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Abstract: IgE-mediated diseases represent a highly diversified and multifactorial group of disorders
that can deeply impact the patients’ quality of life. Currently, allergy immunotherapy (AIT) still
remains the gold standard for the management of such pathologies. In this review, we comprehen-
sively examine and discuss how AIT can affect both the innate and the adaptive immune responses at
different cell levels and propose timing-scheduled alterations induced by AIT by hypothesizing five
sequential phases: after the desensitization of effector non-lymphoid cells and a transient increase of
IgE (phase 1), high doses of allergen given by AIT stimulate the shift from type 2/type 3 towards
type 1 response (phase 2), which is progressively potentiated by the increase of IFN-γ that promotes
the chronic activation of APCs, progressively leading to the hyperexpression of Notch1L (Delta4)
and the secretion of IL-12 and IL-27, which are essential to activate IL-10 gene in Th1 and ILC1 cells.
As consequence, an expansion of circulating memory Th1/Tr1 cells and ILC-reg characterizes the
third phase addressed to antagonize/balance the excess of type 1 response (phase 3). The progressive
increase of IL-10 triggers a number of regulatory circuits sustained by innate and adaptive immune
cells and favoring T-cell tolerance (phase 4), which may also be maintained for a long period af-
ter AIT interruption (phase 5). Different administration approaches of AIT have shown a similar
tailoring of the immune responses and can be monitored by timely, optimized biomarkers. The
clinical failure of this treatment can occur, and many genetic/epigenetic polymorphisms/mutations
involving several immunological mechanisms, such as the plasticity of immune responses and the
induction/maintenance of regulatory circuits, have been described. The knowledge of how AIT can
shape the immune system and its responses is a key tool to develop novel AIT strategies including the
engineering of allergen or their epitopes. We now have the potential to understand the precise causes
of AIT failure and to establish the best biomarkers of AIT efficacy in each phase of the treatment.

Keywords: allergy immunotherapy; immuno-modulation and regulation; innate and adaptive
response; pathogenic mechanisms

1. Introduction

Since its development in 1911, allergen-specific immunotherapy (AIT) still remains the
only standard of care for the treatment of IgE-mediated allergic diseases, such as allergic
rhinitis (AR), bronchial asthma (BA), and hymenopterum venom anaphylaxis (HVA). The
goal of AIT is to ameliorate symptoms by inducing a stable immune tolerance to specific
allergens, achieving long-term remission, preventing the onset of new sensitizations, and
reducing progression of AR to BA [1–5]. The success of AIT relies on several factors, such as
the selection of patients, allergen sensitization(s), administered doses and timing, product
quality, and type and degree of the immune response. Currently, there are two main
antigen-specific immunomodulatory treatments: subcutaneous immunotherapy (SCIT)
and sublingual immunotherapy (SLIT), whereas several novel AIT approaches are being
evaluated in clinical trials [6]. SCIT is an active tool for managing HVA, AR, and BA, while
SLIT can be a valid alternative for those patients who develop local and, less frequently,
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systemic adverse reactions to SCIT [7]. A study including over 300 children with AR
comparing the efficacy, safety, and compliance of SCIT and SLIT showed that the former is
usually more effective than SLIT, whereas SLIT displays less-adverse reactions [8]. Other
studies, however, demonstrated that SCIT in children is safe with a very low rate of severe
side effects [9,10], but the risk of systemic reactions is greater in subjects with uncontrolled
asthma and with accelerated dosing schedule [11].

Other alternative approaches to AIT have been described in the last decade. Oral
immunotherapy (OIT) has been initially tried for respiratory allergens but was found not
effective [12] except for OIT with encapsulated allergen extracts [13]. OIT is not effective
for allergens easily digested in the gastrointestinal tract, such as the majority of respiratory
allergens; thus, it is used in children mainly for food allergens containing digestion-resistant
allergens such as peanuts, milk, and egg. The administration of 2 mg/d peanut protein for
up to 5 years leads to a substantial and clinically meaningful desensitization coupled with
good compliance and dosing safety [14].

Another approach is the intra-lymphatic immunotherapy (ILIT). As extensively re-
viewed [15], the basic strategy of ILIT is that the lymph nodes (LNs) are the best site to
induce a rapid and strong immune response; thus, the direct exposure of allergen can
promote a faster and more protective blocking of IgG antibodies (Abs) and immunomod-
ulation than SCIT [16]. The major disadvantage of ILIT lies in the ultrasound guidance
necessary to deliver the allergen into the LNs, making it a quite invasive procedure.

As compared to other administration routes, the studies with epi-cutaneous im-
munotherapy (EPIT) are totally insufficient [17]. EPIT is a needle-free treatment, and
hence, it was considered to be suitable for children. A recent review summarizing the
results of trials [18] concluded that EPIT treatment can induce desensitization towards
peanuts, associated with an increased risk of local adverse events (AEs). It uses high doses
of the allergen and, although showing some improvement in seasonal symptoms, does
not demonstrate significant benefits in terms of local side effects when compared with
SCIT [19]. The table below summarizes the application of AIT mentioned above and their
local or systemic side effects (Table 1).

Table 1. Types of immunotherapy and their application in allergic diseases.

HVA AR BA FA LR SR (Which Require
Epinephrine Treatment) Ref

SCIT X X X Erythema, pruritus, and swelling at
the injection site Low frequencies [7,9,10]

SLIT X X

Oropharyngeal pruritus, swelling,
or both; throat irritation;

nausea/vomiting; diarrhea;
abdominal discomfort; heartburn;

and uvular edema

Uncommon [8–10]

OIT X Oral pruritus, abdominal
discomfort, and rashes Common during home dosing [14]

ILIT X Local swelling at the injection site Uncommon [14]

EPIT X X Local eczematous reactions Uncommon [18]

SCIT, subcutaneous immunotherapy; SLIT, sublingual immunotherapy; OIT, oral immunotherapy; ILIT, intra-
lymphatic immunotherapy; EPIT, epi-cutaneous immunotherapy; AR, allergic rhinitis; BA, bronchial asthma;
HVA, hymenoptera venom anaphylaxis; FA, food allergy; LR, local reaction; SR, systemic reaction; X indicates
that the AIT listed to the left are a feasible therapeutic option for each allergic diseases.

This review aims to provide an update on the alterations of innate and adaptive
immunity induced by AIT, to give an integrated view of deviation and regulation of
immune responses differently operating along the treatment, and lastly, to analyze on the
basis of the immunological response to AIT the causes of failure, the biomarkers of efficacy,
and the new strategies to optimize therapy.
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2. Pathogenetic Mechanisms of Allergic Response

Allergic disorders, in particular BA, are multifactorial diseases in which genetic and
environmental factors interact with each other [20,21]. BA displays a marked heterogene-
ity regarding etiology, symptom triggers and onset, clinical features, and response to
therapy [22–25]. Indeed, the term asthma refers to a generic diagnosis including several
clinical conditions (phenotypes) associated with distinctive functional or pathophysio-
logic mechanisms (endotypes) [26,27]. BA and other allergic diseases share endotypes or
sub-endotypes [28] characterized by innate and adaptive immune responses modulated
by non-allergic mechanisms (such as environmental factors, activated resident cells, or
dysfunctional epithelial barrier) [29].

Genetic-epigenetic alterations influence the development of allergic diseases: a number
of genetic loci have been associated with BA susceptibility, including the ORMDL3/GSDMB
genes (childhood-onset asthma); deletion in the promoter region of the VEGF gene at
position –2549 –2567, del 18 (irreversible bronchoconstriction) [30]; loci near the IL1RL1,
IL33 (allergic asthma, present in distinct ethnic groups) [31]; TSLP (protective against T2
asthma as reviewed in [32]); PYHIN1 (present in individuals of African origins) [31]; and
loci near IL13, RAD50, and IL4 genes (reviewed in [33]). Other genes involved in the
development of BA have been fully reviewed [32].

According to the axiom that “genetics loads the gun and epigenetics pulls the trig-
ger” [34], a number of epigenetic changes affecting gene expression and influenced by both
environmental/social factors has been brought to attention [33,35]. Among these, DNA
methylation, covalent post-translational histone modifications, and microRNA expression
have been exhaustively reported [34–39].

In the frame of its genetic architecture, BA as well as other allergic diseases is mainly
associated to increased levels of serum IgE in atopic individuals and allergic sensitiza-
tions [40,41], with inhalant allergens such as house dust mite (HDM), animal dander,
cockroach, and seasonal pollens being the main triggers for its development [42].

The allergic inflammation is a two-step process with peculiar characteristics shared by
all allergic diseases (reviewed in [43]).

In allergic people, the priming with the allergen processed by antigen-presenting cells
(APC) induces the expansion of allergen-specific CD4+ Th2 cells with the production of
related cytokines (interleukin -IL-4, IL-5, IL-9, IL-13, and IL-31) that are responsible for the
initiation, maintenance, and amplification of inflammation. The switch from naïve T cells
to Th2 phenotype requires both IL-4 cytokine and cell-to-cell contact through Delta4 on
DC and Notch1 on T cells [44,45]. Alarmins, such as IL-33 and IL-25, activate STAT6, cMaf,
and GATA3 transcription factors, which promote chemokine receptor expression on Th2
cells for tissue homing [46]. Once activated, cells with type 2 profile are detectable in blood,
tissue (as T resident memory, Trm2), and LNs (as T follicular helper cells, Tfh2). Notably,
circulating Th2 and tissue Trm2 cells display distinct nonredundant function and distinct
transcriptional profiles [47,48]. At the follicular level, Tfh2 and B cells’ cooperation, pro-
moted by IL-4 and/or IL-13 with the interaction of CD154-CD40L expressed on activated
T cells, induces the IgE switch and the expansion of allergen-specific IgE production by
plasmablasts [48,49]. The binding between IgE and FcεRI, expressed by mast cells (MC) and
basophils, persists after the first contact with the allergen. During a subsequent exposure,
the allergen binds IgE fixed on MC and basophils, and their cross-link leads to the activa-
tion of PKC, PLA2, and MAP-kinases pathways with a consequent release of preformed
(histamine, kinins, serotonin, etc.) and newly synthesized (eicosanoids such as leukotrienes;
prostaglandins, PG; thromboxanes) mediators and several cytokines/chemokines respon-
sible for immediate reactions and recruitment of multiple cell types [49]. These products
have a crucial role in sustaining the immediate symptoms and late-phase events in which
mobilized and activated neutrophils, monocytes, eosinophils, and lymphocytes lead to
further secretory processes (reviewed in [43]). Endothelial cells upregulate the adhesion
molecules, which favor the recruitment of blood cells promoted by chemokines, cytokines,
and mediators such as histamine and leukotrienes released from MC, T, and other resident
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cells. Notably, eosinophil homing is favored by IL-5, IL-3, GM-CSF, and platelet activat-
ing factor (PAF) [50,51]. This late phase is characterized by the expansion of long-lived
memory Th2- and mainly of Th2A cells, a Th2 subset specifically recognizing allergens and
exclusively detectable in allergic individuals [52,53]. They are pathogenic and terminally
differentiated T cells that express CRTH2, CD49d, CD161, and alarmin receptors; produce
high levels of IL-5 and IL-9 [54]; and display distinct pathway of transcriptome. Importantly,
circulating Th2A cells disappear in the favorable response to SCIT or OIT [55,56]. Th2
cells induce high production of IL-4 and IL-13 acting as IgE-switching factors, while IL-13
promotes production of inflammatory cytokines, goblet cell hyperplasia, airway hyper-
responsiveness (AHR), and fibrosis. IL-5 is the major recruitment/expansion/survival
factor for eosinophils, whereas IL-4, IL-9, and IL-13 favor MC homing. IL-9, IL-13, and IL-31
further damage the bronchi, worsening AHR. The chronic inflammation leads to airways
remodeling characterized by subepithelial collagen deposition and increased angiogenesis,
goblet and smooth muscle cell hyperplasia, and widespread epithelial damage [57,58].

Other immune cells contributing to develop, amplify, and maintain the allergic cas-
cade are the type 2 innate lymphoid cells (ILC2). ILCs are tissue resident effector cells
involved in lymphoid tissue formation, tissue remodeling after damage, and protection
from pathogens [59]. Helper ILCs are the innate T helper counterpart and are divided into
four groups (ILC1, ILC2, ILC3, and lymphoid tissue-inducer cells, LTi). ILC2 and ILC3
are involved in AR and BA pathogenesis, with ILC2 favoring eosinophil and ILC3 the
neutrophilic prevalence [60,61]. ILC2 are detectable in tissues of allergic patients [62,63].
Alarmins play a pivotal role in ILC2 activation, starting allergic inflammation and favoring
ILC2-Th2 cross-talk [61,64]. Activated ILC2 express GATA3/cMaf and produce IL-5, IL-13,
low IL-4, and amphiregulin, favoring fibroblasts activation and airway remodeling [65].
Human-activated ILC2 expresses CD154, which potentially favors polyclonal IgE produc-
tion during interaction with B cells [66]. The innate cellular response besides ILC2 includes
eosinophils, basophils, MC, and macrophages. The Th2 cells plus ILC2, however, cannot
fully explain the whole features observed in allergic inflammation, and other T-cell subsets
have been shown to play an essential role in this process.

Th17 cells have been found as the new major actors involved in some asthma phe-
notypes usually associated with neutrophilic inflammation [67]. Their development from
naive T cells is induced in humans by IL-1β and IL-23, which are highly produced by
monocytes/macrophages following inflammasome activation [68]. Th17 cells promote
immunity against fungal or extracellular pathogens [69,70] by producing IL-17A/F, IL-22,
IL-6, and TNF-α. The release of proinflammatory cytokines and chemokines as CXCL8
due to IL-17A/F receptors engagement promotes neutrophil homing and increases in situ
granulopoiesis. Th17 cells are also recruited into the skin or bronchial mucosa through
CCL17 and CCL20 receptors, namely CCR4 and CCR6, respectively. High levels of IL-17A
are found in the lung, induced sputum, bronco-alveolar lavage fluid (BALF), and serum
of asthmatic patients upon allergen challenge. The increase in IL-17A levels observed in
BALF was found to correlate with unspecific bronco-reactivity severity and obstruction,
whereas some polymorphisms of IL-17F are associated with protection from BA [71]. ILC3
are highly producers of type 3 cytokines (IL-17A, IL-22, and GM-CSF) and thus might
potentiate, at least to some extent, Th17-mediated inflammation [72]. This is in line with
IL-17A-producing ILC3 cells, which were reported to be markedly elevated in the sputum
and BALF of severe asthma [73,74] and ILC3 gene signatures that were enriched in cellular
RNA from patients with adult-onset non-eosinophilic asthma. The type 3 immune response
involves Th17 cells, ILC3, neutrophils, and macrophages.

Some subsets of unconventional T cells, such as γδT cells, specific invariant-natural
killer T (iNKT), and mucosal-associated invariant T (MAIT) cells, are involved in pathogenic
aspects of neutrophilic inflammation, mainly producing IL-17A [75–77]. IL-17A can also be
produced in the lung by alveolar macrophages and epithelium, favoring the neutrophil
influx, the production of pro-fibrotic cytokines by fibroblasts, and the release of eosinophil
chemo-attractants by the airway muscle cells [3].
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Based on the prevalence of the two major types of effector T cells (Th2 and Th17)
and helper ILCs (ILC2 and ILC3), endotypes of BA have been distinguished into “type 2”
(or T2 high or eosinophilic) and “non-type 2” (or T2 low or non-eosinophilic) [24,78,79].
Mixed endotypes have also been described [80]. T2 high endotype is commonly induced
by allergic inflammation sustained by type 2 immune response, characterized by the
presence of tissue eosinophils [81]. In contrast, the T2 low endotype includes heterogeneous
conditions unrelated to allergy and/or eosinophilic inflammation, as found in neutrophilic
asthma and pauci-granulocytic asthma, which are prevalently sustained by type 3 immune
response [82]. In conclusion, a successful AIT must shift both type 2 and type 3 immune
responses into a more protective profile.

3. Alterations of Innate and Adaptive Immunity Induced by AIT

Initial studies provided evidence of a reduced sensitivity and reactivity of basophils
and MC and their altered distribution in tissues associated to AIT [3,83]. However, after
having shown increased blocking antibodies and reduced proliferation of memory T cells
to allergens in treated patients, research on AIT-mediated alteration has been mainly
focused on innate and adaptive immunity [84]. As reported, T-cell unresponsiveness to an
allergen might be due to high-dose tolerance because doses given in traditional SCIT are
higher than those encountered naturally [85,86]. The anergy of allergen-specific T cells was
described in studies of SCIT for HVA, where the impaired T-cell response to phospholipase
A2 (the major bee allergen) brought to a reduction in the proliferative response through
IL-10 [87]. Additionally, high-dose antigen can also trigger apoptosis of Th2 cells in allergen-
stimulated PBMC from treated patients [88]. Anergy and apoptosis, however, have been
usually observed with prolonged AIT, whereas, likely, the early alterations are essentially
due to functional modifications of innate (ILCs) and adaptive (T and B) cell profiles.

3.1. The Response of B-Cell Compartment to AIT

The humoral response to AIT includes the early transient increase of IgE (which rapidly
declines), followed by a sustained upregulation of blocking allergen-specific IgG1 Abs.
Along the treatment, IgG1 is substituted by IgG4 Abs, with non-inflammatory properties,
since they are unable to trigger complement cascade and cell activation [89], while they
compete with effector cell-bound IgE, preventing activation of MC and basophils [4]. The
balancing of IgE, IgG1, and IgG4 is mediated by a panel of cytokines, prevalently IFN-γ
and IL-10 [90,91]. Increasing evidence underlines the importance of allergen-specific IgA
Abs in AIT; they induce protection by competing with IgE for allergen recognition, thereby
preventing IgE-mediated reactions and reducing inflammatory responses through FcαRI
signaling and the induction of a DC-T regulatory response [92]. Secretory IgA offers a first
line of protection by blocking mucosal allergen absorption; but, upon systemic access of
the allergen, which is required for IgE-mediated anaphylaxis, allergen-specific IgA (and
IgG) constitutes the last guard [92]. In infants, the development of asthma was associated
with decreased proportion of IgA bound to fecal bacteria [93], whereas in 6-month infants
with high fecal IgA levels, the risk to develop allergic diseases within 2 years tended to
reduce significantly [94]. Mucosal and serum allergen-specific IgA have been found to
increase in OIT for peanuts [95] and in AIT for pollens [96]. Notably, in these latter patients,
SLIT induced higher increase of IgA1 and IgA2 in nasal fluids and of IgA1 in the serum
compared to SCIT [97].

Importantly, a heterogeneous subset of regulatory B (B reg) cells with anti-inflammatory
function has been described in patients undergoing AIT. Growing evidence indicates that
B reg cells play a role in inducing and maintaining allergen tolerance [98,99]. Along AIT,
B-reg-cell-derived plasma-blasts produce blocking allergen-specific IgG (especially IgG4)
Abs due to their high production of IL-10 (the best switch factor for IgG4 subclass) during
AIT. Accordingly, after two years of AIT for pollens, IL-10+B cells increased both in mucosa
and periphery, strictly correlating with the levels of allergen-specific IgG4. Importantly,
patients’ sera showed blocking IgG activity correlated with their overall improvement [100].
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In agreement, healthy beekeepers and patients undergoing AIT for HVA showed IL-10+B
cells highly producing IgG4 [101]. This B-cells subset, named Br1, is characterized by
CD25+CD71+CD73- phenotype and potently inhibits T-cell response to allergens in an
IL-10-dependent manner [102].

Besides IL-10, other cytokines such as TGF-β and IL-35 as well as some surface-bound
suppressive molecules have also been shown to contribute to B-reg-cell-suppressive activity.
In a double-blinded, placebo-controlled food challenge (DBPLFC) study, it was found that
the proportion of TGF-β-producing CD5+B reg cells was higher in the milk-tolerant case
series than in the milk-allergic group [103]. TGF-β+ B reg cells can promote T regulatory
(T reg) cell development and apoptosis of T effector cells, thus contributing to regulate
allergic inflammation.

3.2. AIT-Induced Immunomodulation of T Cell Response

The induction of specific IgG and IgA Abs by AIT clearly indicates the prominent role
for memory T effector cells: producing switching factors for IgG1/4 and IgA1/2 subclasses.
On the other hand, the impairment of T-cell response to allergens and reduced activity of
MC and basophils also suggest a relevant role for T reg cells.

3.2.1. Immune-Deviation

Initial studies from the 1990s based on several in vitro and in vivo models concluded
that AIT skewed allergen-specific responses from Th2 to a more protective Th1 profile, a
mechanism defined as immune deviation [104]. As firstly documented by our group [105]
and further confirmed by others [106,107], fully polarized Th2 or Th17 (as ILC2 and ILC3)
cells cannot be considered terminally differentiated but rather plastic entities. For instance,
IL-12 can epigenetically modulate both Th2 and Th17 responses towards a Th1 direction
even though Th1 progeny can maintain some features of the original cells [108,109]. Th17-
derived Th1 cells have been defined as “non-classical Th1” or “Th1 stars”, which were
found in BALF of children with severe BA [110]. Similar mechanisms are also found in other
tissue-resident cells such as Trm-, Tfh-, γδT, NKT, MAIT, and T reg cells [111,112]. ILCs
are highly flexible upon environmental signals, likely due to the abundance of cytokine
receptors able to promote shifting effects from one to another ILC subset [113,114].

The shift towards Th1- has been associated to different AITs [115,116], as demon-
strated for the T2 high endotype upon treatment with biologicals (as anti-IL-4R monoclonal
antibodies) [117]. In AIT-treated patients, Th1 cells were increased in the nasal mucosa
after pollen challenge [118], and they inversely correlate with symptom and medication
scores. Additionally, a similar pattern was described for the effector cytokines. Indeed,
the increase of IFN-γ and the parallel decrease of IL-5 and IL-9 during the pollen season
were shown in nasal biopsies and fluids of AIT-treated patients [119,120]. SCIT usually
inhibits allergen-induced late cutaneous responses, and this correlates with increased IL-12
expression in skin macrophages [121]. The dual increase of IL-12 by monocytes and IFN-γ
by NK and T cells was also reported [122]. In conclusion, AIT-mediated immune-deviation
is widely detectable at tissue and systemic levels [3,123].

3.2.2. Immune-Regulation

The importance of increased activity of T reg cells (immune regulation) as the main
mechanism to explain the efficacy of AIT was emphasized more recently. Adaptive T reg
cells originate in LNs during the priming of T effector cells, and their activity is mediated
by both regulatory cytokines (IL-10, TGF-β, IL-35, and IL-37) and cell-to-cell contact mecha-
nisms [124]. During pollen exposure, T reg cells from grass-sensitive patients are impaired
in inhibiting type 2 cytokines compared to those from healthy donors (HD) [125]. However,
our group showed that Dermatophagoides pteronyssinus 1 (Der p 1)-specific FoxP3+T reg
cells expanded from the PBMC from HD exert similar phenotype and function of those
derived from allergic donors. Moreover, increased proportions of T reg cells producing
IL-10 (Tr1) have been described during AIT treatment, indicating some in vivo role for
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these cells. IL-10 inhibits major histocompatibility complex (MHC) class II expression on
DC or the tyrosine phosphorylation of CD28 in T cells, preventing downstream signaling
events [126]. Furthermore, IL-10 downregulates the type 1/2/3 cytokines in vitro, inducing
anergy of T effector cells [127]. The regulatory cytokines were increased mainly in the
blood and skin of patients treated with AIT for HVA [87]. Tr1 cells have been also detected
in nasal mucosa in AR patients [128]. Increased local Tr1 cells have been associated with
elevated IgG4 and blocking activity of IgE-facilitated allergen presentation [129]. During
AIT, increased T reg cells have been also related to high production of TGF-β, which,
with that derived from B reg cells, regulates antigen presentation, co-stimulatory molecule
expression, T-cell proliferation, and IgA switch [130].

Recent findings highlight that other regulatory factors produced by T and other in-
flammatory cells play a key role in the efficacy of AIT, in particular IL-35 and IL-37. There
are no current studies on the activity of IL-37 during AIT, but due to what is known so
far, it is reasonable that this new cytokine may play a role in allergen-specific induced
tolerance by reducing IgE, eosinophils, and type 2 response [131,132]. By contrast, data on
IL-35 are more promising. IL-35 belongs to the IL-12 family and is produced by Foxp3-T
reg, B reg, endothelial and smooth muscle cells, as well as monocytes. rIL-35 suppresses
T-cell proliferation and Th17 differentiation, expands Foxp3+T reg cells [132,133], or in-
duces a subset of Foxp3-negative inducible T reg35 cells (iTr35) exclusively producing
IL-35 [134,135]. In mice, IL-35 is selectively produced by ICOS+T reg cells and reversibly
inhibits allergic inflammation sustained by type 2 and type 3 responses [136]. In agreement,
it was found that, in pollen AIT, IL-35 produced by iTr35 cells strongly inhibits type 2 im-
mune responses, IgE production from B cells, DC priming of Th2 responses, and converted
Th2 cells into immunosuppressive iTr35 cells [137]. Notably, SLIT restored iTr35 cells in
treated patients. These findings provide a rationale for IL-35 therapy for the treatment of
respiratory allergic diseases.

3.3. AIT-Induced Modulation of Innate Lymphoid Cells

Several reports support the hypothesis that AIT can modulate ILC populations. Upon
AIT for HDM allergy, responder patients and HD showed a decreased frequency of circu-
lating ILC2 compared to non-responder patients. Conversely, ILC1 from responders and
HD were increased compared to non-responder patients. Moreover, PBMC from responder
patients had a significantly lower expression of activation markers on ILC2 upon allergen
re-stimulation compared to non-responders [138]. The mechanism of ILC2 in modulating
symptoms during AIT has been partially clarified with the discovery of two functionally
distinct ILC subsets. KLRG1+ but not KLRG1– ILC2, produced IL-10 upon activation with
IL-33 and retinoic acid and are also named ILC-reg. These cells reduced Th2 responses and
maintained epithelial cell integrity. The proportion of IL-10+KLRG1+ILC2 was lower in
patients with grass-pollen allergy when compared to HD, and the ability to produce IL-10
by ILC2 was restored in patients receiving AIT [139]. This highlights the relevance of IL-10
in AIT-mediated tolerance and as a biomarker for a successful AIT.

4. AIT-Induced Immune Deviation and Immune Regulation Are Two Related and
Sequential Phases of the Chronic Stimulation with Allergen

In the last two decades, the mechanisms of immune deviation and immune regulation
induced by AIT have usually been presented as alternative, mutually exclusive events,
and often, the discussion of these two paradigms has deteriorated into a permanent,
unnerving, and endless debate. More recent data, however, indicate that, likely, the
supposed dualism actually may be considered as two sequential immune responses due
to the chronic stimulation with allergen. The ability of an antigen to induce both IL-10
and IFN-γ was described for the hepatitis C virus core protein as a general homeostatic
mechanism favoring the persistence of infection [140].

Our group showed that Par j1 allergen sequence contains epitopes with different
immunoreactive (Th1 or Treg) potential [141]. In agreement, AIT using Fel d1 peptides
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contains two major epitopes inducing IL-10 or IFN-γ [142], and the magnitude of the
cutaneous reaction paralleled the accumulation of Tr1 and Th1 cells in allergen-challenged
skin sites [143]. A connection between IFN-γ and IL-10 production was described initially
in experimental models in which CXCL10 (a type-1-related chemokine) could shift mature-
into a tolerogenic DC able to expand T reg cells in vitro [144]. On the other hand, the
chronic stimulation of DC by IFN-γ could induce the hyperproduction of IDO, whose
metabolites block T-cell proliferation and expand Tr1 cells [145,146]. In ultra-rush AIT for
HVA, the shift from Th2 to Th1 cell profiles has been described, with increase of T reg cells
producing or not IL-10 [146].

Some authors suggested that the predominance of some mechanisms of tolerance
is time- and dose-dependent. SLIT has been shown to induce IL-10-producing cells in
the early (1 month) step of treatment, followed by an IFN-γ (plus or not IL-10) skewing
after 1 year of therapy [147]. In another study, the effective SLIT was associated with the
early increase of TGF-β and the late up-regulation of IFN-γ and IL-10, both produced by
T cells [148]. Lastly, the increase of IL-10+T reg cells in the nasal mucosa of AIT- or in the
blood of OIT-treated patients was associated with a parallel upregulation of memory Th1
cells [128,149].

The turning point came with the report of our group on immunological response to
HDM in AIT-treated patients, where we showed that, after 6 months of therapy, circulating
memory T cells co-expressed high amounts of both IL-10 and IFN-γ, a feature not detectable
before treatment [150]. Importantly, beyond AIT, the contemporary synthesis of IL-10 and
IFN-γ from the same T cell has been reported in pathological conditions including several
infections, autoimmune disorders, and cancer, in which a chronic antigen stimulation
occurs [127,151–158].

Indeed, even though the IL-10 promoter is silenced in Th1 cells, the IL-10 locus is in a
reversible histone deacetylase-responsive state, which can be re-activated when a prolonged
antigenic stimulus, a high activation state, and elevated IL-12 levels are present [159,160].
The Th1/Tr1 cells are probably induced to impair the collateral damage caused by high
levels of inflammation even though they reduce the efficacy of the immune response. In
the presence of IL-12 and IL-27 [160], Notch1 engagement is the main signal to induce
IL-10 production in already-established Th1 cells via a signal transduction and activator of
transcription-4 (STAT4)-dependent pathway.

Both IL-10 and IFN-γ are able to impair in vitro allergen-specific Th2/Th17 responses,
down-regulating IgE-producing cells (via IFN-γ) or switching to IgG4 (via IL-10), highlight-
ing that immune deviation and immune regulation are two faces of the same coin.

This gives a rationale to explain the clinical efficacy of AIT. Th1/Tr1 cells have been
described in mice upon chronic stimulation with antigens and are involved in humans in
the protection against pathogens such as leishmania, borrelia, and mycobacteria [160]. Of
note, many reports indicated that the main source of IL-10 in chronic human infections was
Foxp3-Th1 cells [161,162].

Based on the previous in vivo and in vitro findings, a tentative timing schedule of
alterations induced by AIT can thus be proposed (Figure 1). Five sequential time phases
can be hypothesized. First, we can observe the desensitization of effector non-lymphoid
cells of allergic cascade, such as MC and basophils, which has been described as the
most precocious event. Indeed, it has been documented that a high dose of allergen
administered with AIT may induce a transient small increase of IgE (activation of tissue
ILC2, Trm2 and lymph nodal Tfh2 cells) associated with activation of effector cells (MC
and basophils) by allergen-IgE immunocomplexes. This is followed by the downregulation
of FcεRI, histamine receptors, and cytokines promoting type 2 response. The excess of
allergen locally stimulates phagocytic cells, which produce cytokines (such as IL-12 and
IL-18) essential to orient T and ILC towards a type 1 profile (Th1, Tc1, and ILC1). This
second phase (shift to type 1 response) is progressively potentiated by the increase of
IFN-γ, which, in turn, further promotes APC to produce cytokines favoring type 1 response
and IDO, further blocking effector cells. The ongoing allergen stimulation promotes the
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chronic activation of macrophages/monocytes/DC by IFN-γ progressively leading to the
hyperexpression of Notch1L (Delta4) plus the secretion of IL-12 and IL-27, which are the
signals essential to activate IL-10 gene into Th1 and ILC1 cells. This represents a physiologic
response linked to chronic antigen stimulation, leading to expansion of circulating memory
Th1/Tr1 cells and ILC-reg; it characterizes the third phase addressed to antagonize/balance
the excess of type 1 response. The progressive increase of IL-10 conditions many cells of
adaptive (T reg, B reg, Tr1, and Tfh-reg) and innate (ILC-reg, DC-reg, etc.) immunity to
assume a regulatory profile (fourth phase characterized by the regulatory response). In
turn, these cells increase their suppressive potential with the production of other regulatory
cytokines (such as IL-35 and TGF-β), which further orient APC (prevalently the DC reg)
towards the full tolerance of allergen response with the secretion of high IL-10 and IL-35
levels (five phase of amplified full regulation) (Figure 1).
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This sequence of events has been also observed during the chronic administration of
biologicals (which must be considered exogenous antigens) for several immune-mediated
diseases. Indeed, in a longitudinal study, we found that after 8 months of treatment, IL-10
is stably expressed by infliximab-stimulated PBMC in tolerant patients, which downreg-
ulates adaptive cytokines (IFN-γ) induced in the early phase [163]. Similarly, the rapid
desensitization procedure for biologicals in patients with previous anaphylaxis due to the
anti-drug IgE Abs also mimics the AIT mechanisms. In this case, the early reduction of
IgE-anti-drug antibodies (ADA) and skin tests for biologicals is associated with the early
increase of IgG ADA, which declines or disappears later on. In parallel, the early increase
of drug-specific T cells producing IFN-γ, which becomes negative at the end of treatment,
correlates with the late increase of memory Tr1 and Tr35 cells in vitro and the increase of
circulating regulatory cytokines [164–166].

5. Causes of Failure, Biomarkers of Efficacy, and New Strategies to Optimize AIT
5.1. Causes of AIT Failure

Based on the previous sequence of AIT-related immune alterations leading to the full
allergen tolerance, it is possible to hypothesize the potential causes of AIT failures.

The first and likely most relevant causes of AIT failure are the genetic or epigenetic
polymorphisms of cells (Th2/Th17 and ILC2/ILC3) and molecules (cytokines and receptors)
inducing the development and the effector phase of types 2/3 immune responses of allergic
inflammation. Alterations of cytokines (such as IL-12, IL-18, and IL-27) and molecules able
to shift these responses as well as their receptors and their signaling pathways could
be cause of unsuccessful AIT. Moreover, another possibility of failure is the onset of
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dysfunctional Th1/Tr1 cells, likely due to the polymorphisms of Notch ligand expression
and molecules involved in their signaling. Another important cause of AIT failure can
be due to impaired IFN-γ/IFN-γR interaction and molecules involved in the signaling
pathway. Genetic alterations of receptors (as such H2R, FcεRI, etc.) or secreted molecules
(IDO, etc.) may further contribute to AIT failure. Finally, polymorphisms of regulatory
cytokines (IL-10, IL-35, IL-37, and TGF-β), their receptors and signaling pathways may
be one of the main factors responsible of unsuccessful AIT. The correlation between some
previously described polymorphisms and AIT failure can be documented by using big data
deriving from international AIT registries.

The recent SARS-CoV2 pandemic and the need to administer the mRNA-based or viral
peptide-based vaccines pose the question of a potential incompatibility with AIT. Based
on well-known immunological mechanisms, COVID-19 vaccines are addressed to induce
a valid humoral and cellular adaptive response through few doses of the reagent, while
AIT is aimed to enhance a specific immune tolerance through several repeated doses of
allergens. Both treatments are totally specific, thus involving different types of T and B
cells not interfering each other. Based on this knowledge, the use of the four approved
COVID-19 vaccines does not represent a contraindication for AIT. However, to identify
possible reactions to one of the two vaccines, it is advisable to space the two administrations
by at least a week both in the case of a starting AIT or a treatment in progress [167].

5.2. Biomarkers of Efficacy

According to European Academy of Allergy and Clinical Immunology (EAACI),
potential biomarkers for monitoring the clinical efficacy of AIT are divided into six domains:
(a) antibodies (total IgE, allergen-specific IgE, IgG1, IgG4, IgA1, and IgA2), (b) serum
inhibitory activity of IgE (IgE Fab and IgE BF), (c) basophil activation markers (phenotype
of allergen-activated basophils: CD63, CD203c, etc.), (d) cytokines (IL-10, IL-13, IFN-γ,
IL-18, IL-27, IL-35, IL-37, TGF-β, IL-4, and IL-5) and chemokines (CCL11/24/26 and
CXCL9/10/11), € cellular biomarkers (Foxp3+Treg cells, Tr1, Tr35, TfhR, B reg cells, DC
reg, ILC2-reg, Th1-ILC1, Th2-ILC2, Th17-ILC3, etc.), and (f) in vivo (the previous domains
after allergen challenge or during chamber study) [168].

Taking into account the sequence of immunologic events along AIT treatment, the next
challenge is to define the best timing for monitoring different domains from the beginning
of AIT and the efficacy range of each biomarker.

During the first phase (desensitization of effector cells), the following parameters can
be analyzed: increased serum IgE, low expression of FcεRI on MC and basophils, monocytic
apoptosis, and slight increase of T-cell response to the allergen in vitro.

The second phase (shift to Th1 response) is characterized essentially by increased
specific IgG1 and decline of IgE, upregulation of allergen-specific T cells and ILC exert-
ing a type 1 profile, and the decrease of type 2 and 3 cytokines/chemokines in favor of
IFN-γ or CXCL9/10/11. Importantly, the disappearance of circulating Th2A cells can be
considered a suitable marker of favorable response to following SCIT for pollens or OIT for
peanuts [55,56].

The third phase characterized by the allergen-specific Th1/Tr1 cells can be monitored
by the reduction of allergen-specific IgG1 and increased IgG4/IgA1/IgA2, the presence
of allergen-specific Th1/Tr1 cells and of IL-10+ILC2 (ILC2-reg), and the increased serum
IL-10 upon allergen exposure.

The last two periods (onset of the regulatory response and its amplification phase)
can be monitored by the high proportions of regulatory subsets (Foxp3+T reg cells, Tr1,
Tr35, TfhR, ILC reg, DC reg, and B reg cells); the increased levels of TGF-β, IL-10, IL-35,
and IL-37; and the poor or no response of T cells to allergen in vitro. The presence of
memory regulatory cells after treatment interruption can be a useful prognostic parameter
of symptoms’ reduction.
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5.3. Strategies to Optimize AIT

An effective pathogenic AIT should fully redirect the allergen-specific type 2/type 3
responses to a protective and balanced type 1/Tr1 phenotype, which amplifies many
regulatory circuits. Currently, the relative low proportion of patients with good outcome,
the potential side effects, and the long-term use, which may reduce the efficacy, are valid
reasons to improve this treatment [169].

AIT with peptides has been studied for more than 20 years in clinical trials using
cat [122], HDM [170], and pollen [171] peptides, but inconclusive results have been ob-
tained [172]. Vaccines with long peptides (20–40aa) prevalently bind IgE, whereas vaccines
with short peptides (10–17aa) impact with T-cell response since are recognized by MHC
Class II molecules on DC [173,174]. In this case Th2/Th17 cell response shift towards a
Th1/Tr1 profile, where IL-10 decreases eosinophils, basophils, and MCs recruitment to
tissues [175].

Allergen derivatives from recombinant allergens can be rendered hypo-allergenic by
genetic engineering or chemical modification [176]. The efficacy of recombinant allergens is
equivalent or even more favorable than native allergen extracts [90,177]. The development
of recombinant hypo-allergens is represented by carrier-bound B-cell epitope-containing
peptides [178].

Virus-like particles (VLPs) are another possible basis for the development of AIT [179].
VLP-based vaccines are well-tolerated and immunologically effective towards papillo-
mavirus, hepatitis B virus, and malaria [180]. VLPs have a diameter in the range of 30 nm, a
crucial size to be drained into the lymph nodes, where an optimal B-cells activation occurs.
The VLPs surface can be modified to display the allergen epitopes, while the inside of
VLPs can be loaded with some TLR ligands, such as RNA or DNA sequences activating
TLR7/8 and TLR9, respectively. When VLPs are inside the APC, the antigen is processed
and its peptides presented in association with MHC Class I and Class II molecules. Some
phase I clinical trials designed to assess the impact of VLPs plus TLR ligands on AR have
been performed to orient the response to allergen towards a Th1/Tr1 profile. In all, a
decreased production of IgE with a parallel increase of IgG4 specific for the allergens has
been observed [181–184].

Finally, another strategy to improve a Th1 response to allergens is to bind allergen (or
its peptides) with endosomal TLR ligands. In the last few years, our group demonstrated
how OVA or nDerp-2 allergens coupled with a modified adenine (a TLR7 ligand), can
switch allergen specific T-cell response from a Th2/Th17 to a Th1 profile in vitro and
in vivo. In this model, a decreased production of IgE and a parallel increase of IgG2a and
IFN-γwere found [185,186].

6. Conclusions

The recent findings on the mechanisms of AIT clearly indicate that this chronic allergen
stimulation primarily affects the tissue and/or lymph nodal APC, modifying environmental
milieu of allergic inflammation, which, in turn, modulates innate and adaptive immune
responses at different cell levels.

In addition, AIT induces the early switch from type 2/type 3 to type 1 response
(immune deviation), while the chronic ongoing therapy favors the IL-10 production by
memory Th1 cells. This is the initial mechanism triggering a number of regulatory circuits
and favoring the loss of response to allergen (immune regulation), which may be maintained
for a long period after AIT interruption.

Importantly, all the known AIT procedures, such as SCIT, SLIT, OIT, ILIT, and EPIT,
have been shown to induce similar immunological changes and can be monitored by timely,
optimized biomarkers.

AIT failure may be due genetic/epigenetic polymorphisms of several mechanisms,
including the plasticity of immune responses and the induction/maintenance of several
regulatory mechanisms sustained by cells and cytokines. Finally, novel AIT strategies in-
clude engineering of allergens or their epitopes, which must take into account the previous



Biomedicines 2022, 10, 2825 12 of 19

described alterations as the onset of Th1/Tr1 cells, which are the trigger of an efficient
tolerance to an allergen. We now have the potential to understand the precise causes of
AIT failure as well as to define the best biomarkers of AIT efficacy; it will be possible by
using big data deriving from international AIT registries.
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