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Abstract: LCZ696 (valsartan/sacubitril) has the potential to slow the progression of diabetic kidney
disease (DKD) according to previous reports. However, the renoprotective mechanism underlying
LCZ696 remains unknown. This study aimed to investigate the therapeutic potential and underlying
mechanism of LCZ696 in DKD in a type 2 diabetic (T2D) rat model. This model was established in
this experiment by feeding a high-fat diet (HFD) for six weeks with a single dose of streptozotocin
(STZ, 30 mg/kg body weight). Valsartan or LCZ696 was orally administered to T2D animals for
eight weeks. HFD/STZ rats showed hyperglycemia, impaired insulin secretion, significant increases
in urea, creatinine, cytokines, nuclear factor kappa B (NF-κB), oxidative stress, caspase-3 activity,
glomerular and tubular damage, glomerulsclerosis, Bax and caspese-3 expressions along with a
significant decline in IL-10, antioxidant markers, and Bcl-2 expression. The administration of LCZ696
to diabetic rats reduced the serum concentrations of glucose, urea, and creatinine. In addition, ELISA
results demonstrated that diabetic rats treated with LCZ696 exhibited a reduction in inflammatory (IL-
1β, TNF-α, IL-6) and an increase in anti-inflammatory (IL-10) cytokine levels. In addition, a notable
decrease in NF-κB and caspase-3 activity was observed. At the level of renal tissue homogenate,
diabetic animals treated with LCZ696 demonstrated clear restorations in GSH content and other
antioxidant enzyme levels, in addition to a significant decrease in TBARS levels. In addition, LCZ696
inhibited the expression of the Bax and cleaved caspase-3 proteins and enhanced the expression
of the Bcl-2 protein. Improvements in histopathological changes in kidney tissues confirmed and
significantly supported these biochemical findings. In summary, LCZ696 alleviated DKD with
possible mechanisms including inhibition of inflammation and apoptosis.

Keywords: type 2 diabetes; diabetic kidney disease; inflammation; apoptotic markers; LCZ696

1. Introduction

Globally, more than 462 million individuals worldwide suffer from type 2 diabetes
mellitus (T2DM), which is the most common kind of chronic disease [1]. Insulin resis-
tance and a gradual loss of β-cell function that results in hyperglycemia are the major
features of T2DM [2]. Without strict management, hyperglycemia can damage organs and
result in a range of significant side effects, such as retinopathy, neuropathy, and nephropa-
thy [3]. One of the most common complications of diabetes is diabetic kidney disease
(DKD), which is the primary cause of end-stage renal disease (ESRD) [4]. Type 2 diabetes
mortality is predominantly caused by patients with kidney disease according to previ-
ous reports [5]. Albuminuria and glomerular hyperfiltration are symptoms of the early
stages of DKD, whereas a progressive deterioration in renal function as demonstrated
by altered serum creatinine is a symptom of the late stages [6]. Some DKD patients also
show substantial interstitial and vascular fibrosis on the renal histology in addition to
these symptoms [7]. The development and progression of DKD are largely dependent
on persistent renin–angiotensin–aldosterone system (RAAS) activation caused by chronic
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hyperglycemia. Currently, blood pressure control, RAAS suppression, and hyperglycemia
control are the cornerstones of DKD care [8].

It is well established that inflammation and oxidative stress play an axial role in DKD
initiation and progression [9,10]. Therefore, by controlling these two pathways, DKD
development could be managed or stopped. The imbalance between the generation of
reactive oxygen species (ROS) during hyperglycemia and antioxidant defense in cells can
result in tissue injury through necrosis and ultimately apoptosis is what causes an oxidative
stress state [11]. The most severe damage to any cellular components is brought on by
oxidative stress, which also damages DNA, cellular proteins, and lipids [12]. Numerous
investigations on the inflammatory response in DKD have shown that proinflammatory
cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-
6 (IL-6) are present at higher levels in both DKD patients [13] and experimental animal
models [14]. The activation of crucial transcription factors like the nuclear factor kappa
B (NF-κB), which promotes apoptotic, fibrotic, and inflammatory processes that play a
significant role in cell injury and associated issues, is one of the most crucial effects of
hyperglycemia-induced oxidative stress [15]. Consequently, inhibiting NF-κB signaling
pathway can help with the control of vascular complications of diabetes [16]. Apoptosis
has been identified as a significant contributor to renal fibrosis and is one of the distinctive
morphologic alterations seen in DKD [17]. As a result, inhibiting apoptosis is a useful tactic
for reducing the effects of DKD.

The combination of valsartan and sacubitril, known as LCZ696, an angiotensin
receptor–neprilysin inhibitor, lowers morbidity and mortality in patients with heart fail-
ure [18]. LCZ696 functions by minimizing the activity of the RAAS and enhancing the
cardiovascular defense offered by the natriuretic peptide system [19]. We recently discov-
ered that LCZ696 therapy can slow the evolution of diabetic nephropathy by preventing
oxidative stress, inflammation, and glomerulosclerosis in hyperglycemic rats [20]. Clinical
trials and other experimental research showed that LCZ696 had therapeutic benefits for
diabetes patients [21–23], prevented proteinuria in diabetic rats [24], and prevented DKD
in db/db mice [25]. However, there is a dearth of information on its advantages and how
it affects type 2 diabetes-induced DKD. Therefore, the goal of the current experiment is
to investigate the potential protective benefits and mechanisms of LCZ696 against DKD
in a well-established rat model of experimental type 2 diabetes using a high-fat diet and
streptozotocin (HFD/STZ).

2. Materials and Methods
2.1. Chemicals and Drugs

STZ was purchased from Sigma-Aldrich, Inc., (St. Louis, MO, USA), valsartan,
Tabuvan® 80 mg from (Tabuk pharmaceutical Manufacturing Co., Tabuk, Saudi Ara-
bia), and LCZ696 (sacubitril/valsartan, Entresto™ 200 mg from Novartis Pharma AG,
Basel, Switzerland). All other chemicals and reagents were of the highest analytical grade
commercially available.

2.2. Animal Care and Ethical Approval

Adult male Wistar rats weighing between 100 and 120 g were collected from the Exper-
imental Animal Care Center at the Pharmacy College of King Saud University, where they
were cared for and monitored in a particular pathogen-free environment. All experimental
procedures, including euthanasia, were carried out following ethical standards established
by the Experimental Animal Care Centre at King Saud University (KSU), Riyadh, Kingdom
of Saudi Arabia (ethics reference no: SE-19-118) and the National Institute of Health Guide
for the Care and Use of Laboratory Animals, Institute for Laboratory Animal Research
(NIH publications no. 80–23; 1996). Before research, all animals were given 7 days to
acclimate in polycarbonate cages in a well-ventilated environment. Standard laboratory
settings (temperature of 23–24 ◦C, relative humidity of 60–70%, and a 12 h light/dark cycle)
were used to sustain the animals.
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2.3. Induction of Type 2 Diabetes in Experimental Animals

T2D was established in rats as previously described [26]. HFD feeding for 6 weeks
(D12451, 45 kcal% fat manufactured by Research Diets Inc., New Brunswick, NJ, USA) and
a single low dosage of STZ (30 mg/kg body weight) dissolved in freshly prepared citrate
buffer (0.1 M, pH 4.5) administered intraperitoneally (i.p.) resulted in the induction of
type 2 diabetes in rats. Then, estimating fasting blood glucose levels from the tail vein of
diabetic animals was done two days after STZ injection using a glucometer (Accu-chek
compact-plus glucose meter system) (Roche Diagnostics, Meylan, France). Animals with
glucose levels exceeding 250 mg/dL were considered diabetic and used in the experiment.
Throughout the experiment, the control group was fed a D12450H control diet (10 kcal%
fat, manufactured by Research Diets Inc., NJ, USA) and citrate buffer (0.1 M, pH 4.5) was
injected i.p. as a vehicle.

2.4. Experimental Procedures

The study plan for the current experiment is presented in Figure 1. After inducing
diabetes, rats were randomly assigned to one of four groups (n = 8): (1) normal rats treated
with vehicle (control), (2) HFD/STZ rats treated with vehicle (HFD/STZ), (3) HFD/STZ rats
treated with valsartan (valsartan), and (4) HFD/STZ rats treated with LCZ696 (LCZ696).
Valsartan, Tabuvan® 80 mg (Tabuk pharmaceutical Manufacturing Co, Tabuk, KSA), was
suspended in 0.5% carboxymethylcellulose (CMC) and supplied at a dose of 31 mg/kg/day
through gastric gavage to normal and diabetic rats at approximately the same time each
day. LCZ696 (sacubitril/valsartan, EntrestoTM 200 mg, NOVARTIS, Switzerland) was
suspended in 0.5% carboxymethylcellulose (CMC) and delivered through gastric gavage to
normal and diabetic rats at a dose of 68 mg/kg/day roughly every day at the same time.
The treatment began two weeks after the onset of diabetes and continued for eight weeks.
On the basis of our earlier research and other previous reports [26,27], we determined the
course of treatment and the valsartan and LCZ696 dosages. The body weights of animals
were recorded weekly on the same day and around the same time. The animals were
fasted overnight and anesthetized with a mixture of ketamine (Hikma Pharmaceuticals,
Jordan, 100 mg/kg) and xylazine (Laboratories Calier, Spain, 10 mg/kg) following the
experimental period. Blood samples were extracted from the heart, placed in clean tubes,
separated by centrifugation at 3000 rpm (800 g) for 10 min, and then frozen at −80 ◦C until
analysis. Both kidneys were dissected, weighed, and the final weight was determined in
grams per 100 g of body mass. A small portion of each animal’s kidney was immersed
and fixed in 10% neutral buffer formalin (pH 7.4) for subsequent histopathological and
immunohistochemical examinations. The remaining portion of the kidney samples was
immersed in liquid nitrogen for one minute and then frozen at −80 ◦C until analysis.

2.5. Biochemical Tests of Serum

Glucose levels in serum were measured using a commercially available kit (Randox
Laboratories Ltd., Crumlin, UK and SPI bio, Montigny le Bretonneux, France). ELISA
was utilized to measure insulin levels (Merck Millipore, Burlington, MA, USA). The levels
of creatinine and urea were measured using colorimetric techniques (Linear Chemicals,
Barcelona, Spain). The serum concentrations of NF-κB, IL-1β, TNF-α, IL-6, and IL-10 were
measured using ELISA techniques (Thermo Scientific, Rockford, IL, USA).

2.6. Tissue Analysis

Small portions of the kidneys were homogenized in a physiological buffer (1:10, w/v)
and total protein concentrations were measured according to Lowry assay (1951) [28]
using bovine serum albumin as a standard. TBARS and GSH levels were measured by
using ELISA kits (Cayman Chemical Co., Ann Arbor, MI, USA). In Post-mitochondria
supernatants of kidney samples, enzymatic activities of SOD, CAT, GPx, and GST were
measured by using ELISA kits (R&D systems Inc., Minneapolis, MN, USA).
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Figure 1. Diagram illustrating the experimental design.

2.7. Caspase-3 Assay

According to the manufacturer’s instructions, the caspase-3 colorimetric assay kit
(R&D Systems, Minneapolis, MN, USA) measured the increased enzymatic activity of
the caspase-3 class of proteases in renal tissue. In a 96-well microplate, the enzymatic
reaction for caspase activity was performed by adding 250 µg protein/50 µL of rat kidney
homogenate. The cleavage of caspase-3 colorimetric substrate (DEVD-pNA) by caspase
releases the chromophore pNA, which was measured spectrophotometrically at 405 nm
using a microplate reader (ELx800 Absorbance Reader, BioTek Instruments Co., Winooski,
VT, USA) The results are expressed as a fold increase in caspase activity, as indicated by an
increase in optical density.

2.8. Renal Histological Evaluation

The kidneys that were harvested were fixed in 10% formalin, dehydrated, and then
embedded in paraffin wax. The sections (5–7 m) were cut with an automated microtome
(Leica RM 2125 RM, Leica Microsystems, Nussloch, Germany) and mounted on glass
slides. All slides were stained with hematoxylin and eosin (H&E) and periodic acid–Schiff
(PAS) and examined by an experienced pathologist using a light microscope, the Nikon
Eclipse E600, and a digital high-resolution camera. Briefly, 20 glomeruli per section were
scored to determine the average glomerular injury index per rat, with a score of 0 for
intact glomeruli, 1 for less than 25%, 2 for 25–50%, 3 for 50–75%, and 4 for >75% damage.
The score for tubular damage was as follows: 0 = normal histology; 1 = tubular cell
enlargement, brush border loss, nuclear condensation, and up to one-third nuclear loss;
2 = as in 1, but greater than one-third and less than a two-thirds nuclear loss in tubules; and
3 = greater than two-thirds nuclear loss. Each group had three randomly selected visual
fields evaluated blindly by two researchers. Kidney sections stained with PAS were utilized
in a glomerulosclerosis demonstration in which 20 glomeruli were randomly selected
from each section and positive signals within the selected glomerulus were highlighted,
measured, and represented as a percentage of the entire glomerulus’ positive area as
previously described [29].

2.9. Immunohistochemistry

Using the avidin–biotin–peroxidase complex (ABC) technique, immunohistochemistry
was performed on paraffin sections mounted on positively charged slides. This IHC
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examination utilized the following antibodies: Rabbit Anti-caspase-3 antibody active
(cleaved) form, monoclonal, Sigma Aldrich Cat# AB3623; Rabbit Anti Bcl-2 antibody,
polyclonal, Abcam Cat# ab196495; and Mouse Anti Bax antibody, monoclonal, Sigma
Aldrich Cat# B84293. After incubating each group’s sections with the previously mentioned
antibodies, the ABC method reagents (Vectastain ABC-HRP kit, Vector laboratories) were
added. To detect the antigen–antibody complex, marker expression was labeled with
peroxidase and colored with diaminobenzidine (DAB, manufactured by Sigma). Negative
controls were implemented by substituting nonimmune serum for the primary or secondary
antibodies. Sections stained with IHC were examined using a Leica microscope (CH9435
Hee56rbrugg) (Leica Microsystems, Switzerland). Using the Leica Qwin 500 image analyzer
computer system (Cambridge, UK), the area percentage of immunohistochemically positive
structures was quantified.

2.10. Data Analysis

Data are presented as mean and standard error (mean ± SEM). One-way ANOVA
was performed to test the significant differences between groups using GraphPad Prism
version 8 (GraphPad Software, Inc., La Jolla, CA, USA). Tukey, a multiple comparison test,
was utilized as a post hoc test. Statistical significance was set at p < 0.05.

3. Results
3.1. Effects of LCZ696 and Valsartan on Serum Glucose, Insulin, and Renal Functions in
HFD/STZ-Induced Rats

Serum biochemical analysis showed a significant increase in blood glucose levels
in HFD/STZ-induced rats (p < 0.001) in comparison with the control group, and these
levels were significantly reduced in diabetic animals treated with LCZ696 (p < 0.01) and
valsartan (p < 0.05). Although HFD/STZ-induced rats showed lower blood insulin levels
than control rats, there were no significant differences in insulin levels between the different
groups. Urea and creatinine were significantly higher in the serum of HFD/STZ-induced
rats compared with the control group. When compared with the HFD/STZ-induced rats,
the LCZ696 treatment significantly decreased serum urea (p < 0.01) and creatinine levels
(p < 0.001). Additionally, compared with the valsartan group, LCZ696 treatment of diabetic
rats had a greater reduction in serum urea and creatinine (Table 1).

Table 1. The effects of LCZ696 and valsartan treatment on serum glucose, insulin, creatinine, urea,
and cytokine levels in HFD/STZ-induced diabetic rats.

Parameters Control HFD/STZ Valsartan LCZ696

Glucose (mg/dL) 109.9 ± 5.713 353.5 ± 14.75 *** 319.0 ± 1.631 # 310.9 ± 1.908 ##

Insulin (ng/mL) 0.7128 ± 0.09232 0.6033 ± 0.05789 0.6741 ± 0.04930 0.6740 ± 0.03551
Urea (mg/dL) 9.974 ± 0.7861 41.54 ± 3.354 *** 37.11 ± 2.996 26.41 ± 2.133 ##,+

Creatinine (mg/dL) 8.172 ± 1.030 28.67 ± 1.406 *** 25.15 ± 1.379 18.23 ± 0.8938 ###,++

IL-6 (pg/mL ) 169.6 ± 8.791 384.9 ± 24.35 *** 319.4 ± 14.16 ## 313.2 ± 15.81 ##

IL-1β (pg/mL) 86.16 ± 4.230 167.5 ± 4.082 *** 137.5 ± 7.706 99.78 ± 12.38 ###,+

TNF-α (pg/mL ) 75.15 ± 3.576 149.5 ± 14.76 *** 106.3 ± 3.055 ## 93.93 ± 7.132 ###

IL-10 (pg/mL ) 49.89 ± 3.222 26.44 ± 1.556 ** 44.72 ± 3.777 # 49.73 ± 5.450 ##

The data are expressed as the mean ± SEM, n = 6, *** p < 0.001 and ** p < 0. 01 versus control; # p < 0.05, ## p < 0.01,
and ### p < 0.01 versus HFD/STZ; + p < 0.05, ++ p < 0.01 versus valsartan. Abbreviations: TNF-α, tumor necrosis
factor-α; IL-1β, interleukin-1β; IL-6, interleukin-6; IL-10, interleukin-10.

3.2. Lcz696 Reduced Inflammatory State in Hfd/Stz-Induced Rats

LCZ696 was tested for its anti-inflammatory effects on diabetic rats by measuring
serum cytokine levels (IL-6, IL-1β, TNF-α, and IL-10) (Table 1). The circulating levels of
proinflammatory cytokines (TNF-α, IL-1β, and IL-6) cytokines were significantly (p < 0.001)
elevated in HFD/STZ-induced rats, and treatment with LCZ696 or valsartan reversed these
cytokines with LCZ696 having a stronger effect on IL-1β compared with the valsartan
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group. In contrast, HFD/STZ-induced rats had significantly lower serum levels of IL-10
(p < 0.01) than the control group. Intriguingly, animals treated with LCZ696 or valsartan
showed a significant rise in the serum level of IL-10 when compared with diabetic animals.

3.3. LCZ696 Attenuated HFD/STZ-Induced Activation of NF-Kb (P65) and Caspase 3 Via
Inhibiting NF-Kb Signaling and Caspase 3 Signaling

NF-k (p65) and caspase-3 activity were assessed by spectrophotometry to support
the hypothesis that HFD/STZ caused inflammation, cellular damage, and death. Ac-
cording to the current investigation, NF-k (p65) and caspase-3 activities in the kidney
tissue homogenate of HFD/STZ-induced rats were significantly increased (p < 0.001) when
compared with the control group. After LCZ696 and valsartan administration to diabetic
animals, these high levels of NF-k (p65) and caspase-3 activity in HFD/STZ-induced rats
dramatically (p < 0.001) decreased (Figure 2).
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HFD/STZ-induced diabetic rats. The data are expressed as the mean ± SEM, n = 6, *** p < 0.001
versus control; ### p < 0.01 versus HFD/STZ. Abbreviations: NF-κB, nuclear factor kappa-B.

3.4. LCZ696 Alleviated Oxidative Stress and Enhanced Antioxidants in HFD/STZ-Induced Rats

Analyses of renal TBARs and antioxidant enzymes (Figures 3 and 4) were con-
ducted on diabetic animals to assess LCZ696’s protective effects on oxidative stress. HFD
and STZ-treated rats exhibited renal oxidative stress as indicated by significantly higher
(p < 0.001) TBARs than control rats. HFD/STZ-induced rats also showed significant reduc-
tions (p < 0.001) in renal GSH, SOD, CAT, GPx, and GST activities. Treatment with LCZ696
significantly reduced (p < 0.01) the high levels of renal TBARs by 36.42% compared with the
HFD/STZ group, and by 28.82% when compared with the valsartan group. Additionally,
LCZ696 or valsartan administration improved renal GSH, SOD, CAT, GPx, and GST activi-
ties compared with the HFD/STZ group, and there was a trend toward higher antioxidant
enzymes compared with valsartan administration.
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3.5. LCZ696 Prevents Kidney Damage in HFD/STZ-Induced Rats

In the present study, kidney histological morphology changes were evaluated using
H&E and periodic acid–Schiff (PAS) staining (Figures 5 and 6). H&E staining revealed
that HFD/STZ-induced diabetic rats exhibited severe glomerular and tubular injuries, as
evidenced by an enlarged urinary space, thickening of the glomerular capillary basement
membrane, infiltration of inflammatory cells, tubular dilatation, and disordered, as well
as an enlarged, mesangial area. PAS staining revealed increased glomerulus, thickened
glomerular basement membrane, and glycogen accumulation in HFD/STZ-induced rats.
Interestingly, after eight weeks of treatment with valsartan and LCZ696, all renal histo-
logical changes induced by HFD/STZ were significantly attenuated in the treated groups,
as evidenced by decreased glomerular and tubular damage (p < 0.01 or p < 0.001), respec-
tively. Compared with valsartan, LCZ696 treatment improved glomeruli and renal tubules
significantly (p < 0.05 or p < 0.001). Using PAS-stained sections, the percentage of glomeru-
losclerosis (Figure 7) in HFD/STZ-induced rats was determined. In the HFD/STZ group,
glomerulosclerosis was significantly (p < 0.001) more prevalent than in the control group.
Intriguingly, treatment with valsartan and LCZ696 effectively prevented the progression of
glomerulosclerosis in HFD/STZ-induced animals, with LCZ696 being more effective than
valsartan in reducing glomerular matrix area.

3.6. Immunohistochemical Analysis of Bcl-2, Bx, and Caspase-3 after LCZ696 or Valsartan
Treatment of HFD/STZ-Induced Rats

Based on the immunohistochemical analysis in the current study, the HFD/STZ
group’s Bax expression in the proximal and distal renal tubule cells dramatically increased
(p < 0.001) while being treated with valsartan or LCZ696 significantly decreased (p < 0.001)
showing weak expression. Additionally, in HFD/STZ-induced rats, LCZ696 therapy also
dramatically reduced (p < 0.01) the Bax protein distribution compared with the valsartan-
treated group (Figure 7). Contrarily, renal tubule sections from the HFD/STZ group
revealed a significantly lower level of Bcl-2 expression (p < 0.001) than those from control
rats, while LCZ696 or valsartan treatment markedly increased this expression and LCZ696
effect was superior to that of valsartan treatment (p < 0.05) (Figure 8). According to the
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current immunohistochemistry data, LCZ696 can prevent the apoptosis that is brought
on by HFD/STZ in renal tissues. Similarly to Bax expression, quantitative analysis by
densitometry revealed significant increases (p < 0.001) in the expression of caspase-3 in
the renal tissue for rats treated with HFD/STZ in comparison with sections of control
rats. When valsartan or LCZ696 were administered, these alterations were significantly
alleviated (p < 0.001) by producing weak caspase-3 reactions. HFD/STZ-induced diabetic
rats treated with LCZ696 showed a greater reduction (p < 0.01) in caspase-3 than those
treated with valsartan (Figure 9).
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induced diabetic rats, including superoxide dismutase (SOD) levels (A), catalase (CAT) activity (B),
glutathione peroxidase (GPx) (C), and glutathione-S-transferase (GST) (D). The data are expressed as
the mean ± SEM, n = 6, *** p < 0.001 versus control; # p < 0.05, ## p < 0.01 versus HFD/STZ.
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Figure 5. Renal cortex photomicrographs of H&E-stained kidney sections from control (A), HFD/STZ-
induced rats (B), valsartan-treated group (C), and LCZ696-treated animals (D). The renal cortex of
the control group displays normal proximal convoluted tubules (PT), distal convoluted tubules (DT),
Bowman’s capsule, and glomerulus structures (G). The renal cortex of animals given HFD/STZ
exhibited enlargement of the urinary space, thickening of the basal membrane of the glomerulus
(arrow), and infiltration of inflammatory mononuclear cells (head arrow). Glomeruli and renal
tubules were significantly improved in the renal cortex of HFD/STZ rats treated with valsartan and
LCZ696. Damages to the glomeruli (E) and tubules (F) in the kidneys of rats from different groups
were assessed semi-quantitatively, data are presented as mean ± SEM, n = 6, *** p < 0.001 versus
control; ### p < 0.001 and ## p < 0. 01 versus HFD/STZ; + p < 0.05 and +++ p < 0.001 versus valsartan.
H&E, scale bar = 50 µm.
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Figure 6. Representative photomicrographs of glomeruli stained with periodic acid–Schiff (PAS, scale
50 µm) from control (A), HFD/STZ (B), valsartan-treated group (C), and LCZ696-treated animals
(D). The dark purple color in the glomerulus is the extracellular matrix. In different groups, the area
of the glomerular matrix was measured (E). Data are presented as mean ± SEM, n = 6, *** p < 0.001
versus control; ### p < 0.001 versus HFD/STZ; +++ p < 0.001 versus valsartan.
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Figure 7. The effects of LCZ696 or valsartan on renal apoptosis marks in HFD/STZ-induced diabetic
rats. A representative photomicrograph of renal cortex showing Bax immunohistochemistry protein
distribution in different study groups. (A) control, (B) HFD/STZ, (C) valsartan-treated group, and
(D) LCZ696- treated group. Area percent of immunoreactivity of Bax were quantified (E), (n = 3); data
are presented as mean ± SEM, *** p < 0.001 versus control; ### p < 0.001 versus HFD/STZ; ++ p < 0.01
versus valsartan (scale bar 50 µm).
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Figure 8. The effects of LCZ696 or valsartan on renal apoptosis marks in HFD/STZ-induced dia-
betic rats. A representative photomicrograph of renal cortex showing Bcl-2 immunohistochemistry
expression in different study groups. (A) control, (B) HFD/STZ, (C) valsartan-treated group, and
(D) LCZ696-treated group. Area percent of immunoreactivity of Bcl-2 were quantified (E), (n = 3);
data are presented as mean ± SEM, *** p < 0.001 versus control; ## p < 0.01 and ### p < 0.001 versus
HFD/STZ; + p < 0.01 versus valsartan (scale bar 50 µm).
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Figure 9. The effects of LCZ696 or valsartan on renal apoptosis marks in HFD/STZ-induced diabetic
rats. A representative photomicrograph of renal cortex showing caspase-3 immunohistochemistry
expression in different study groups. (A) control, (B) HFD/STZ, (C) valsartan-treated group, and
(D) LCZ696- treated group. Area percent of immunoreactivity of caspase-3 were quantified (E),
(n = 3); data are presented as mean ± SEM, *** p < 0.001 versus control; ### p < 0.001 versus HFD/STZ;
++ p < 0.01 versus valsartan (scale bar 50 µm).

4. Discussion

DKD, which is regarded as the primary cause of ESRD, is one of the most frequent
complications of type 2 diabetes [30]. Recently, there has been a growing interest and a
substantial number of reports showing that Angiotensin receptor–neprilysin inhibitors
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(ARNIs) are beneficial for diabetic complications [31,32]; however, the precise mechanism
is still not fully known. Herein, the current study is a follow-up to a previous one in
which we demonstrated that therapy with LCZ696 reduced oxidative stress, inflamma-
tion, and glomerulosclerosis in hyperglycemic rats, halting the progression of diabetic
nephropathy [20]. In this study, LCZ696 was tested against DKD in the HFD/STZ rat
model, a well-known model that mimics human type 2 diabetes mellitus, and its effects
were compared with those obtained with valsartan as a comparison to examine if LCZ696
conferred any additional benefit over renin–angiotensin–aldosterone system (RAAS) block-
ade alone. The LCZ696 therapy effectively reduced the progression of DKD through the
inhibition of inflammation and caspase-dependent apoptosis, as well as an increase in
cellular antioxidants. Additionally, the current findings indicated that treatment with
LCZ696 had nephroprotective effects, which manifested as a significant decrease in serum
urea and creatinine and an improvement in renal functions. The diabetic rats exhibited
clear injuries in the glomerulus and renal tubules, as evidenced by an enlarged glomerular
space, obvious inflammatory infiltration, thickening of the glomerular capillary basement
membrane, expansion of the mesangial matrix, tubular dilatation and disorder, and unclear
tubular borders, as revealed by H&E and PAS staining. Importantly, LCZ696 treatment
ameliorated HFD/STZ-induced histopathological changes. In addition to LCZ696’s nephro-
protective effect, the aforementioned results confirmed renal dysfunction and established
the DKD model successfully. The level of apoptosis markers Bax and caspase-3 were also
dramatically reduced by LCZ696 therapy, while the expression of antiapoptotic Bcl-2 was
elevated in the renal tissue. Additionally, a decrease in NFκ-B was linked to the restoration
of the increased proinflammatory cytokines TNF-, IL-6, and IL-1 that were observed in
LCZ696-treated rats.

Diabetes caused by HFD/STZ is a well-known model that closely resembles human
T2DM [33]. Providing HFD to experimental animals along with a low dose of STZ causes
insulin resistance and aberrant metabolic processes. Therefore, the present findings in this
study were consistent with earlier work from our lab [26] as well as other studies [34] that
have shown hyperglycemia and altered insulin secretion in HFD/STZ-induced animals. As
a result, the HFD/STZ-induced rats in this study exhibited hyperglycemia and impairments
in insulin secretion. It is interesting to note that administering LCZ696 to diabetic rats re-
duced hyperglycemia, demonstrating the drug’s capacity for glycemic control as previously
reported [21,35]. In the current study, elevated serum levels of urea and creatinine, which
are indicators of renal dysfunction, were seen in HFD/STZ-induced rats. These findings
are consistent with those of Wahab et al., [33] who demonstrated impaired kidney function
in type 2 diabetic rats. The serum levels of urea and creatinine in diabetic rats treated
with LCZ696 significantly decreased, showing a considerable improvement in the kidney
functional changes brought on by type 2 diabetes. Additionally, LCZ696 treatment restored
renal impairment more effectively than valsartan. The findings of Rahman et al. [24] were
consistent with those of the present study; LCZ696 was found to protect rats with type
2 diabetes with overt proteinuria against renal injury by decreasing the serum levels of
urea and creatinine.

A critical factor in the onset and progression of diabetic kidney disease (DKD) is
oxidative stress, which is exacerbated by an excess of reactive oxygen species (ROS) and a
deficiency in antioxidant mechanisms [36]. Studies have shown that blocking or lowering
the generation of ROS can stop renal damage caused by a variety of stressors [3,37]. In
rats induced with HFD/STZ, we observed significant increases in TBARS levels, as well as
significant decreases in the activity of GSH, SOD, CAT, GPx, and GST, indicating an overt
state of oxidative stress. Similar findings were found in the kidneys of the experimentally
induced type 2 diabetic rat model [38,39] with high lipid peroxidation, which may be
related to an inadequate antioxidant system. However, in our study, treatment of HFD/STZ-
induced rats with LCZ696 restored kidney TBARs levels and increased GSH, SOD, CAT,
GPx, and GST activities, protecting them from oxidative stress. This effect of LCZ696 was
stronger than that of valsartan. These results of our study indicate that LCZ696 is a potent
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antioxidant and free radical scavenger, which is important in mitigating the consequences
of diabetes mellitus. Our results support earlier studies that found that LCZ696 can reduce
oxidative stress in a variety of animal models, including diabetic cardiomyopathy [26,40],
STZ-induced hyperglycemic rats [20], and the 5/6 nephrectomy rat model [41].

In addition to oxidative stress, inflammation is regarded as a prevalent aspect of
chronic kidney damage and a crucial mediator in its development [42,43]. The constant
generation of ROS during hyperglycemia causes uncontrolled oxidative stress, which
in turn activates a variety of stress-sensitive signaling pathways, including NF-κB [44],
whose activation leads to the increased expression of many gene products that cause
cellular damage and is a crucial factor in the development of diabetes complications.
Our findings, which were in line with earlier studies [45,46], showed that rats given
HFD/STZ had considerably higher circulating levels of TNF-α, IL-1β, IL-6, and NF-κB
as well as decreased IL-10. Contrarily, administration of LCZ696 to HFD/STZ-induced
rats resulted in anti-inflammatory effects as shown by a considerable decline in TNF-α,
IL-1β, IL-6, and NF-κB levels along with a significant increase in the levels of IL-10. One
appealing fact in this study is that LCZ696 can reduce the inflammatory response induced
by HFD/STZ, probably by inhibiting the NF-κB pathway. We have reported similar results
in our previous work [20,26] and in other investigations [47] also reported that LCZ696 has
anti-inflammatory capabilities which may be a key factor in its renoprotective potential
against HFD/STZ-induced diabetic nephropathy. Additionally, LCZ696’s inhibitory effects
on LPS-induced endothelium damage serve as further proof of the drug’s anti-inflammatory
actions [48].

Numerous reports have shown that oxidative stress and inflammation brought on by
hyperglycemia can cause apoptosis, damage the kidneys, and ultimately result in organ
failure [44,49]. Therefore, one of the most important ways to stop programmed cell death
in diabetic nephropathy is to suppress the elevated oxidative stress and inflammation. The
present study showed that rats given HFD/STZ induced renal apoptosis. Immunohisto-
chemistry analysis showed significant increases in apoptotic markers such as caspase-3
and Bax and decreased expression of antiapoptotic Bcl-2 in renal tissue of HFD/STZ when
compared with the control. Similar to our findings, previous studies found that HFD/STZ
could cause kidney tissue to undergo apoptosis by raising the expression of apoptotic
markers such as caspase-3 and Bax [50–52]. Treatment of diabetic rats with LCZ696 sig-
nificantly reduced the expression of pro-apoptotic factors such as caspase-3 and Bax and
significantly improved antiapoptotic factors (Bcl-2) indicating the antiapoptotic potential
of LCZ696. The observed attenuation in renal apoptosis after LCZ696 treatment may be
a result of observed suppressions in oxidative stress and inflammation. These findings
were supported by earlier research that showed LCZ696 to have antiapoptotic capabil-
ities against diabetic cardiomyopathy [40], arsenic trioxide-induced cardiotoxicity [53],
cyclophosphamide-induced testicular toxicity [54], and human umbilical vein endothelial
cells (HUVECs) induced by oxidized low-density lipoprotein (ox-LDL) [55] by upregulating
the suppressed Bcl-2 expression and downregulating the elevated Bax and caspase-3.

More importantly, LCZ696 therapy reduced oxidative stress and inflammation, which
in turn shielded renal cells from injury and apoptosis, explaining why LCZ696 was more
effective than valsartan in this study. The combined inhibition of the Ang II receptor and
neprilysin by LCZ696 was more efficient than the Ang II receptor inhibition by valsartan
alone, which may account for this protective effect [56]. The study’s limitations include
the absence of a group receiving sacubitril alone since a selective neprilysin blocker with
sacubitril would increase circulating levels of both Ang II and brain natriuretic peptide
(BNP), which would then reverse the effects of the former [1].

In conclusion, our work shows that the dual inhibition therapy with LCZ696 had
protective benefits against HFD/STZ-induced diabetic nephropathy by reducing oxidative
stress and inflammation by regulating NF-κB and Bax/Bcl-2/caspase-3 signaling path-
ways. These findings support the clinical usage of LCZ696 in the future to maintain renal
functioning in T2DM.
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