Cellular Prion Protein Is Essential for Myocardial Regeneration but Not the Recovery of Left Ventricular Function from Apical Ballooning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Animal Model of Takotsubo Cardiomyopathy (TCM) (i.e., Apical Ballooning)
2.3. Procedure of TAC for Induction of TCM
2.4. Animal Grouping and Treatment Strategy
2.5. LV Functional Assessment by Echocardiography
2.6. The Procedure and Protocol for PrPc Overexpression and Silencing
2.7. The Procedure and Protocol for H9C2 Cell Culturing and Treated by Hydrogen Peroxide (H2O2), Isoproterenol, Stelazine, or PrPc Overexpression
2.8. Immunohistochemical (IHC) and Immunofluorescent (IF) Staining
2.9. Western Blot Analysis
2.10. Histological Quantification of Myocardial Fibrosis
2.11. Statistical Analysis
3. Results
3.1. Isoproterenol and H2O2 Suppressed the PrPC and Cell-Stress Signaling Pathway in H9C2 Cells
3.2. PrPC-Regulated the Cell-Stress and Cell-Proliferation/Survival Signaling Pathways in H9C2 Cells
3.3. Time Courses of LVEF in B6 Mice
3.4. Protein Expressions of PrPC, Cell Stress and Proliferation Signalings by Day 28 after TAC Procedure
3.5. Protein Expressions of Cell-Proliferation/Survival Signaling by Day 28 after TAC Procedure
3.6. The Proliferation Biomarkers in LV Myocardium by Day 28 after TAC Procedure
3.7. Fibrotic and Collagen-Deposition Areas in LV Myocardium by Day 28 after TAC Procedure
3.8. Protein Expressions of Apoptotic, Fibrotic, Pressure-Overload/Heart-Failure, and Mitochondrial/DNA-Damaged Biomarkers in LV Myocardium by Day 28 after TAC Procedure
4. Discussion
5. Study Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abe, Y.; Kondo, M.; Matsuoka, R.; Araki, M.; Dohyama, K.; Tanio, H. Assessment of clinical features in transient left ventricular apical ballooning. J. Am. Coll. Cardiol. 2003, 41, 737–742. [Google Scholar] [CrossRef] [Green Version]
- Kurisu, S.; Sato, H.; Kawagoe, T.; Ishihara, M.; Shimatani, Y.; Nishioka, K.; Kono, Y.; Umemura, T.; Nakamura, S. Tako-tsubo-like left ventricular dysfunction with ST-segment elevation: A novel cardiac syndrome mimicking acute myocardial infarction. Am. Heart J. 2002, 143, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Tsuchihashi, K.; Ueshima, K.; Uchida, T.; Oh-mura, N.; Kimura, K.; Owa, M.; Yoshiyama, M.; Miyazaki, S.; Haze, K.; Ogawa, H.; et al. Transient left ventricular apical ballooning without coronary artery stenosis: A novel heart syndrome mimicking acute myocardial infarction. Angina Pectoris-Myocardial Infarction Investigations in Japan. J. Am. Coll. Cardiol. 2001, 38, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.; Lerman, A.; Rihal, C.S. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): A mimic of acute myocardial infarction. Am. Heart J. 2008, 155, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, M.; Rihal, C.S.; Lerman, A.; Prasad, A. Acute heart failure in apical ballooning syndrome (TakoTsubo/stress cardiomyopathy): Clinical correlates and Mayo Clinic risk score. J. Am. Coll. Cardiol. 2011, 57, 1400–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianni, M.; Dentali, F.; Grandi, A.M.; Sumner, G.; Hiralal, R.; Lonn, E. Apical ballooning syndrome or takotsubo cardiomyopathy: A systematic review. Eur. Heart J. 2006, 27, 1523–1529. [Google Scholar] [CrossRef] [Green Version]
- Virani, S.S.; Khan, A.N.; Mendoza, C.E.; Ferreira, A.C.; de Marchena, E. Takotsubo cardiomyopathy, or broken-heart syndrome. Tex. Heart Inst. J. 2007, 34, 76–79. [Google Scholar]
- Lampropoulos, K.M.; Kotsas, D.; Iliopoulos, T.A. Apical ballooning syndrome: A case report. BMC Res. Notes 2012, 5, 698. [Google Scholar] [CrossRef] [Green Version]
- Dorfman, T.A.; Iskandrian, A.E. Takotsubo cardiomyopathy: State-of-the-art review. J. Nucl. Cardiol. 2009, 16, 122–134. [Google Scholar] [CrossRef]
- Donohue, D.; Movahed, M.R. Clinical characteristics, demographics and prognosis of transient left ventricular apical ballooning syndrome. Heart Fail. Rev. 2005, 10, 311–316. [Google Scholar] [CrossRef]
- Paolisso, P.; Bergamaschi, L.; Rambaldi, P.; Gatta, G.; Foa, A.; Angeli, F.; Fabrizio, M.; Casella, G.; Barbieri, M.; Galie, N.; et al. Impact of Admission Hyperglycemia on Heart Failure Events and Mortality in Patients with Takotsubo Syndrome at Long-term Follow-up: Data From HIGH-GLUCOTAKO Investigators. Diabetes Care 2021, 44, 2158–2161. [Google Scholar] [CrossRef]
- Sardu, C.; Sacra, C.; Mauro, C.; Siniscalchi, M.; Marfella, R.; Rizzo, M.R. (123)I-MIBG Scintigraphy in the Subacute State of Takotsubo Cardiomyopathy. JACC Cardiovasc. Imaging 2017, 10, 93–94. [Google Scholar] [CrossRef]
- Sardu, C.; Paolisso, G.; Marfella, R. Letter by Sardu et al Regarding Article, “Persistent Long-Term Structural, Functional, and Metabolic Changes After Stress-Induced (Takotsubo) Cardiomyopathy”. Circulation 2018, 138, 954–955. [Google Scholar] [CrossRef] [PubMed]
- Black, S.A.; Stys, P.K.; Zamponi, G.W.; Tsutsui, S. Cellular prion protein and NMDA receptor modulation: Protecting against excitotoxicity. Front. Cell Dev. Biol. 2014, 2, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguzzi, A.; Baumann, F.; Bremer, J. The prion’s elusive reason for being. Annu. Rev. Neurosci. 2008, 31, 439–477. [Google Scholar] [CrossRef]
- Llorens, F.; Carulla, P.; Villa, A.; Torres, J.M.; Fortes, P.; Ferrer, I.; del Rio, J.A. PrP(C) regulates epidermal growth factor receptor function and cell shape dynamics in Neuro2a cells. J. Neurochem. 2013, 127, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Kong, Q. alpha-Cleavage of cellular prion protein. Prion 2012, 6, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doeppner, T.R.; Kaltwasser, B.; Schlechter, J.; Jaschke, J.; Kilic, E.; Bahr, M.; Hermann, D.M.; Weise, J. Cellular prion protein promotes post-ischemic neuronal survival, angioneurogenesis and enhances neural progenitor cell homing via proteasome inhibition. Cell Death Dis. 2015, 6, e2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Han, Y.S.; Lee, S.H. Potentiation of biological effects of mesenchymal stem cells in ischemic conditions by melatonin via upregulation of cellular prion protein expression. J. Pineal. Res. 2017, 62, e12385. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Yang, Y.; Wang, T.; Kouadir, M.; Zhao, D.; Hu, S. Cellular Prion Protein Promotes Neuronal Differentiation of Adipose-Derived Stem Cells by Upregulating miRNA-124. J. Mol. Neurosci. 2016, 59, 48–55. [Google Scholar] [CrossRef]
- Li, Q.Q.; Sun, Y.P.; Ruan, C.P.; Xu, X.Y.; Ge, J.H.; He, J.; Xu, Z.D.; Wang, Q.; Gao, W.C. Cellular prion protein promotes glucose uptake through the Fyn-HIF-2alpha-Glut1 pathway to support colorectal cancer cell survival. Cancer Sci. 2011, 102, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Martin-Lanneree, S.; Hirsch, T.Z.; Hernandez-Rapp, J.; Halliez, S.; Vilotte, J.L.; Launay, J.M.; Mouillet-Richard, S. PrP(C) from stem cells to cancer. Front. Cell Dev. Biol. 2014, 2, 55. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Qian, J.; Wang, F.; Ma, Z. Cellular prion protein accelerates colorectal cancer metastasis via the Fyn-SP1-SATB1 axis. Oncol. Rep. 2012, 28, 2029–2034. [Google Scholar] [CrossRef] [Green Version]
- Thellung, S.; Corsaro, A.; Bosio, A.G.; Zambito, M.; Barbieri, F.; Mazzanti, M.; Florio, T. Emerging Role of Cellular Prion Protein in the Maintenance and Expansion of Glioma Stem Cells. Cells 2019, 8, 1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quagliariello, V.; De Laurentiis, M.; Cocco, S.; Rea, G.; Bonelli, A.; Caronna, A.; Lombari, M.C.; Conforti, G.; Berretta, M.; Botti, G.; et al. NLRP3 as Putative Marker of Ipilimumab-Induced Cardiotoxicity in the Presence of Hyperglycemia in Estrogen-Responsive and Triple-Negative Breast Cancer Cells. Int. J. Mol. Sci. 2020, 21, 7802. [Google Scholar] [CrossRef]
- Ohanyan, V.; Yin, L.; Bardakjian, R.; Kolz, C.; Enrick, M.; Hakobyan, T.; Kmetz, J.; Bratz, I.; Luli, J.; Nagane, M.; et al. Requisite Role of Kv1.5 Channels in Coronary Metabolic Dilation. Circ. Res. 2015, 117, 612–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.I.; Huang, T.H.; Sung, P.H.; Chen, Y.L.; Chua, S.; Chai, H.Y.; Chung, S.Y.; Liu, C.F.; Sun, C.K.; Chang, H.W.; et al. Administration of antioxidant peptide SS-31 attenuates transverse aortic constriction-induced pulmonary arterial hypertension in mice. Acta Pharmacol. Sin. 2016, 37, 589–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.I.; Lee, F.Y.; Wallace, C.G.; Sung, P.H.; Chen, K.H.; Sheu, J.J.; Chua, S.; Tong, M.S.; Huang, T.H.; Chen, Y.L.; et al. SS31 therapy effectively protects the heart against transverse aortic constriction-induced hypertrophic cardiomyopathy damage. Am. J. Transl. Res. 2017, 9, 5220–5237. [Google Scholar] [PubMed]
- Lu, H.I.; Tong, M.S.; Chen, K.H.; Lee, F.Y.; Chiang, J.Y.; Chung, S.Y.; Sung, P.H.; Yip, H.K. Entresto therapy effectively protects heart and lung against transverse aortic constriction induced cardiopulmonary syndrome injury in rat. Am. J. Transl. Res. 2018, 10, 2290–2305. [Google Scholar] [PubMed]
- Leu, S.; Lin, Y.C.; Yuen, C.M.; Yen, C.H.; Kao, Y.H.; Sun, C.K.; Yip, H.K. Adipose-derived mesenchymal stem cells markedly attenuate brain infarct size and improve neurological function in rats. J. Transl. Med. 2010, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.J.; McCowan, J.R.; Smalstig, E.B.; Bennett, D.R.; Roush, M.E.; Clemens, J.A. A phenothiazine derivative reduces rat brain damage after global or focal ischemia. Stroke 1992, 23, 1287–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.L.; Chung, S.Y.; Chai, H.T.; Chen, C.H.; Liu, C.F.; Chen, Y.L.; Huang, T.H.; Zhen, Y.Y.; Sung, P.H.; Sun, C.K.; et al. Early Administration of Carvedilol Protected against Doxorubicin-Induced Cardiomyopathy. J. Pharmacol. Exp. Ther. 2015, 355, 516–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.T.; Yang, C.C.; Shao, P.L.; Huang, C.R.; Yip, H.K. Melatonin-mediated downregulation of ZNF746 suppresses bladder tumorigenesis mainly through inhibiting the AKT-MMP-9 signaling pathway. J. Pineal. Res. 2019, 66, e12536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, H.T.; Sheu, J.J.; Chiang, J.Y.; Shao, P.L.; Wu, S.C.; Chen, Y.L.; Li, Y.C.; Sung, P.H.; Lee, F.Y.; Yip, H.K. Early administration of cold water and adipose derived mesenchymal stem cell derived exosome effectively protects the heart from ischemia-reperfusion injury. Am. J. Transl. Res. 2019, 11, 5375–5389. [Google Scholar] [PubMed]
- Sheu, J.J.; Sung, P.H.; Wallace, C.G.; Yang, C.C.; Chen, K.H.; Shao, P.L.; Chu, Y.C.; Huang, C.R.; Chen, Y.L.; Ko, S.F.; et al. Intravenous administration of iPS-MSC(SPIONs) mobilized into CKD parenchyma and effectively preserved residual renal function in CKD rat. J. Cell Mol. Med. 2020, 24, 3593–3610. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.C.; Sung, P.H.; Chiang, J.Y.; Chai, H.T.; Chen, C.H.; Chu, Y.C.; Li, Y.C.; Yip, H.K. Combined tacrolimus and melatonin effectively protected kidney against acute ischemia-reperfusion injury. FASEB J. 2021, 35, e21661. [Google Scholar] [CrossRef] [PubMed]
- Guegan, J.P.; Fremin, C.; Baffet, G. The MAPK MEK1/2-ERK1/2 Pathway and Its Implication in Hepatocyte Cell Cycle Control. Int. J. Hepatol. 2012, 2012, 328372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Cao, F.J.; Xu, D.D.; Xu, Y.Q.; Feng, S.Q. Upregulated Ras/Raf/ERK1/2 signaling pathway: A new hope in the repair of spinal cord injury. Neural. Regen. Res. 2015, 10, 792–796. [Google Scholar] [CrossRef]
- Keppler-Noreuil, K.M.; Parker, V.E.; Darling, T.N.; Martinez-Agosto, J.A. Somatic overgrowth disorders of the PI3K/AKT/mTOR pathway & therapeutic strategies. Am. J. Med. Genet. C Semin. Med. Genet. 2016, 172, 402–421. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Shi, X.; Sheng, K.; Han, G.; Li, W.; Zhao, Q.; Jiang, B.; Feng, J.; Li, J.; Gu, Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol. Med. Rep. 2019, 19, 783–791. [Google Scholar] [CrossRef] [Green Version]
- Abbate, A.; Toldo, S.; Marchetti, C.; Kron, J.; Van Tassell, B.W.; Dinarello, C.A. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circ. Res. 2020, 126, 1260–1280. [Google Scholar] [CrossRef] [PubMed]
- Marfella, R.; Barbieri, M.; Sardu, C.; Rizzo, M.R.; Siniscalchi, M.; Paolisso, P.; Ambrosino, M.; Fava, I.; Materazzi, C.; Cinquegrana, G.; et al. Effects of alpha-lipoic acid therapy on sympathetic heart innervation in patients with previous experience of transient takotsubo cardiomyopathy. J. Cardiol. 2016, 67, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheu, J.-J.; Chai, H.-T.; Chiang, J.Y.; Sung, P.-H.; Chen, Y.-L.; Yip, H.-K. Cellular Prion Protein Is Essential for Myocardial Regeneration but Not the Recovery of Left Ventricular Function from Apical Ballooning. Biomedicines 2022, 10, 167. https://doi.org/10.3390/biomedicines10010167
Sheu J-J, Chai H-T, Chiang JY, Sung P-H, Chen Y-L, Yip H-K. Cellular Prion Protein Is Essential for Myocardial Regeneration but Not the Recovery of Left Ventricular Function from Apical Ballooning. Biomedicines. 2022; 10(1):167. https://doi.org/10.3390/biomedicines10010167
Chicago/Turabian StyleSheu, Jiunn-Jye, Han-Tan Chai, John Y. Chiang, Pei-Hsun Sung, Yi-Ling Chen, and Hon-Kan Yip. 2022. "Cellular Prion Protein Is Essential for Myocardial Regeneration but Not the Recovery of Left Ventricular Function from Apical Ballooning" Biomedicines 10, no. 1: 167. https://doi.org/10.3390/biomedicines10010167
APA StyleSheu, J. -J., Chai, H. -T., Chiang, J. Y., Sung, P. -H., Chen, Y. -L., & Yip, H. -K. (2022). Cellular Prion Protein Is Essential for Myocardial Regeneration but Not the Recovery of Left Ventricular Function from Apical Ballooning. Biomedicines, 10(1), 167. https://doi.org/10.3390/biomedicines10010167