Prospective Clinical Evaluation of the Diagnostic Accuracy of a Highly Sensitive Rapid Antigen Test Using Silver Amplification Technology for Emerging SARS-CoV-2 Variants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Viruses
2.2. Rapid Antigen Testing of the Isolated Virus
2.3. Detection Limits of Antigen Rapid Diagnostic Tests (Ag-RDTs)
2.4. Prospective Clinical Evaluation
2.5. Specimen Collection for Prospective Clinical Evaluation
2.6. RT-PCR Tests
2.7. Statistical Analyses
3. Results
3.1. Detection Limits of Antigen Tests
3.2. Prospective Clinical Evaluation
3.3. Comparison of Sensitivity between NPS and NS Specimens
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tregoning, J.S.; Flight, K.E.; Higham, S.L.; Wang, Z.; Pierce, B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol. 2021, 21, 626–636. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. COVID-19 Treatment Guidelines. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 21 July 2022).
- World Health Organization. Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 18 July 2022).
- Araf, Y.; Akter, F.; Tang, Y.D.; Fatemi, R.; Parvez, M.S.A.; Zheng, C.; Hossain, M.G. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol. 2022, 94, 1825–1832. [Google Scholar] [CrossRef] [PubMed]
- Alpdagtas, S.; Ilhan, E.; Uysal, E.; Sengor, M.; Ustundag, C.B.; Gunduz, O. Evaluation of current diagnostic methods for COVID-19. APL Bioeng. 2020, 4, 041506. [Google Scholar] [CrossRef] [PubMed]
- Falzone, L.; Gattuso, G.; Tsatsakis, A.; Spandidos, D.A.; Libra, M. Current and innovative methods for the diagnosis of COVID-19 infection (review). Int. J. Mol. Med. 2021, 47, 100. [Google Scholar] [CrossRef]
- Revollo, B.; Blanco, I.; Soler, P.; Toro, J.; Izquierdo-Useros, N.; Puig, J.; Puig, X.; Navarro-Pérez, V.; Casañ, C.; Ruiz, L.; et al. Same-day SARS-CoV-2 antigen test screening in an indoor mass-gathering live music event: A randomised controlled trial. Lancet Infect. Dis. 2021, 21, 1365–1372. [Google Scholar] [CrossRef]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Guidance for Antigen Testing for SARS-CoV-2 for Healthcare Providers Testing Individuals in the Community. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/resources/antigen-tests-guidelines.html (accessed on 25 July 2022).
- Broger, T.; Sossen, B.; du Toit, E.; Kerkhoff, A.D.; Schutz, C.; Ivanova Reipold, E.; Ward, A.; Barr, D.A.; Macé, A.; Trollip, A.; et al. Novel lipoarabinomannan point-of-care tuberculosis test for people with HIV: A diagnostic accuracy study. Lancet Infect. Dis. 2019, 19, 852–861. [Google Scholar] [CrossRef] [Green Version]
- Wada, A.; Sakoda, Y.; Oyamada, T.; Kida, H. Development of a highly sensitive immunochromatographic detection kit for H5 influenza virus hemagglutinin using silver amplification. J. Virol. Methods 2011, 178, 82–86. [Google Scholar] [CrossRef]
- Yamaoka, Y.; Miyakawa, K.; Jeremiah, S.S.; Funabashi, R.; Okudela, K.; Kikuchi, S.; Katada, J.; Wada, A.; Takei, T.; Nishi, M.; et al. Highly specific monoclonal antibodies and epitope identification against SARS-CoV-2 nucleocapsid protein for antigen detection tests. Cell Rep. Med. 2021, 2, 100311. [Google Scholar] [CrossRef]
- Pinninti, S.; Trieu, C.; Pati, S.K.; Latting, M.; Cooper, J.; Seleme, M.C.; Boppana, S.; Arora, N.; Britt, W.J.; Boppana, S.B. Comparing nasopharyngeal and midturbinate nasal swab testing for the identification of severe acute respiratory syndrome coronavirus 2. Clin. Infect. Dis. 2021, 72, 1253–1255. [Google Scholar] [CrossRef]
- Matsuyama, S.; Nao, N.; Shirato, K.; Kawase, M.; Saito, S.; Takayama, I.; Nagata, N.; Sekizuka, T.; Katoh, H.; Kato, F.; et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. USA 2020, 117, 7001–7003. [Google Scholar] [CrossRef] [Green Version]
- Shirato, K.; Nao, N.; Katano, H.; Takayama, I.; Saito, S.; Kato, F.; Katoh, H.; Sakata, M.; Nakatsu, Y.; Mori, Y.; et al. Development of genetic diagnostic methods for detection for novel Coronavirus 2019 (nCoV-2019) in Japan. Jpn. J. Infect. Dis. 2020, 73, 304–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinnes, J.; Deeks, J.J.; Adriano, A.; Berhane, S.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J.; Beese, S.; et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2020, 8, CD013705. [Google Scholar] [CrossRef] [PubMed]
- Brümmer, L.E.; Katzenschlager, S.; McGrath, S.; Schmitz, S.; Gaeddert, M.; Erdmann, C.; Bota, M.; Grilli, M.; Larmann, J.; Weigand, M.A.; et al. Accuracy of rapid point-of-care antigen-based diagnostics for SARS-CoV-2: An updated systematic review and meta-analysis with meta-regression analyzing influencing factors. PLoS Med. 2022, 19, e1004011. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.D.; Chang, S.Y.; Wang, J.T.; Tsai, M.J.; Hung, C.C.; Hsu, C.L.; Chang, S.C. Prolonged virus shedding even after seroconversion in a patient with COVID-19. J. Infect. 2020, 81, 318–356. [Google Scholar] [CrossRef] [PubMed]
- Pekosz, A.; Parvu, V.; Li, M.; Andrews, J.C.; Manabe, Y.; Kodsi, S.; Gary, D.S.; Roger-Dalbert, C.; Leitch, J.; Cooper, C.K. Antigen-Based Testing but Not Real-Time Polymerase Chain Reaction Correlates with Severe Acute Respiratory Syndrome Coronavirus 2 Viral Culture. Clin. Infect. Dis. 2020, 73, e2861–e2866. [Google Scholar] [CrossRef]
- Shidlovskaya, E.V.; Kuznetsova, N.A.; Divisenko, E.V.; Nikiforova, M.A.; Siniavin, A.E.; Ogarkova, D.A.; Shagaev, A.V.; Semashko, M.A.; Tkachuk, A.P.; Burgasova, O.A.; et al. The Value of Rapid Antigen Tests for Identifying Carriers of Viable SARS-CoV-2. Viruses 2021, 13, 2012. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Akashi, Y.; Kato, D.; Kuwahara, M.; Muramatsu, S.; Ueda, A.; Notake, S.; Nakamura, K.; Ishikawa, H.; Suzuki, H. Diagnostic performance and characteristics of anterior nasal collection for the SARS-CoV-2 antigen test: A prospective study. Sci. Rep. 2021, 11, 10519. [Google Scholar] [CrossRef]
- Larremore, D.B.; Wilder, B.; Lester, E.; Shehata, S.; Burke, J.M.; Hay, J.A.; Tambe, M.; Mina, M.J.; Parker, R. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci. Adv. 2021, 7, eabd5393. [Google Scholar] [CrossRef]
- Akashi, Y.; Horie, M.; Takeuchi, Y.; Togashi, K.; Adachi, Y.; Ueda, A.; Notake, S.; Nakamura, K.; Terada, N.; Kurihara, Y.; et al. A prospective clinical evaluation of the diagnostic accuracy of the SARS-CoV-2 rapid antigen test using anterior nasal samples. J. Infect. Chemother. 2022, 28, 780–785. [Google Scholar] [CrossRef]
- Jeong, Y.D.; Ejima, K.; Kim, K.S.; Joohyeon, W.; Iwanami, S.; Fujita, Y.; Jung, I.H.; Aihara, K.; Shibuya, K.; Iwami, S.; et al. Designing isolation guidelines for COVID-19 patients with rapid antigen tests. Nat. Commun. 2022, 13, 4910. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.; Takahashi, K.; Nagashima, S.; Bunthen, E.; Ouoba, S.; Takafuta, T.; Fujii, Y.; Mimori, M.; Okada, F.; Kishita, E.; et al. Exercising the Sanger Sequencing Strategy for Variants Screening and Full-Length Genome of SARS-CoV-2 Virus during Alpha, Delta, and Omicron Outbreaks in Hiroshima. Viruses 2022, 14, 720. [Google Scholar] [CrossRef] [PubMed]
- Hirotsu, Y.; Maejima, M.; Shibusawa, M.; Natori, Y.; Nagakubo, Y.; Hosaka, K.; Sueki, H.; Mochizuki, H.; Tsutsui, T.; Kakizaki, Y.; et al. SARS-CoV-2 Omicron sublineage BA.2 replaces BA.1.1: Genomic surveillance in Japan from September 2021 to March 2022. J. Infect. 2022, 85, 174–211. [Google Scholar] [CrossRef] [PubMed]
- Plante, J.A.; Mitchell, B.M.; Plante, K.S.; Debbink, K.; Weaver, S.C.; Menachery, V.D. The variant gambit: COVID-19’s next move. Cell Host Microbe 2021, 29, 508–515. [Google Scholar] [CrossRef]
- Jung, C.; Kmiec, D.; Koepke, L.; Zech, A.; Jacob, T.; Sparrer, K.M.J.; Kirchhoff, F. Omicron: What makes the latest SARS-CoV-2 variant of concern so concerning? J. Virol. 2022, 96, e0207721. [Google Scholar] [CrossRef] [PubMed]
SARS-CoV-2 Strain Name | WHO Label/ Pango Lineage | Detection Limit (log10 Copies/mL) | ||||
---|---|---|---|---|---|---|
FUJIFILM COVID-19 Ag Test | Conventional Test A | Conventional Test B | Conventional Test C | Conventional Test D | ||
2019-nCoV/Japan/TY/WK-521/2020 | Wild type | 5.5 | 7.0 | 6.7 | 5.8 | 6.7 |
hCoV-19/Japan/QHN001/2020 | Alpha/B.1.1.7 | 5.1 | 6.0 | 6.3 | 5.7 | N.T. |
hCoV-19/Japan/TY8-612/2021 | Beta/B.1.351 | 5.4 | 6.3 | 6.6 | 6.0 | N.T. |
hCoV-19/Japan/TY7-503/2021 | Gamma/P.1 | 4.8 | 6.0 | 6.0 | 5.7 | N.T. |
hCoV-19/Japan/TY11-927/2021 | Delta/B.1.617.2 | 5.2 | 6.7 | 6.4 | 5.5 | 6.4 |
hCoV-19/Japan/TY38-873/2021 | Omicron/BA.1 | 5.4 | 6.6 | 6.9 | 5.7 | 6.0 |
hCoV-19/Japan/TY40-385/2022 | Omicron/BA.2 | 5.5 | 6.7 | N.T. | 5.8 | 6.7 |
hCoV-19/Japan/TY41-686/2022 | Omicron/XE | 5.5 | 6.4 | N.T. | 5.8 | 6.4 |
hCoV-19/Japan/TY41-702/2022 | Omicron/BA.5 | 5.2 | 6.4 | N.T. | N.T. | 6.4 |
Total | RT-PCR Positive | RT-PCR Negative | |
---|---|---|---|
N | 280 | 70 | 210 |
Age (years) | 40.1 ± 14.7 | 38.8 ± 13.6 | 40.5 ± 15.1 |
Male | 143 (51%) | 43 (61%) | 100 (48%) |
Days from the onset | 2.2 ± 2.1 (n = 127) | 2.6 ± 2.4 (n = 52) | 1.9 ± 1.7 (n = 75) |
Ct value (NIID N1) | - | 25.5 ± 4.5 | - |
Ct value (NIID N2) | - | 21.4 ± 4.7 | - |
Cough | 84 (30.0%) | 40 (57.1%) | 44 (21.0%) |
Sore throat | 90 (32.1%) | 39 (55.7%) | 51 (24.3%) |
Headache | 112 (40.0%) | 42 (60.0%) | 70 (33.3%) |
Runny nose | 18 (6.4%) | 4 (5.7%) | 14 (6.7%) |
Sputum production | 48 (17.1%) | 24 (34.3%) | 24 (11.4%) |
Parosmia | 13 (4.6%) | 5 (7.1%) | 8 (3.8%) |
Dysgeusia | 25 (8.9%) | 9 (12.9%) | 16 (7.6%) |
Arthralgia | 15 (5.4%) | 8 (11.4%) | 7 (3.3%) |
NPS Specimens | NPS RT-PCR (NIID N2) | ||
Positive | Negative | ||
---|---|---|---|
FUJIFILM COVID-19 Ag test | Positive | 67 | 0 |
Negative | 3 | 210 | |
Sensitivity (%) | 95.7 (88.0–99.1) | ||
Specificity (%) | 100 (98.3–100) | ||
Positive Predictive Value (%) | 100 (94.6–100) | ||
Negative Predictive Value (%) | 98.6 (95.9–99.7) | ||
NS Specimens | NPS RT-PCR (NIID N2) | ||
Positive | Negative | ||
FUJIFILM COVID-19 Ag test | Positive | 60 | 0 |
Negative | 10 | 210 | |
Sensitivity (%) | 85.7 (75.3–92.9) | ||
Specificity (%) | 100 (98.3–100) | ||
Positive Predictive Value (%) | 100 (94.0–100) | ||
Negative Predictive Value (%) | 95.5 (91.8–97.8) |
Case | Date of Specimen Collection | Age (Years) | Sex | Days from the Onset | Body Temperature (°C) | Symptoms | RT-PCR Ct Value | FUJIFILM COVID-19 Ag Test | ||
---|---|---|---|---|---|---|---|---|---|---|
NIID N2 | NIID N1 | NPS | NS | |||||||
1 | Feb 2021 | 26 | M | N.D. | 39.5 | Sore throat, headache, diarrhea | 17.5 | 23.1 | Pos. | Neg. |
2 | Feb 2021 | 33 | F | 1 | 36.8 | Sore throat | 21.5 | 25.2 | Pos. | Neg. |
3 | Feb 2021 | 32 | M | 11 | 36.6 | Arthralgia, dysgeusia, parosmia | 35.1 | 39.6 | Pos. | Neg. |
4 | Feb 2021 | 33 | F | 8 | 37.6 | - | 34.3 | N.D. | Pos. | Neg. |
5 | Apr 2021 | 31 | M | N.D. | 37.5 | - | 24.2 | 30.9 | Pos. | Neg. |
6 | May 2021 | 30 | M | 6 | 37.0 | Cough, sore throat, dysgeusia | 21.9 | 26.7 | Pos. | Neg. |
7 | Jan 2022 | 32 | F | N.D. | 35.4 | - | 30.7 | 34.9 | Neg. | Neg. |
8 | Feb 2022 | 34 | M | 0 | 37.7 | Cough, sore throat | 33.2 | 37.2 | Neg. | Neg. |
9 | Feb 2022 | 33 | F | N.D. | 36.6 | Cough, sore throat, sputum, runny nose | 34.2 | 37.6 | Neg. | Neg. |
10 | Mar 2022 | 41 | M | 0 | 38.8 | Cough, sore throat, arthralgia | 27.5 | 31.2 | Pos. | Neg. |
RT-PCR (NPS Specimens) | Sensitivity (%) | ||
---|---|---|---|
Ct Value (NIID N2) | N | NPS Specimens | NS Specimens |
<20 | 33 | 100 (89.4–100) | 97.0 (84.2–99.9) |
20–25 | 25 | 100 (86.3–100) | 88.0 (68.8–97.5) |
25–30 | 6 | 100 (54.1–100) | 83.3 (35.9–99.6) |
>30 | 6 | 50.0 (11.8–88.2) | 16.7 (0.4–64.1) |
RT-PCR (NPS Specimens) | January 2021–May 2021 | January 2022–March 2022 | ||||
---|---|---|---|---|---|---|
Sensitivity (%) | ||||||
Ct Value (NIID N2) | N | NPS Specimens | NS Specimens | N | NPS Specimens | NS Specimens |
<20 | 18 | 100 | 94.4 | 15 | 100 | 100 |
20–25 | 12 | 100 | 75.0 | 13 | 100 | 100 |
25–30 | 4 | 100 | 100 | 2 | 100 | 50.0 |
>30 | 3 | 100 | 33.3 | 3 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obata, K.; Miyakawa, K.; Takei, T.; Wada, A.; Hatayama, Y.; Kato, H.; Kimura, Y.; Sekino, H.; Katada, J.; Ryo, A. Prospective Clinical Evaluation of the Diagnostic Accuracy of a Highly Sensitive Rapid Antigen Test Using Silver Amplification Technology for Emerging SARS-CoV-2 Variants. Biomedicines 2022, 10, 2801. https://doi.org/10.3390/biomedicines10112801
Obata K, Miyakawa K, Takei T, Wada A, Hatayama Y, Kato H, Kimura Y, Sekino H, Katada J, Ryo A. Prospective Clinical Evaluation of the Diagnostic Accuracy of a Highly Sensitive Rapid Antigen Test Using Silver Amplification Technology for Emerging SARS-CoV-2 Variants. Biomedicines. 2022; 10(11):2801. https://doi.org/10.3390/biomedicines10112801
Chicago/Turabian StyleObata, Kazuaki, Kei Miyakawa, Toshiki Takei, Atsuhiko Wada, Yasuyoshi Hatayama, Hideaki Kato, Yayoi Kimura, Hisakuni Sekino, Junichi Katada, and Akihide Ryo. 2022. "Prospective Clinical Evaluation of the Diagnostic Accuracy of a Highly Sensitive Rapid Antigen Test Using Silver Amplification Technology for Emerging SARS-CoV-2 Variants" Biomedicines 10, no. 11: 2801. https://doi.org/10.3390/biomedicines10112801
APA StyleObata, K., Miyakawa, K., Takei, T., Wada, A., Hatayama, Y., Kato, H., Kimura, Y., Sekino, H., Katada, J., & Ryo, A. (2022). Prospective Clinical Evaluation of the Diagnostic Accuracy of a Highly Sensitive Rapid Antigen Test Using Silver Amplification Technology for Emerging SARS-CoV-2 Variants. Biomedicines, 10(11), 2801. https://doi.org/10.3390/biomedicines10112801