In Vitro Anticancer Activity and Mechanism of Action of an Aziridinyl Galactopyranoside
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cell Lines
2.3. Cell Viability Assays
2.4. Survival Assay
2.5. Comet Assay
2.6. Glycolysis Inhibition
2.7. Statistical Analysis
3. Results
3.1. AzGalp Induces DNA Damage
3.2. Role of Nucleotide Excision Repair in the Cytotoxicity of AzGalp
3.3. Evaluation of Other Possible Mechanisms Involved in the Selective Cytotoxic Activity of AzGalp
3.4. Cytotoxicity of AzGalp in Combination with the Anticancer Drugs 5-Fluorouracil and Oxaliplatin
3.5. Determination of the Cytotoxicity of AzGalp against a Panel of Cancer Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- López-Lázaro, M. A simple and reliable approach for assessing anticancer activity in vitro. Curr. Med. Chem. 2015, 22, 1324–1334. [Google Scholar] [CrossRef] [PubMed]
- Ismail, F.M.D.; Levitsky, D.O.; Dembitsky, V.M. Aziridine alkaloids as potential therapeutic agents. Eur. J. Med. Chem. 2009, 44, 3373–3387. [Google Scholar] [CrossRef]
- Vega-Pérez, J.M.; Palo-Nieto, C.; Vega-Holm, M.; Gongora-Vargas, P.; Calderón-Montaño, J.M.; Burgos-Morón, E.; López-Lázaro, M.; Iglesias-Guerra, F. Aziridines from alkenyl-beta-D-galactopyranoside derivatives: Stereoselective synthesis and in vitro selective anticancer activity. Eur. J. Med. Chem. 2013, 70, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Grüschow, S.; Chang, L.C.; Mao, Y.; Sherman, D.H. Hydroxyquinone O-Methylation in Mitomycin Biosynthesis. J. Am. Chem. Soc. 2007, 129, 6470–6476. [Google Scholar] [CrossRef]
- Hirayama, N.; Shirahata, K. Structural studies of mitomycins. IV. Structure of albomitomycin A. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1991, 47, 409–411. [Google Scholar] [CrossRef]
- Fiallo, M.M.L.; Deydier, E.; Bracci, M.; Garnier-Suillerot, A.; Halvorsen, K. Mitomycin Antitumor Compounds. 2. Interaction of Transition Metal Ions with Mitomycin, C. Solution Structure and Biological Activity of a Pd2+–MMC Complex. J. Med. Chem. 2003, 46, 1683–1689. [Google Scholar] [CrossRef]
- Coleman, R.S.; Kong, J.S.; Richardson, T.E. Synthesis of Naturally Occurring Antitumor Agents: Stereocontrolled Synthesis of the Azabicyclic Ring System of the Azinomycins. J. Am. Chem. Soc. 1999, 121, 9088–9095. [Google Scholar] [CrossRef]
- Torabifard, H.; Fattahi, A. DFT study on Thiotepa and Tepa interactions with their DNA receptor. Struct. Chem. 2013, 24, 1–11. [Google Scholar] [CrossRef]
- Puyo, S.; Montaudon, D.; Pourquier, P. From old alkylating agents to new minor groove binders. Crit. Rev. Oncol. Hematol. 2014, 89, 43–61. [Google Scholar] [CrossRef] [PubMed]
- Hahn, W.C.; Counter, C.M.; Lundberg, A.S.; Beijersbergen, R.L.; Brooks, M.W.; Weinberg, R.A. Creation of human tumour cells with defined genetic elements. Nature 1999, 400, 464–468. [Google Scholar] [CrossRef]
- Gad, H.; Koolmeister, T.; Jemth, A.-S.; Eshtad, S.; Jacques, S.A.; Ström, C.E.; Svensson, L.M.; Schultz, N.; Lundbäck, T.; Einarsdottir, B.O.; et al. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 2014, 508, 215–221. [Google Scholar] [CrossRef]
- Bryant, H.E.; Ying, S.; Helleday, T. Homologous recombination is involved in repair of chromium-induced DNA damage in mammalian cells. Mutat. Res. 2006, 599, 116–123. [Google Scholar] [CrossRef]
- Meschini, R.; Marotta, E.; Berni, A.; Filippi, S.; Fiore, M.; Mancinelli, P.; Natarajan, A.T.; Palitti, F. DNA repair deficiency and BPDE-induced chromosomal alterations in CHO cells. Mutat. Res. 2008, 637, 93–100. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Pastor, N.; López-Lázaro, M.; Tella, J.L.; Baos, R.; Hiraldo, F.; Cortes, F. Assessment of genotoxic damage by the comet assay in white storks (Ciconia ciconia) after the Donana Ecological Disaster. Mutagenesis 2001, 16, 219–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Bloomston, M.; Zhang, T.; Frankel, W.L.; Jia, G.; Wang, B.; Hall, N.C.; Koch, R.M.; Cheng, H.; Knopp, M.V.; et al. Synergistic antipancreatic tumor effect by simultaneously targeting hypoxic cancer cells with HSP90 inhibitor and glycolysis inhibitor. Clin. Cancer Res. 2008, 14, 1831–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderón-Montaño, J.M.; Burgos-Morón, E.; Orta, M.L.; López-Lázaro, M. Effect of DNA repair deficiencies on the cytotoxicity of drugs used in cancer therapy—A review. Curr. Med. Chem. 2014, 21, 3419–3454. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Wang, X.; Warren, A.J.; Legerski, R.J.; Nairn, R.S.; Hamilton, J.W.; Li, L. Nucleotide excision repair- and polymerase eta-mediated error-prone removal of mitomycin C interstrand cross-links. Mol. Cell. Biol. 2003, 23, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Martín-Cordero, C.; León-González, A.J.; Calderón-Montaño, J.M.; Burgos-Morón, E.; López-Lázaro, M. Pro-oxidant natural products as anticancer agents. Curr. Drug Targets 2012, 13, 1006–1028. [Google Scholar] [CrossRef]
- Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic. Biol. Med. 2017, 104, 144–164. [Google Scholar] [CrossRef]
- Chen, X.; Li, L.; Guan, Y.; Yang, J.; Cheng, Y. Anticancer strategies based on the metabolic profile of tumor cells: Therapeutic targeting of the Warburg effect. Acta Pharmacol. Sin. 2016, 37, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- López-Lázaro, M. A new view of carcinogenesis and an alternative approach to cancer therapy. Mol. Med. 2010, 16, 144–153. [Google Scholar] [CrossRef]
- Weeden, C.E.; Asselin-Labat, M.-L. Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation. Biochim. Biophys. Acta–Mol. Basis Dis. 2018, 1864, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, C.; Sueyoshi, Y.; Ema, M.; Mori, Y.; Takaishi, K.; Hisatomi, H. Induction of oxidative stress by anticancer drugs in the presence and absence of cells. Oncol. Lett. 2017, 14, 6066–6070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, J.; Nakamura, H.; Iyer, A.K. Tumor-targeted induction of oxystress for cancer therapy. J. Drug Target. 2007, 15, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Simizu, S.; Takada, M.; Umezawa, K.; Imoto, M. Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J. Biol. Chem. 1998, 273, 26900–26907. [Google Scholar] [CrossRef] [Green Version]
- Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591. [Google Scholar] [CrossRef]
- Zafarullah, M.; Li, W.Q.; Sylvester, J.; Ahmad, M. Molecular mechanisms of N-acetylcysteine actions. Cell. Mol. Life Sci. 2003, 60, 6–20. [Google Scholar] [CrossRef]
- Nocca, G.; D’Antò, V.; Desiderio, C.; Rossetti, D.V.; Valletta, R.; Baquala, A.M.; Schweikl, H.; Lupi, A.; Rengo, S.; Spagnuolo, G. N-acetyl cysteine directed detoxification of 2-hydroxyethyl methacrylate by adduct formation. Biomaterials 2010, 31, 2508–2516. [Google Scholar] [CrossRef]
- Altenberg, B.; Greulich, K.O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 2004, 84, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, M.; Reichert, T.E.; Benz, P.; Lehr, H.-A.; Jeong, J.-H.; Wieand, S.; Bartenstein, P.; Wagner, W.; Whiteside, T.L. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 2003, 97, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Medina, R.A.; Owen, G.I. Glucose transporters: Expression, regulation and cancer. Biol. Res. 2002, 35, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Laszlo, J.; Landau, B.; Wight, K.; Burk, D. The effect of glucose analogues on the metabolism of human leukemic cells. J. Natl. Cancer Inst. 1958, 21, 475–483. [Google Scholar] [CrossRef]
- Abulaiti, A.; Fikaris, A.J.; Tsygankova, O.M.; Meinkoth, J.L. Ras Induces Chromosome Instability and Abrogation of the DNA Damage Response. Cancer Res. 2006, 66, 10505–10512. [Google Scholar] [CrossRef] [Green Version]
- Gavande, N.S.; VanderVere-Carozza, P.S.; Hinshaw, H.D.; Jalal, S.I.; Sears, C.R.; Pawelczak, K.S.; Turchi, J.J. DNA repair targeted therapy: The past or future of cancer treatment? Pharmacol. Ther. 2016, 160, 65–83. [Google Scholar] [CrossRef]
Cell Line | IC50 (Mean ± SEM, µM) | |
---|---|---|
AzGalp | 5-FU | |
Normal Cells | ||
MRC-5 (Human lung non-malignant cells) | 341.1 ± 85.0 | ˃1000 |
VH10 (Human skin non-malignant cells) | 410.9 ± 39.4 | ˃1000 |
Cancer Cells | ||
HeLa (Human cervical carcinoma cells) | 191.0 ± 35.8 | 66.3 ± 27.0 |
HepG2 (Human hepatocellular carcinoma cells) | 121.7 ± 12.4 | 0.6 ± 0.3 |
HL-60 (Human acute promyelocytic leukemia cells) | 11.1 ± 0.9 | 0.9 ± 0.8 |
NB4 (Human acute promyelocytic leukemia cells) | 21.4 ± 9.9 | 2.5 ± 0.3 |
PC3 (Human prostate cancer cells) | 400.7 ± 14.8 | 1.5 ± 0.3 |
SW480 (Human colon adenocarcinoma cells) | 387.8 ± 30.9 | 2.9 ± 1.3 |
U2OS (Human osteosarcoma cells) | 120.5 ± 8.0 | 6.4 ± 0.7 |
Genetically Modified Cells | ||
BJ-hTERT (hTERT-immortalized skin non-malignant BJ cells) | 208.7 ± 24.2 | 2.4 ± 0.5 |
BJ-SV40T (SV40T-transformed BJ-hTERT cells) | 142.7 ± 8.1 | 5.4 ± 0.7 |
BJ-RASV12 (HRASV12-transformed BJ-SV40T cells) | 76.3 ± 17.8 | 3.0 ± 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgos-Morón, E.; Pastor, N.; Orta, M.L.; Jiménez-Alonso, J.J.; Palo-Nieto, C.; Vega-Holm, M.; Vega-Pérez, J.M.; Iglesias-Guerra, F.; Mateos, S.; López-Lázaro, M.; et al. In Vitro Anticancer Activity and Mechanism of Action of an Aziridinyl Galactopyranoside. Biomedicines 2022, 10, 41. https://doi.org/10.3390/biomedicines10010041
Burgos-Morón E, Pastor N, Orta ML, Jiménez-Alonso JJ, Palo-Nieto C, Vega-Holm M, Vega-Pérez JM, Iglesias-Guerra F, Mateos S, López-Lázaro M, et al. In Vitro Anticancer Activity and Mechanism of Action of an Aziridinyl Galactopyranoside. Biomedicines. 2022; 10(1):41. https://doi.org/10.3390/biomedicines10010041
Chicago/Turabian StyleBurgos-Morón, Estefanía, Nuria Pastor, Manuel Luis Orta, Julio José Jiménez-Alonso, Carlos Palo-Nieto, Margarita Vega-Holm, José Manuel Vega-Pérez, Fernando Iglesias-Guerra, Santiago Mateos, Miguel López-Lázaro, and et al. 2022. "In Vitro Anticancer Activity and Mechanism of Action of an Aziridinyl Galactopyranoside" Biomedicines 10, no. 1: 41. https://doi.org/10.3390/biomedicines10010041
APA StyleBurgos-Morón, E., Pastor, N., Orta, M. L., Jiménez-Alonso, J. J., Palo-Nieto, C., Vega-Holm, M., Vega-Pérez, J. M., Iglesias-Guerra, F., Mateos, S., López-Lázaro, M., & Calderón-Montaño, J. M. (2022). In Vitro Anticancer Activity and Mechanism of Action of an Aziridinyl Galactopyranoside. Biomedicines, 10(1), 41. https://doi.org/10.3390/biomedicines10010041