 
Figure 7. The DPV response of the TC4/AuNPs/SPCE toward (a) lead ions (Pb2+) and (c) copper ions (Cu2+). The calibra-
tion curve of (b) lead ions (Pb2+) and (d) copper ions (Cu2+). 

Table 1. Comparison of the performance of recently developed sensors and the proposed sensor toward Pb2+ and Cu2+. 

Analytes Electrode Detection Range 
Limitation of  

Detection (LOD) Reference 

Pb2+ 

Double-walled carbon nanotubes 
(DWCNTs) noncovalently 

functionalised with Allium sativum 
extract on GCEs on GCE 

0.50 × 10−2–10.00 × 10−2 
ppm * 0.15 × 10−2 ppm * [42] 

 Polypyrrole nanoparticles on GCE 
2.07 × 10−2–1036.00 × 10−2 

ppm * 1.14 × 10−2 ppm * [43] 

 Carbon graphite powder with 4.14 × 10−2–2072.00 × 10−2 5.18 × 10−2 ppm * [44] 

Figure 7. The DPV response of the TC4/AuNPs/SPCE toward (a) lead ions (Pb2+) and (c) copper
ions (Cu2+). The calibration curve of (b) lead ions (Pb2+) and (d) copper ions (Cu2+).



Chemosensors 2021, 9, 157 9 of 14

Table 1. Comparison of the performance of recently developed sensors and the proposed sensor toward Pb2+ and Cu2+.

Analytes Electrode Detection Range Limitation of
Detection (LOD) Reference

Pb2+

Double-walled carbon
nanotubes (DWCNTs)

noncovalently functionalised
with Allium sativum extract on

GCEs on GCE

0.50 × 10−2–10.00 × 10−2 ppm * 0.15 × 10−2 ppm * [42]

Polypyrrole nanoparticles on
GCE 2.07 × 10−2–1036.00 × 10−2 ppm * 1.14 × 10−2 ppm * [43]

Carbon graphite powder with
Na2Mn2Cr(PO4)3 on
carbonpaste electrode

4.14 × 10−2–2072.00 × 10−2 ppm * 5.18 × 10−2 ppm * [44]

MWCNTs-COOH/UiO-66-
NH2/MWCNTs-COOH/GCE)

on GCE
0.10 × 10−2–12.1 × 10−2 ppm * 0.07 × 10−3 ppm * [45]

TC4/AuNPs/SPCE 0.20 ppm–1.00 ppm 0.80 × 10−2 ppm This work

Cu2+ Polypyrrole-modified electrode 0.06 × 10−4–6355.00 × 10−2 ppm * 0.01 × 10−2 ppm * [46]

OP30–2.0-CSs/GCE-modified
electrode 3.18 × 10−2–31.78 × 10−2 ppm * 0.06 × 10−2 ppm * [47]

HNQP/SPCE 0.00 × 10−2–635.50 × 10−2 ppm * 0.90 × 10−2 ppm * [48]

GCE/MWCNTs-BCS 3.17 × 10−2–38.13 × 10−2 ppm * 0.95 × 10−2 ppm * [49]

TC4/AuNPs/SPCE 0.20 ppm–1.00 ppm 1.34 × 10−2 ppm This work

* The unit is converted to ppm for comparison purposes.

It is important to determine the selectivity of TC4/AuNPs/SPCE in the presence
of competitor metal ions so the performance of the developed sensor can be evaluated.
Hence, an interference study was carried out in the presence of 1.0 ppm of competitive ions,
namely lead (Pb2+), cadmium (Cd2+), magnesium (Mg2+), nickel (Ni2+), calcium (Ca2+),
copper (Cu2+), zinc (Zn2+), and mercury (Hg2+) ions. Table 2 shows no significant changes
in current response when detecting Pb2+ except in the presence of the Zn2+ and Hg2+

competitive ions. For lead ion detection, most interferent ions had little interference on
the current response of detection, possibly owing to the sensor interface possessing more
selectivity/specificity toward lead ions [17]. However, the presence of interferent ions in
Cu2+ ion detection significantly affected the current response, except for Ca2+ and Mg2+.
This result may be ascribed to the formation of intermetallic compounds between Ni2+,
Zn2+, Cd2+, Hg2+, Pb2+, and Cu2+ deposited onto the electrode interface [17,50]. Therefore,
it would be worth exploring further the addition a shelter reagent in the presence of
interferents, as proposed in previous literature [51].

3.5. Reproducibility, Stability, and Lifetime Studies

The reproducibility of the proposed electrode was carried out using five different
modified electrodes to detect 1.0 ppm of analytes (Pb2+ or Cu2+), while the stability study
was performed by conducting five-time repetitive measurements on the target analytes
using a single modified electrode. Table 3 shows excellent reproducibility and stability
with good relative standard deviation (RSD) values of 3.08% and 3.59% for Pb2+ and Cu2+,
respectively. The RSD was <6.61% after five repetition runs for both target molecules.

The lifetime of the modified electrode was studied to monitor the efficiency of the
electrochemical sensor in sensing target analytes (Pb2+ and Cu2+) after a set amount of
storage time. The storage durations for this study were set to 0, 7, 15, 22, and 31 days.
At 0 days, the target analytes were detected using freshly modified electrodes. Table 4
and Figure S4 show the results with a reduction in current response in detecting Pb2+ and
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Cu2+, suggesting storage stability can last for at least less than 7 days to have reliable
measurements.

Table 2. Current response of the TC4/AuNPs/SPCE sensor in the detection of 1.0 ppm Pb2+ and
Cu2+ with the presence of different interferent ions at the same concentration (1.0 ppm) in 0.1 M, pH
8 KCl using the DPV procedure at a deposition potential of −1.2 V (Pb2+) and −1.1 V (Cu2+) and a
deposition time of 120 s.

Interferent
Pb2+ Cu2+

Signal Change (%) RSD (%) Signal Change (%) RSD (%)

Cd2+ −4.80 5.19 81.79 13.25

Mg2+ 3.25 1.99 22.64 14.34

Ni2+ 19.37 5.30 61.67 7.57

Ca2+ 10.94 3.03 16.68 8.70

Zn2+ 36.04 3.77 70.68 5.04

Hg2+ 35.81 4.64 77.68 1.84

Cu2+ 19.23 6.30 - -

Pb2+ - - 91.71 12.50

Table 3. Reproducibility and stability of TC4/AuNPs/SPCE for the detection of 1.0 ppm Pb2+

and Cu2+.

Analytes Reproducibility RSD (%) Stability RSD (%)

Pb2+ 3.08 6.61

Cu2+ 3.59 2.12

Table 4. Lifetime measurement of TC4/AuNPs/SPCE in the detection of 1.0 ppm of Pb2+ and Cu2+

in 0.1 M, pH 8 KCl at deposition potential of −1.2 V (Pb2+) and −1.1 V (Cu2+), and a deposition time
of 120 s.

Lifetime
Pb2+ Cu2+

Signal Change (%) RSD Signal Change (%) RSD

7 days 24.98 6.06 29.03 5.43

15 days 31.55 4.26 38.42 12.69

22 days 47.99 6.77 41.30 13.70

31 days 60.25 11.36 43.39 5.71

3.6. Recovery Study

To verify the applicability of the developed sensor for the determination of Pb2+ and
Cu2+, an electrochemical analysis was performed where the concentration of analytes
was recovered from river water and a standard solution, and the results were compared
with a conventional standard method (ICP-OES). Both samples were spiked with 1 ppm
analyte concentration. According to Table 5, the developed sensor showed satisfactory
recoveries of 94.0%, and 103.0% for Pb2+ and Cu2+, respectively, in deionised water, and
95.0% and 99.0%, respectively, in river water. The data obtained is in good agreement
with the ICP-OES results, illustrating that the developed electrochemical sensor shows a
good recovery from deionised water or in river water samples. The TC4/AuNPs/SPCE,
therefore, has great potential for use in practical sample determination.
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Table 5. Data validation of lead and copper ion detection in water samples.

Method Samples
Added
Pb(II)
(ppm)

Found
Pb(II)
(ppm)

Recovery
(%) RSD (%)

Added
Cu(II)
(ppm)

Found
Cu(II)
(ppm)

Recovery
(%) RSD (%)

ICP-OES Deionised
water 1 ppm 0.89 89 1.15 1 ppm 1.03 103 0.35

TC4 Deionised
water 1 ppm 0.94 94 0.66 1 ppm 1.03 103 2.83

TC4 Deionised
water 0.6 ppm 0.64 105.94 3.26 0.6 ppm 0.58 96.67 3.42

ICP-OES River
water 1 ppm 0.98 98 2.03 1 ppm 1.08 108 0.11

TC4 River
water 1 ppm 0.95 95 1.9 1 ppm 0.99 99 2.75

TC4 River
water 2 ppm 2.1 108 3.05 2 ppm 1.88 94 3.47

4. Conclusions

The TC4/AuNPs/SPCE was developed and characterised using Fourier-transform
infrared spectroscopy, field emission scanning electron microscopy, and electrochemical
techniques. This system was successfully applied in the detection of lead ions (Pb2+) and
copper ions (Cu2+) at select ppm levels using differential pulse voltammetry. The optimum
current response was attained with pH 8.0, a deposition potential of −1.2 V (Pb2+) and
−1.1 V (Cu2+), and a deposition time of 120 s. Under these optimum experimental condi-
tions, a good linear relationship was achieved in the concentration study, ranging from
0.2 ppm to 1.0 ppm. The sensor displayed good reproducibility with an RSD of 3.08%,
and 3.59% for lead ions (Pb2+) and copper ions (Cu2+), respectively. Most importantly, this
innovative electrochemical sensor was successfully applied in detecting lead ions (Pb2+)
and copper (Cu2+) ions in a real water sample, that is river water. However, it can be
employed as an alternative sensing platform for lead ion (Pb2+) determination in various
sample matrices as TC4/AuNPs/SPCE is prone to detect Pb2+ ions rather than copper
(Cu2+) ions without significant interfere from competitive metal ions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemosensors9070157/s1, Table S1: element analysis of (a) bare screen-printed carbon electrode
(SPCE) (b) AuNPs/SPCE and (c) TC4/AuNPs/SPCE; Figure S1: Graph of Nyquist plot of bare SPCE,
AuNPs/SPCE, TC4/AuNPs/SPCE in 0.1 M KCl containing 1.0 mM K3[Fe(CN)6] from 100 kHz to
0.1 Hz, 10 per decade and 0.005 V amplitude; Figure S2: Reproducibility of TC4/AuNPs/SPCE for
1.0 ppm Pb2+ and Cu2+ detection; Figure S3: Stability of TC4/AuNPs/SPCE for 1.0 ppm Pb2+ and
Cu2+ detection; Figure S4: Lifetime measurement of TC4/AuNPs/SPCE in the detection of 1.0 ppm
of Pb2+ and Cu2+ in 0.1 M, pH 8 KCl at deposition potential of −1.2 V (Pb2+) and −1.1 V (Cu2+), and
a deposition time of 120 s.
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