Differential Bias for Creatinine- and Cystatin C- Derived Estimated Glomerular Filtration Rate in Critical COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Ethical Approval
2.3. Laboratory Analyses and Clinical Variables
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/?adgroupsurvey={adgroupsurvey}&gclid=CjwKCAjw79iaBhAJEiwAPYwoCNVas_pCnSiAfgAVXWGLV_2u4M7yhwKGpX2z77jHOyXfYYhCUueLThoCB5oQAvD_BwE (accessed on 7 July 2022).
- Luther, T.; Bülow-Anderberg, S.; Larsson, A.; Rubertsson, S.; Lipcsey, M.; Frithiof, R.; Hultström, M. COVID-19 patients in intensive care develop predominantly oliguric acute kidney injury. Acta Anaesthesiol. Scand. 2020, 65, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Luther, T.; Eckerbom, P.; Cox, E.; Lipcsey, M.; Bülow, S.; Hultström, M.; Torrente, F.M.; Weis, J.; Palm, F.; Francis, S.; et al. Decreased renal perfusion during acute kidney injury in critical COVID-19 assessed by magnetic resonance imaging: A prospective case control study. Crit. Care 2022, 26, 262. [Google Scholar] [CrossRef] [PubMed]
- Lipcsey, M.; Persson, B.; Eriksson, O.; Blom, A.M.; Fromell, K.; Hultström, M.; Huber-Lang, M.; Ekdahl, K.N.; Frithiof, R.; Nilsson, B. The Outcome of Critically Ill COVID-19 Patients Is Linked to Thromboinflammation Dominated by the Kallikrein/Kinin System. Front. Immunol. 2021, 12, 627579. [Google Scholar] [CrossRef]
- Eriksson, O.; Hultström, M.; Persson, B.; Lipcsey, M.; Ekdahl, K.N.; Nilsson, B.; Frithiof, R. Mannose-Binding Lectin is Associated with Thrombosis and Coagulopathy in Critically Ill COVID-19 Patients. Thromb. Haemost. 2020, 120, 1720–1724. [Google Scholar] [CrossRef] [PubMed]
- Anderberg, S.B.; Lipcsey, M.; Hultström, M.; Eriksson, A.-K.; Venge, P.; Frithiof, R.; on behalf of the Uppsala Intensive Care COVID-19 Research Group. Systemic Human Neutrophil Lipocalin Associates with Severe Acute Kidney Injury in SARS-CoV-2 Pneumonia. J. Clin. Med. 2021, 10, 4144. [Google Scholar] [CrossRef]
- Anderberg, S.B.; Luther, T.; Berglund, M.; Larsson, R.; Rubertsson, S.; Lipcsey, M.; Larsson, A.; Frithiof, R.; Hultström, M. Increased levels of plasma cytokines and correlations to organ failure and 30-day mortality in critically ill Covid-19 patients. Cytokine 2020, 138, 155389. [Google Scholar] [CrossRef] [PubMed]
- Frithiof, R.; Bergqvist, A.; Järhult, J.D.; Lipcsey, M.; Hultström, M. Presence of SARS-CoV-2 in urine is rare and not associated with acute kidney injury in critically ill COVID-19 patients. Crit. Care 2020, 24, 587. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.H.; Hirsch, J.S.; Hazzan, A.; Wanchoo, R.; Shah, H.H.; Malieckal, D.A.; Ross, D.W.; Sharma, P.; Sakhiya, V.; Fishbane, S.; et al. Outcomes Among Patients Hospitalized With COVID-19 and Acute Kidney Injury. Am. J. Kidney Dis. 2021, 77, 204–215.e1. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Björk, J.; Courbebaisse, M.; Couzi, L.; Ebert, N.; Eriksen, B.O.; Dalton, R.N.; Dubourg, L.; Gaillard, F.; Garrouste, C.; et al. Performance of creatinine—Based equations to estimate glomerular filtration rate with a methodology adapted to the context of drug dosage adjustment. Br. J. Clin. Pharmacol. 2021, 88, 2118–2127. [Google Scholar] [CrossRef] [PubMed]
- Roos, J.F.; Doust, J.; Tett, S.E.; Kirkpatrick, C.M.J. Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children—A meta-analysis. Clin. Biochem. 2007, 40, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Tenstad, O.; Roald, A.B.; Grubb, A.; Aukland, K. Renal handling of radiolabelled human cystatin C in the rat. Scand. J. Clin. Lab. Investig. 1996, 56, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Sun, W.; Li, J.; Wei, B.; Liu, W.; Wang, X.; Song, F.; Chen, L.; Yang, J.; Yu, L. Serum Cystatin C and Coronavirus Disease 2019: A Potential Inflammatory Biomarker in Predicting Critical Illness and Mortality for Adult Patients. Mediat. Inflamm. 2020, 2020, 3764515. [Google Scholar] [CrossRef] [PubMed]
- Helmersson-Karlqvist, J.; Lipcsey, M.; Ärnlöv, J.; Bell, M.; Ravn, B.; Dardashti, A.; Larsson, A. Cystatin C predicts long term mortality better than creatinine in a nationwide study of intensive care patients. Sci. Rep. 2021, 11, 5882. [Google Scholar] [CrossRef] [PubMed]
- Tsushita, H.; Tanaka, R.; Suzuki, Y.; Sato, Y.; Itoh, H. Effects of dose and type of corticosteroids on the divergence between estimated glomerular filtration rates derived from cystatin C and creatinine. J. Clin. Pharm. Ther. 2020, 45, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.-L.; Ge, N.; Zhen, Y.; Zhao, Q.; Liu, C. Corticosteroids Significantly Increase Serum Cystatin C Concentration without Affecting Renal Function in Symptomatic Heart Failure. Clin. Lab. 2016, 62, 203–207. [Google Scholar] [CrossRef]
- Zhu, X.-R.; Ge, N.; Wang, Y.; Zhai, J.-L.; Liu, C. Corticosteroids significantly increase cystatin C levels in the plasma by promoting cystatin C production in rats. Ren. Fail. 2019, 41, 698–703. [Google Scholar] [CrossRef] [Green Version]
- Bjarnadottir, M.; Grubb, A.; Olafsson, I. Promoter-mediated, dexamethasone-induced increase in cystatin C production by HeLa cells. Scand. J. Clin. Lab. Investig. 1995, 55, 617–623. [Google Scholar] [CrossRef]
- Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.V.A.O.; et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA 2020, 324, 1307–1316. [Google Scholar] [CrossRef]
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Helmersson-Karlqvist, J.; Lipcsey, M.; Ärnlöv, J.; Bell, M.; Ravn, B.; Dardashti, A.; Larsson, A. Addition of cystatin C predicts cardiovascular death better than creatinine in intensive care. Heart 2021, 108, 279–284. [Google Scholar] [CrossRef]
- Werner, K.; Pihlsgård, M.; Elmståhl, S.; Legrand, H.; Nyman, U.; Christensson, A. Combining Cystatin C and Creatinine Yields a Reliable Glomerular Filtration Rate Estimation in Older Adults in Contrast to β-Trace Protein and β2-Microglobulin. Nephron Exp. Nephrol. 2017, 137, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Nyman, U.; Grubb, A.; Larsson, A.; Hansson, L.-O.; Flodin, M.; Nordin, G.; Lindström, V.; Björk, J. The revised Lund-Malmö GFR estimating equation outperforms MDRD and CKD-EPI across GFR, age and BMI intervals in a large Swedish population. Clin. Chem. Lab. Med. (CCLM) 2014, 52, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Larsson, A.; Lipcsey, M.; Hultström, M.; Frithiof, R.; Eriksson, M. Plasma Leptin Is Increased in Intensive Care Patients with COVID-19—An Investigation Performed in the PronMed-Cohort. Biomedicines 2021, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Stattin, K.; Lipcsey, M.; Andersson, H.; Pontén, E.; Bülow Anderberg, S.; Gradin, A.; Larsson, A.; Lubenow, N.; von Seth, M.; Rubertsson, S.; et al. Inadequate prophylactic effect of low-molecular weight heparin in critically ill COVID-19 patients. J. Crit. Care 2020, 60, 249–252. [Google Scholar] [CrossRef]
- WMA—The World Medical Association-WMA Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/ (accessed on 17 November 2021).
- Cuschieri, S. The STROBE guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef]
- Grubb, A.; Horio, M.; Hansson, L.-O.; Björk, J.; Nyman, U.; Flodin, M.; Larsson, A.; Bökenkamp, A.; Yasuda, Y.; Blufpand, H.; et al. Generation of a New Cystatin C–Based Estimating Equation for Glomerular Filtration Rate by Use of 7 Assays Standardized to the International Calibrator. Clin. Chem. 2014, 60, 974–986. [Google Scholar] [CrossRef]
- Björk, J.; Grubb, A.; Sterner, G.; Nyman, U. Revised equations for estimating glomerular filtration rate based on the Lund-Malmö Study cohort. Scand. J. Clin. Lab. Investig. 2010, 71, 232–239. [Google Scholar] [CrossRef]
- DuBois, D.; DuBois, E.F. A formula to estimate the approximate surface area if height and weight be known. Nutrition 1989, 5, 303–311, discussion 312–313. [Google Scholar]
- Shuter, B.; Aslani, A. Body surface area: Du Bois and Du Bois revisited. Eur. J. Appl. Physiol. 2000, 82, 250–254. [Google Scholar] [CrossRef]
- Nyman, U.; Grubb, A.; Lindström, V.; Björk, J. Accuracy of GFR estimating equations in a large Swedish cohort: Implications for radiologists in daily routine and research. Acta Radiol. 2016, 58, 367–375. [Google Scholar] [CrossRef]
- Section 2 AKI Definition. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4089595/pdf/kisup201132a.pdf (accessed on 7 July 2022).
- Yildirim, C.; Ozger, H.S.; Yasar, E.; Tombul, N.; Gulbahar, O.; Yildiz, M.; Bozdayi, G.; Derici, U.; Dizbay, M. Early predictors of acute kidney injury in COVID-19 patients. Nephrology 2021, 26, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Negi, S.S.; Braun, W. Statistical analysis of physical-chemical properties and prediction of protein-protein interfaces. J. Mol. Model. 2007, 13, 1157–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.T.; White, I.; Anzures-Cabrera, J. Meta-analysis of skewed data: Combining results reported on log-transformed or raw scales. Stat. Med. 2008, 27, 6072–6092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The Meta-Analisys of Response Ratios in Experimental Ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Cheng, Y.; Luo, R.; Wang, K.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Yao, Y.; Ge, S.; Xu, G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020, 97, 829–838. [Google Scholar] [CrossRef]
- Theofilis, P.; Vordoni, A.; Kalaitzidis, R.G. COVID-19 and kidney disease: A clinical perspective. Curr. Vasc. Pharmacol. 2022. [Google Scholar] [CrossRef]
- Jin, J.M.; Bai, P.; He, W.; Wu, F.; Liu, X.F.; Han, D.M.; Liu, S.; Yang, J.K. Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Front. Public Health 2020, 8, 152. [Google Scholar] [CrossRef]
- Garvin, M.R.; Alvarez, C.; Miller, J.I.; Prates, E.T.; Walker, A.M.; Amos, B.K.; Mast, A.E.; Justice, A.; Aronow, B.; Jacobson, D.A. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. elife 2020, 9, e59177. [Google Scholar] [CrossRef]
- Eriksson, M.; Saldeen, T. Effects of an inhibitor of angiotensin converting enzyme (Captopril) on pulmonary and renal insufficiency due to intravascular coagulation in the rat. Int. J. Microcirc. Clin. Exp. 1989, 8, 245–258. [Google Scholar]
- Oberholzer, A.; Keel, M.; Zellweger, R.; Steckholzer, U.; Trentz, O.; Ertel, W. Incidence of Septic Complications and Multiple Organ Failure in Severely Injured Patients Is Sex Specific. J. Trauma 2000, 48, 932–937. [Google Scholar] [CrossRef]
- Spolarics, Z. The X-files of inflammation: Cellular mosaicism of X-linked polymorphic genes and the female advantage in the host response to injury and infection. Shock 2007, 27, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Malorni, W.; Campesi, I.; Straface, E.; Vella, S.; Franconi, F. Redox Features of the Cell: A Gender Perspective. Antioxid. Redox Signal. 2007, 9, 1779–1802. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Baker, L.; Tsai, B.M.; Meldrum, K.K.; Meldrum, D.R. Sex differences in the myocardial inflammatory response to ischemia-reperfusion injury. Am. J. Physiol. Metab. 2005, 288, E321–E326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernly, B.; Bruno, R.R.; Mamandipoor, B.; Jung, C.; Osmani, V. Sex-specific outcomes and management in critically ill septic patients. Eur. J. Intern. Med. 2021, 83, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Seppi, T.; Prajczer, S.; Dörler, M.-M.; Eiter, O.; Hekl, D.; Nevinny-Stickel, M.; Skvortsova, I.; Gstraunthaler, G.; Lukas, P.; Lechner, J. Sex Differences in Renal Proximal Tubular Cell Homeostasis. J. Am. Soc. Nephrol. 2016, 27, 3051–3062. [Google Scholar] [CrossRef] [Green Version]
- Delanaye, P.; Cavalier, E.; Radermecker, R.P.; Paquot, N.; DePas, G.; Chapelle, J.-P.; Scheen, A.J.; Krzesinski, J.-M. Cystatin C or Creatinine for Detection of Stage 3 Chronic Kidney Disease in Anorexia Nervosa. Nephron Clin. Pr. 2008, 110, c158–c163. [Google Scholar] [CrossRef] [Green Version]
- Soares, A.A.; Eyff, T.F.; Campani, R.B.; Ritter, L.; Camargo, J.L.; Silveiro, S.P. Glomerular filtration rate measurement and prediction equations. Clin. Chem. Lab. Med. (CCLM) 2009, 47, 1023–1032. [Google Scholar] [CrossRef]
- Vinge, E.; Lindergård, B.; Nilsson-Ehle, P.; Grubb, A. Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand. J. Clin. Lab. Investig. 1999, 59, 587–592. [Google Scholar] [CrossRef]
- Perrone, R.D.; Madias, N.E.; Levey, A.S. Serum Creatinine as an Index of Renal Function: New Insights into Old Concepts. Clin. Chem. 1992, 38, 1933–1953. [Google Scholar] [CrossRef]
- Hannemann, A.; Friedrich, N.; Dittmann, K.; Spielhagen, C.; Wallaschofski, H.; Völzke, H.; Rettig, R.; Endlich, K.; Lendeckel, U.; Stracke, S.; et al. Age- and sex-specific reference limits for creatinine, cystatin C and the estimated glomerular filtration rate. Clin. Chem. Lab. Med. (CCLM) 2011, 50, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Larsson, A.; Malm, J.; Grubb, A.; Hansson, L.-O. Calculation of glomerular filtration rate expressed in mL/min from plasma cystatin C values in mg/L. Scand. J. Clin. Lab. Investig. 2004, 64, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Pottel, H.; Hoste, L.; Dubourg, L.; Ebert, N.; Schaeffner, E.; Eriksen, B.O.; Melsom, T.; Lamb, E.J.; Rule, A.D.; Turner, S.T.; et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol. Dial. Transplant. 2016, 31, 798–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Z.; Peng, F.; Xu, B.; Zhao, J.; Liu, H.; Peng, J.; Li, Q.; Jiang, C.; Zhou, Y.; Liu, S.; et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J. Infect. 2020, 81, e16–e25. [Google Scholar] [CrossRef]
- Helmersson-Karlqvist, J.; Flodin, M.; Hansson, L.-O.; Larsson, A. The age related association is more pronounced for cystatin C estimated GFR than for creatinine estimated GFR in primary care patients. Clin. Biochem. 2013, 46, 1761–1763. [Google Scholar] [CrossRef]
- Kotsis, V.; Martinez, F.; Trakatelli, C.; Redon, J. Impact of Obesity in Kidney Diseases. Nutrients 2021, 13, 4482. [Google Scholar] [CrossRef]
- Ejerblad, E.; Fored, C.M.; Lindblad, P.; Fryzek, J.; McLaughlin, J.K.; Nyrén, O. Obesity and Risk for Chronic Renal Failure. J. Am. Soc. Nephrol. 2006, 17, 1695–1702. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.J.; Braun, W.; Enderle, J.; Bosy-Westphal, A. Beyond BMI: Conceptual Issues Related to Overweight and Obese Patients. Obes. Facts 2016, 9, 193–205. [Google Scholar] [CrossRef]
- Bunnell, K.M.; Thaweethai, T.; Buckless, C.; Shinnick, D.J.; Torriani, M.; Foulkes, A.S.; Bredella, M.A. Body composition predictors of outcome in patients with COVID-19. Int. J. Obes. 2021, 45, 2238–2243. [Google Scholar] [CrossRef]
- Mirijello, A.; Piscitelli, P.; de Matthaeis, A.; Inglese, M.; D’Errico, M.M.; Massa, V.; Greco, A.; Fontana, A.; Copetti, M.; Florio, L.; et al. Low eGFR Is a Strong Predictor of Worse Outcome in Hospitalized COVID-19 Patients. J. Clin. Med. 2021, 10, 5224. [Google Scholar] [CrossRef]
- Redal-Baigorri, B.; Rasmussen, K.; Heaf, J.G. The use of absolute values improves performance of estimation formulae: A retrospective cross sectional study. BMC Nephrol. 2013, 14, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Yang, S.; Peng, D.; Zhu, H.-M.; Li, B.-Y.; Yang, X.; Sun, X.-L.; Zhang, M. Predictive value of serum cystatin C for risk of mortality in severe and critically ill patients with COVID-19. World J. Clin. Cases 2020, 8, 4726–4734. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, J.; Liu, Z.; Chen, D.; Zhou, L.; Hu, D.; Li, M.; Long, W.; Huang, Y.; Huang, J.; et al. Comparing the Value of Cystatin C and Serum Creatinine for Evaluating the Renal Function and Predicting the Prognosis of COVID-19 Patients. Front. Pharmacol. 2021, 12, 587816. [Google Scholar] [CrossRef]
- Linné, E.; Elfström, A.; Åkesson, A.; Fisher, J.; Grubb, A.; Pettilä, V.; Vaara, S.T.; Linder, A.; Bentzer, P. Cystatin C and derived measures of renal function as risk factors for mortality and acute kidney injury in sepsis—A post-hoc analysis of the FINNAKI cohort. J. Crit. Care 2022, 72, 154148. [Google Scholar] [CrossRef] [PubMed]
- Grubb, A. Cystatin C is Indispensable for Evaluation of Kidney Disease. EJIFCC 2017, 28, 268–276. [Google Scholar] [PubMed]
- Andreev, E.; Koopman, M.; Arisz, L. A rise in plasma creatinine that is not a sign of renal failure: Which drugs can be responsible? J. Intern. Med. 1999, 246, 247–252. [Google Scholar] [CrossRef]
Equations | ||
---|---|---|
eGFRCAPA | 130 × plasma Cystatin C−1.069 × Age−0.117 − 7 | |
eGFRLMR | eX − 0.0158 × Age + 0.438 × ln(Age) | |
Variables | ||
X = 2.50 + 0.0121 × (150 − pCr) | Female pCr < 150 | |
X = 2.50 − 0.926 × ln(pCr/150) | Female pCr > 150 | |
X = 2.56 + 0.00968 × (180 − pCr) | Male pCr < 180 | |
X = 2.56 − 0.926 × ln(pCr/180) | Male pCr > 180 |
No Steroids | Dexamethasone | |||
---|---|---|---|---|
Median | IQR | Median | IQR | |
eGFRLMR | 84 | 39 | 85 | 42 |
eGFRCAPA | 74 * | 46 | 69 | 37 |
Age | 61 | 22 | 65 | 18 |
BMI | 29 | 8 | 29 | 8 |
CRPmax | 280 ** | 169 | 181 | 143 |
Females | Males | |||
---|---|---|---|---|
eGFRLMR § | eGFRLMR | |||
Dexamethasone | Median | IQR | Median | IQR |
100 | 38 | 76 | 40 | |
eGFRCAPA | eGFRCAPA $ | |||
Median | IQR | Median | IQR | |
67 | 40 | 69 | 34 | |
eGFRLMR # | eGFRLMR | |||
No Steroids | Median | IQR | Median | IQR |
94 | 20 | 75 | 38 | |
eGFRCAPA | eGFRCAPA | |||
Median | IQR | Median | IQR | |
70 | 34 | 76 | 48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larsson, A.O.; Hultström, M.; Frithiof, R.; Nyman, U.; Lipcsey, M.; Eriksson, M.B. Differential Bias for Creatinine- and Cystatin C- Derived Estimated Glomerular Filtration Rate in Critical COVID-19. Biomedicines 2022, 10, 2708. https://doi.org/10.3390/biomedicines10112708
Larsson AO, Hultström M, Frithiof R, Nyman U, Lipcsey M, Eriksson MB. Differential Bias for Creatinine- and Cystatin C- Derived Estimated Glomerular Filtration Rate in Critical COVID-19. Biomedicines. 2022; 10(11):2708. https://doi.org/10.3390/biomedicines10112708
Chicago/Turabian StyleLarsson, Anders O., Michael Hultström, Robert Frithiof, Ulf Nyman, Miklos Lipcsey, and Mats B. Eriksson. 2022. "Differential Bias for Creatinine- and Cystatin C- Derived Estimated Glomerular Filtration Rate in Critical COVID-19" Biomedicines 10, no. 11: 2708. https://doi.org/10.3390/biomedicines10112708
APA StyleLarsson, A. O., Hultström, M., Frithiof, R., Nyman, U., Lipcsey, M., & Eriksson, M. B. (2022). Differential Bias for Creatinine- and Cystatin C- Derived Estimated Glomerular Filtration Rate in Critical COVID-19. Biomedicines, 10(11), 2708. https://doi.org/10.3390/biomedicines10112708