Intraoperative Optical Coherence Tomography in the Management of Macular Holes: State of the Art and Future Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Future Perspectives and Technologies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Database | Number of Hits |
Medline (Ovid): | 495 |
Embase (Ovid): | 557 |
The Cochrane Library: | 0 |
Cochrane Central Register of Controlled Trials: | 79 |
Number of references before removal of duplicates: | 1131 |
Number of referencesafter removal of duplicates: | 694 |
# | Searches | Results |
1 | vitreoretinal surgery/or vitrectomy/ | 15,786 |
2 | Retina/or exp Retina/su [Surgery] | 80,721 |
3 | Retinal Perforations/ | 5654 |
4 | exp Epiretinal Membrane/ | 2661 |
5 | (((vitreoretinal or vitreo retinal or retina or macula *) adj3 (surg * or operat * or prosedure * or repair or translocation * or incision *)) or retinotom * or vitrectom * or (vitreous adj2 resection *)).ti,ab,kf. | 21,935 |
6 | ((retina * or macula *) adj3 (perforation * or hole * or tear * or break * or rupture)).ti,ab,kf. | 9177 |
7 | ((epiretinal or epimacular or preretninal) adj2 membrane *).ti,ab,kf. | 3999 |
8 | or/1–7 | 108,349 |
9 | Tomography, Optical Coherence/ | 44,221 |
10 | ((optical coherence adj3 tomograph *) or oct or ioct or sdoct).ti,ab,kf. | 64,264 |
11 | or/9–10 | 74,950 |
12 | perioperative period/or intraoperative period/ | 18,529 |
13 | (perop * or per-op * or intraop * or intra-op *).ti,ab,kf. | 181,689 |
14 | or/12–13 | 190,587 |
15 | and/8, 11, 14 | 495 |
# | Searches | Results |
1 | vitreoretinal surgery/or exp vitrectomy/or retina surgery/or radial optic neurotomy/or exp retinal detachment surgery/or retina macula translocation/or retinotomy/ | 34,383 |
2 | retina/or exp retina/su [Surgery] | 74,554 |
3 | retina tear/ | 5106 |
4 | epiretinal membrane/ | 6598 |
5 | (((vitreoretinal or vitreo retinal or retina or macula *) adj3 (surg * or operat * or prosedure * or repair or translocation * or incision *)) or retinotom * or vitrectom * or (vitreous adj2 resection *)).ti,ab,kf. | 26,967 |
6 | ((retina * or macula *) adj3 (perforation * or hole * or tear * or break * or rupture)).ti,ab,kf. | 12,012 |
7 | ((epiretinal or epimacular or preretninal) adj2 membrane *).ti,ab,kf. | 5272 |
8 | or/1–7 | 119,990 |
9 | exp optical coherence tomography/or exp optical coherence tomography device/ | 84,548 |
10 | ((optical coherence adj3 tomograph*) or oct or ioct or sdoct).ti,ab,kf. | 97,459 |
11 | or/9–10 | 118,870 |
12 | perioperative period/or intraoperative period/ | 104,295 |
13 | (perop * or per-op * or intraop * or intra-op *).ti,ab,kf. | 264,038 |
14 | or/12–13 | 329,780 |
15 | and/8, 11, 14 | 740 |
16 | limit 15 to (conference abstract or conference paper or “conference review” or editorial or letter or note) | 183 |
17 | 15 not 16 | 557 |
ID | Search | Hits |
#1 | [mh ^“vitreoretinal surgery”] OR [mh ^vitrectomy] OR [mh ^Retina] OR [mh Retina/su] OR [mh ^“Retinal Perforations”] OR [mh “Epiretinal Membrane”] | 1401 |
#2 | ((((vitreoretinal or “vitreo retinal” or retina or macula *) NEAR/3 (surg * or operat * or prosedure * or repair or translocation* or incision *)) or retinotom * or vitrectom * or (vitreous NEAR/2 resection *))):ti,ab,kw | 2586 |
#3 | ((retina * or macula *) NEAR/3 (perforation * or hole * or tear * or break * or rupture)) | 837 |
#4 | (((epiretinal or epimacular or preretninal) NEAR/2 membrane *)):ti,ab,kw | 406 |
#5 | {OR #1-#4} | 3469 |
#6 | [mh ^“Tomography, Optical Coherence”] | 1622 |
#7 | ((“optical coherence tomography” or “optical coherence tomographies” or oct or ioct or sdoct)):ti,ab,kw | 8854 |
#8 | {OR #6-#7} | 9378 |
#9 | [mh ^“perioperative period”] OR [mh ^“intraoperative period”] | 1548 |
#10 | ((perop * or per-op* or intraop * or intra-op *)):ti,ab,kw | 34,202 |
#11 | {OR #9-#10} | 34,426 |
#12 | #5 and #8 and #11 | 79 |
Appendix B
Include | Exclude | Explanation for Exclusion | |
1. Zhao et al. PUMCH experience and strategy for the management of idiopathic macular hole: a retrospective cohort study. International Ophthalmology 2022; 42: 1133–1145. | Do not use iOCT Three refractory cases of IMH (idiopathic macular holes) underwent iOCT assisted PPV + dub-retinal BSS injection, with successful closure | Another main topic | |
2. Zakir et al. The outcomes and usefulness of Intraoperative Optical Coherence Tomography in vitreoretinal surgery and its impact on surgical decision making. Romanian Journal of Ophthalmology 2022; 66: 55–60. | Vitreoretinal surgery -16 patients -pilot, prospective case series | Another main topic | |
3. Nct. Efficiency of Intraoperative Optical Coherence Tomography (iOCT). 2022. Available online: https://clinicaltrialsgov/show/NCT05232539 (accessed on 18 August 2022). | Ongoing study | Ongoing study | |
4. Muijzer et al. Clinical applications for intraoperative optical coherence tomography: a systematic review. Eye 2022; 36: 379–391. | Systematic review | Systematic review | |
5. Jiwei et al. Application value assessment of intraoperative optical coherence tomography in vitreoretinal surgery. [Chinese]. Zhonghua Shiyan Yanke Zazhi/Chinese Journal of Experimental Ophthalmology 2022; 40: 35–40. | Chinese | Another language | |
6. Benda and Studeny. Intraoperative Optical Coherence Tomography -Available Technologies and Possibilities of Use. A Review. Ceska a Slovenska Oftalmologie 2022; 2: 1001–1010. | Review | ||
7. Yee et al. iOCT-assisted macular hole surgery: outcomes and utility from the DISCOVER study. British Journal of Ophthalmology 2021; 105: 403–409. | 84 eyes | ||
8. Wylegala et al. Intraoperative OCT microscopy in 3D. Expert Review of Medical Devices 2021; 18: 221–224. | Description of IOCT use | Review | |
9. Tao et al. Feasibility and utility of intraoperative optical coherence tomography during vitreoretinal surgery: A 4-year report in Chinese population. Journal of Innovative Optical Health Sciences 2021; 14. | 339 eyes Retrospective | ||
10. Takeuchi et al. Intraoperative and Postoperative Monitoring of Autologous Neurosensory Retinal Flap Transplantation for a Refractory Macular Hole Associated with High Myopia. Retina 2021; 41: 921–930. | 5 patients High myopic refractory MH Prospective Autologous neurosensory retinal flap transplantation (ART) | Cohort < 8 | |
11. Nishitsuka et al. Intraoperative Observation of a Macular Holes Using Optical Coherence Tomography. Clinical Optometry 2021; 13: 113–118. | 10 eyes Anatomical outcomes | ||
12. Leisser et al. Effect of Iatrogenic Traction during Macular Peeling Surgery on Postoperative Microperimetry. Ophthalmic Research 2021; 64:273–279. | 25 cases Transient retinal thickening due to tractional forces during peeling documented with iOCT | Another main topic | |
13. Juergens et al. Intraoperative OCT-Real-World User Evaluation in Routine Surgery. Klinische Monatsblatter fur Augenheilkunde 2021; 238: 693–699. | Not limited to MH | Another main topic | |
14. Huang et al. Vitreomacular Traction Surgery from the DISCOVER Study: Intraoperative OCT Utility, Ellipsoid Zone Dynamics, and Outcomes. Ophthalmic Surgery, Lasers & Imaging Retina 2021; 52: 544–550. | Clinical and EZ-integrity outcomes in VMT | Another main topic | |
15. Cai et al. Pediatric Vitreoretinal Surgery and Integrated Intraoperative Optical Coherence Tomography. Developments in Ophthalmology 2021; 61: 15–25. | Description of iOCT use in paediatric vitreoretinal surgery | Review | |
16. Boral et al. A novel video overlay guided enlargement of area of ILM peeled versus inverted flap technique: A long-term study in large macular holes. European Journal of Ophthalmology 2021; 31: 3277–3283. | 127 cases of large FTMH Comparison of video overlay guided enlargement of area of ILM peeled vs. inverted flap technique | Another main topic | |
17. Tao et al. Macular hole edge morphology predicts restoration of postoperative retinal microstructure and functional outcome. BMC Ophthalmology 2020; 20: 280. | 53 MH patients Retrospective | ||
18. Singh et al. Microscope-Integrated Optical Coherence Tomography-Guided Autologous Full-Thickness Neurosensory Retinal Autograft for Large Macular Hole-Related Total Retinal Detachment. Retina 2020; 10: 10. | 2 eyes Neurosensory retinal autograft for large MH associated with retinal detachment | Cohort < 8 | |
19. Pujari et al. Intraoperative optical coherence tomography guided ocular surgeries: Critical analysis of clinical role and future perspectives. Clinical Ophthalmology 2020; 14: 2427–2440. | Review | Review | |
20. Posarelli et al. What Is the Impact of Intraoperative Microscope-Integrated OCT in Ophthalmic Surgery? Relevant Applications and Outcomes. A Systematic Review. Journal of Clinical Medicine 2020; 9: 02. | Systematic review iOCT in ophthalmic surgery | Systematic review | |
21. Lorusso et al. Feasibility and Safety of Intraoperative Optical Coherence Tomography-Guided Short-Term Posturing Prescription after Macular Hole Surgery. Ophthalmic Research 2020; 63: 18–24. | 29 patients iOCT in MH surgery retrospective Outcomes: -closure rate -BCVA -time of positioning | ||
22. Boral et al. A novel standardized reproducible method to calculate the area of internal limiting membrane peeled intra-operatively in macular hole surgery by using a video overlay-A long-term study in cases of idiopathic macular holes. Indian Journal of Ophthalmology 2020; 68: 157–161. | The study does not use iOCT. | Another main topic | |
23. Lytvynchuk et al. Dynamic intraoperative optical coherence tomography for inverted internal limiting membrane flap technique in large macular hole surgery. Graefes Archive for Clinical & Experimental Ophthalmology 2019; 257: 1649–1659. | 8 eyes Prospective Non-randomized Observational ILM-flap technique Larger macular holes | ||
24. Itoh et al. Alterations of Foveal Architecture during Vitrectomy for Myopic Retinoschisis Identified by Intraoperative Optical Coherence Tomography. Ophthalmologica 2019; 242: 87–97. | Myopic retinoschisis | Another main topic | |
25. Inoue et al. Intraoperative OCT Findings May Predict Postoperative Visual Outcome in Eyes with Idiopathic Macular Hole. Ophthalmology Retina 2019; 3: 962–970. | 33 eyes with MH Retrospective Case-control study Outcomes: -Residual fragments -postop VA | ||
26. Greven and Sanislo. Intraoperative Optical Coherence Tomography Demonstrating Macular Hole Associated With Ruptured Retinal Arterial Macroaneurysm. Ophthalmic Surgery, Lasers & Imaging Retina 2019; 50: e125-e127. | Case report | Case report | |
27. Ehlers et al. Predictive Model for Macular Hole Closure Speed: Insights From Intraoperative Optical Coherence Tomography. Translational Vision Science & Technology 2019; 8: 18. | 37 eyes with FTMH Post-hoc analysis PIONEER study | ||
28. Borrelli et al. Intraoperative optical coherence tomography in the full-thickness macular hole surgery with internal limiting membrane inverted flap placement. International Ophthalmology 2019; 39: 929–934. | 3 patients FTMH iOCT used to confirm ILM flap positioning | Cohort < 8 | |
29. Runkle et al. Factors Associated with Development of Dissociated Optic Nerve Fiber Layer Appearance in the Pioneer Intraoperative Optical Coherence Tomography Study. Retina 2018; 38: S103-S109. | 95 eyes Post hoc PIONEER Dissociated optic-nerve-fiber layer (DONFL) and intraoperative membrane-peeling dynamics | ||
30. Leisser et al. Diagnostic precision of a microscope-integrated intraoperative OCT device in patients with epiretinal membranes. European Journal of Ophthalmology 2018; 28: 329–332. | 41 eyes ERM, LMH, VMT | Another main topic | |
31. Kumar and Yadav. HOLE-DOOR SIGN: A Novel Intraoperative Optical Coherence Tomography Feature Predicting Macular Hole Closure. Retina 2018; 38: 2045–2050. | 25 patients with MH Outcomes -BCVA -preop hole diameter -type of hole closure Hole-door sign | ||
32. Kumar and Yadav. A novel intraoperative optical coherence tomography feature predicting macular hole closure. Retina 2018; 38: 2045–2050. | Duplicate | ||
33. Gonzalez-Cortes et al. Anatomical Changes of Full-Thickness Macular Hole Documented by Microscope-Integrated Spectral-Domain Optical Coherence Tomography. Ophthalmic Surgery, Lasers & Imaging Retina 2018; 49: e105–e111. | 5 eyes with FTHM | Cohort < 8 | |
34. Ehlers et al. THE INTEGRATIVE SURGICAL THEATER: Combining Intraoperative Optical Coherence Tomography and 3D Digital Visualization for Vitreoretinal Surgery in the DISCOVER Study. Retina 2018; 38: S88–S96. | 7 eyes, which of 2 MH | Cohort < 8 | |
35. Comparison of retinal architectural changes using intraoperative optical coherence tomography in macular hole surgery- a prospective randomized trial. 2018. Available online: https://trialsearchwhoint/Trial2aspx?TrialID=CTRI/2018/05/014219 (accessed on 18 August 2022). | Undergoing prospective randomized trial | Protocol | |
36. Bruyere et al. Benefit of Intraoperative Optical Coherence Tomography for Vitreomacular Surgery in Highly Myopic Eyes. Retina 2018; 38: 2035–2044. | Highly myopic eyes 22 eyes (10 MH) | ||
37. Uchida et al. Analysis of Retinal Architectural Changes Using Intraoperative OCT Following Surgical Manipulations With Membrane Flex Loop in the DISCOVER Study. Investigative Ophthalmology & Visual Science 2017; 58: 3440–3444. | 34 eyes (21 FTMH) DISCOVER Acute retinal alternations after ILM peeling with membrane flex loop | ||
38. Sawaguchi et al. Macular Hole Formation Identified with Intraoperative Oct during Vitrectomy for Vitreomacular Traction Syndrome. RETINAL Cases & Brief Reports 2017; 11: 380–382. | Case report | Case report | |
39. Runkle et al. Microscope-Integrated OCT Feasibility and Utility With the EnFocus System in the DISCOVER Study. Ophthalmic Surgery, Lasers & Imaging Retina 2017; 48: 216–222. | 50 eyes (6 FTMH) EnFocus prototype iOCT | Another main topic | |
40. Read and Fortun. Visualization of the retina and vitreous during vitreoretinal surgery: new technologies. Current Opinion in Ophthalmology 2017; 28: 238–241. | Review | Review | |
41. Ravani et al. Intravitreal cysticercosis with full thickness macular hole: management outcome and intraoperative optical coherence tomography features. BMJ Case Reports 2017; 21: 21. | Case report | Case report | |
42. Kumar et al. Utility of microscope-integrated optical coherence tomography (MIOCT) in the treatment of myopic macular hole retinal detachment. BMJ Case Reports 2017; 14: 14. | Case report | Case report | |
43. Jenkins et al. Intraoperative Optical Coherence Tomography of Internal Limiting Membrane Flap. Ophthalmology 2017; 124: 1456. | Photo essay Case report | Case report | |
44. Viehland et al. Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT. Biomedical Optics Express 2016; 7: 1815–1829. | Description | Review | |
45. Moisseiev and Yiu. Role of Tractional Forces and Internal Limiting Membrane in Macular Hole Formation: Insights from Intraoperative Optical Coherence Tomography. Case Reports in Ophthalmology 2016; 7: 372–376. | Case report | Case report | |
46. Khan and Ehlers. Clinical utility of intraoperative optical coherence tomography. Current Opinion in Ophthalmology 2016; 27: 201–209. | Review | Review | |
47. He and Sodhi. Intraoperative optical coherence tomography demonstrates immediate closure of a traumatic macular hole. Canadian Journal of Ophthalmology 2016; 51: e79–e81. | Case report | Case report | |
48. Branchini et al. Use of Handheld Intraoperative Spectral-Domain Optical Coherence Tomography in a Variety of Vitreoretinal Diseases. Ophthalmic Surgery, Lasers & Imaging Retina 2016; 47: 49–54. | 5 cases | Cohort < 8 | |
49. Riazi-Esfahani et al. Macular Surgery Using Intraoperative Spectral Domain Optical Coherence Tomography. Journal of Ophthalmic & Vision Research 2015; 10: 309–315. | 16 patients with MH Qualitative finding Quantitative measures | ||
50. Kunikata and Nakazawa. Intraoperative Optical Coherence Tomography-Assisted 27-Gauge Vitrectomy in Eyes with Vitreoretinal Diseases. Case Reports in Ophthalmology 2015; 6: 216–222. | 6 patients with retinal disease | Cohort < 8 | |
51. Hahn et al. Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device. Translational Vision Science & Technology 2015; 4: 1. | 10 cases (2 FTMH) | Another main topic | |
52. Falkner-Radler et al. Intrasurgical Microscope-Integrated Spectral Domain Optical Coherence Tomography-Assisted Membrane Peeling. Retina 2015; 35: 2100–2106. | 70 patients (8 LMH, 8 FTMH) Prospective study | ||
53. Jprn. Intraoperative evaluation of the retina and intraocular tissue in the treatment of vitreoretinal surgery. 2014. Available online: https://trialsearchwhoint/Trial2aspx?TrialID=JPRN-UMIN000012822 (accessed on 18 August 2022). | Ongoing study | Protocol | |
54. Ehlers et al. Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography. Retina 2014; 34: 213–221. | 19 eyes with MH Retrospective Outcomes -MH volume -minimum diameter -base area -hole hight No functional analysis | ||
55. Ehlers et al. The value of intraoperative optical coherence tomography imaging in vitreoretinal surgery. Current Opinion in Ophthalmology 2014; 25: 221–227. | Review | Review | |
56. Ehlers et al. Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome. Retina 2014; 34: 1341–1346. | VMT surgery | Another main topic | |
57. Ehlers et al. Factors associated with persistent subfoveal fluid and complete macular hole closure in the PIONEER study. Investigative Ophthalmology & Visual Science 2014; 56: 1141–1146. | PIONEER study36 patients with surgically closed MH Outcomes -MH area + volume -EZ-RPE height -subretinal hyperreflectivity -postop subfoveal fluid | ||
58. Hahn et al. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device. Retina 2013; 33: 1328–1337. | Report of the translation of iOCT from preclinical testing into human imaging | Review | |
59. Pichi et al. Intraoperative SD-OCT in macular surgery. Ophthalmic Surgery, Lasers & Imaging 2012; 43: S54–S60. | 5 eyes | Cohort < 8 | |
60. Ray et al. Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery. Ophthalmology 2011; 118: 2212–2217. | 25 eyes (MH 11/ERM) Retrospective | ||
61. Hayashi et al. Intraoperative changes in idiopathic macular holes by spectral-domain optical coherence tomography. Case Reports in Ophthalmology 2011; 2: 149–154. | 5 eyes | Cohort < 8 | |
62. Ehlers et al. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Investigative Ophthalmology & Visual Science 2011; 52: 3153–3159. | Not specific to MH, general retinal surgery | Another main topic | |
63. Binder et al. Feasibility of intrasurgical spectral-domain optical coherence tomography. Retina 2011; 31: 1332–1336. | 4 MH | Cohort < 8 | |
64. Wykoff et al. Intraoperative OCT of a full-thickness macular hole before and after internal limiting membrane peeling. Ophthalmic Surgery, Lasers & Imaging 2010; 41: 7–11. | Case report | Case report | |
65. Dayani et al. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery. Retina 2009; 29: 1457–1468. | Only 4 eyes with MH 8 patients (4 MH, 3 ERM, 1 VMT) Prospective, observational case series | Another main topic |
References
- Jackson, T.L.; Donachie, P.H.J.; Sparrow, J.M.; Johnston, R.L. United Kingdom National Ophthalmology Database Study of Vitreoretinal Surgery: Report 1; Case Mix, Complications, and Cataract. Eye Lond. Engl. 2013, 27, 644–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wubben, T.J.; Talwar, N.; Blachley, T.S.; Gardner, T.W.; Johnson, M.W.; Lee, P.P.; Stein, J.D. Rates of Vitrectomy among Enrollees in a United States Managed Care Network, 2001–2012. Ophthalmology 2016, 123, 590–598. [Google Scholar] [CrossRef]
- Omari, A.; Mahmoud, T.H. Vitrectomy; StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Mohamed, S.; Claes, C.; Tsang, C.W. Review of Small Gauge Vitrectomy: Progress and Innovations. J. Ophthalmol. 2017, 2017, 6285869. [Google Scholar] [CrossRef]
- Talcott, K.E.; Ehlers, J.P. Intraoperative OCT. In Albert and Jakobiec’s Principles and Practice of Ophthalmology; Albert, D.M., Miller, J.W., Azar, D.T., Young, L.H., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 2753–2766. ISBN 978-3-030-42634-7. [Google Scholar]
- Ehlers, J.P. Intraoperative Optical Coherence Tomography: Past, Present, and Future. Eye 2016, 30, 193–201. [Google Scholar] [CrossRef]
- Posarelli, C.; Sartini, F.; Casini, G.; Passani, A.; Toro, M.D.; Vella, G.; Figus, M. What Is the Impact of Intraoperative Microscope-Integrated OCT in Ophthalmic Surgery? Relevant Applications and Outcomes. A Systematic Review. J. Clin. Med. 2020, 9, 1682. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Ehlers, J.P. Clinical Utility of Intraoperative Optical Coherence Tomography. Curr. Opin. Ophthalmol. 2016, 27, 201–209. [Google Scholar] [CrossRef] [PubMed]
- McCannel, C.A.; Ensminger, J.L.; Diehl, N.N.; Hodge, D.N. Population-Based Incidence of Macular Holes. Ophthalmology 2009, 116, 1366–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duker, J.S.; Kaiser, P.K.; Binder, S.; de Smet, M.D.; Gaudric, A.; Reichel, E.; Sadda, S.R.; Sebag, J.; Spaide, R.F.; Stalmans, P. The International Vitreomacular Traction Study Group Classification of Vitreomacular Adhesion, Traction, and Macular Hole. Ophthalmology 2013, 120, 2611–2619. [Google Scholar] [CrossRef]
- Lytvynchuk, L.; Glittenberg, C.; Binder, S. Intraoperative Spectral Domain Optical Coherence Tomography: Technology, Applications, and Future Perspectives. In Spectral Domain Optical Coherence Tomography in Macular Diseases; Meyer, C.H., Saxena, S., Sadda, S.R., Eds.; Springer India: New Delhi, India, 2017; pp. 423–443. ISBN 978-81-322-3610-8. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howick, J.; Glasziou, P.; Aronson, J.K. Evidence-Based Mechanistic Reasoning. J. R. Soc. Med. 2010, 103, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; deBeer, H.; et al. GRADE Guidelines: 1. Introduction—GRADE Evidence Profiles and Summary of Findings Tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Yee, P.; Sevgi, D.D.; Abraham, J.; Srivastava, S.K.; Le, T.; Uchida, A.; Figueiredo, N.; Rachitskaya, A.V.; Sharma, S.; Reese, J.; et al. IOCT-Assisted Macular Hole Surgery: Outcomes and Utility from the DISCOVER Study. Br. J. Ophthalmol. 2021, 105, 403–409. [Google Scholar] [CrossRef]
- Tao, J.; Chen, H.; Yu, J.; Cheng, D.; Chen, Y.; Mao, J.; Fang, J.; Shen, L. Feasibility and Utility of Intraoperative Optical Coherence Tomography during Vitreoretinal Surgery: A 4-Year Report in Chinese Population. J. Innov. Opt. Health Sci. 2021, 14, 2140004. [Google Scholar] [CrossRef]
- Nishitsuka, K.; Nishi, K.; Namba, H.; Kaneko, Y.; Yamashita, H. Intraoperative Observation of a Macular Holes Using Optical Coherence Tomography. Clin. Optom. 2021, 13, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Chen, H.; Zhu, L.; Pan, D.; Fang, J.; Chen, Y.; Mao, J.; Shen, L. Macular Hole Edge Morphology Predicts Restoration of Postoperative Retinal Microstructure and Functional Outcome. BMC Ophthalmol. 2020, 20, 280. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, M.; Micelli Ferrari, L.; Cicinelli, M.V.; Nikolopoulou, E.; Zito, R.; Bandello, F.; Querques, G.; Micelli Ferrari, T. Feasibility and Safety of Intraoperative Optical Coherence Tomography-Guided Short-Term Posturing Prescription after Macular Hole Surgery. Ophthalmic Res. 2020, 63, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Lytvynchuk, L.M.; Falkner-Radler, C.I.; Krepler, K.; Glittenberg, C.G.; Ahmed, D.; Petrovski, G.; Lorenz, B.; Ansari-Shahrezaei, S.; Binder, S. Dynamic Intraoperative Optical Coherence Tomography for Inverted Internal Limiting Membrane Flap Technique in Large Macular Hole Surgery. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 1649–1659. [Google Scholar] [CrossRef]
- Inoue, M.; Itoh, Y.; Koto, T.; Kurimori, H.Y.; Hirakata, A. Intraoperative OCT Findings May Predict Postoperative Visual Outcome in Eyes with Idiopathic Macular Hole. Ophthalmol. Retin. 2019, 3, 962–970. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Uchida, A.; Srivastava, S.K.; Hu, M. Predictive Model for Macular Hole Closure Speed: Insights From Intraoperative Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2019, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Runkle, A.P.; Srivastava, S.K.; Yuan, A.; Kaiser, P.K.; Singh, R.P.; Reese, J.L.; Ehlers, J.P. Factors associated with development of dissociated optic nerve fiber layer appearance in the pioneer intraoperative optical coherence tomography study. RETINA 2018, 38, S103. [Google Scholar] [CrossRef]
- Kumar, V.; Yadav, B. HOLE-DOOR SIGN: A Novel Intraoperative Optical Coherence Tomography Feature Predicting Macular Hole Closure. RETINA 2018, 38, 2045–2050. [Google Scholar] [CrossRef]
- Bruyère, E.; Philippakis, E.; Dupas, B.; Nguyen-Kim, P.; Tadayoni, R.; Couturier, A. Benefit of intraoperative optical coherence tomography for vitreomacular surgery in highly myopic eyes. RETINA 2018, 38, 2035–2044. [Google Scholar] [CrossRef]
- Uchida, A.; Srivastava, S.K.; Ehlers, J.P. Analysis of Retinal Architectural Changes Using Intraoperative OCT Following Surgical Manipulations With Membrane Flex Loop in the DISCOVER Study. Investig. Ophthalmol. Vis. Sci. 2017, 58, 3440–3444. [Google Scholar] [CrossRef] [Green Version]
- Riazi-Esfahani, M.; Khademi, M.R.; Mazloumi, M.; Khodabandeh, A.; Riazi-Esfahani, H. Macular Surgery Using Intraoperative Spectral Domain Optical Coherence Tomography. J. Ophthalmic Vis. Res. 2015, 10, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Falkner-Radler, C.I.; Glittenberg, C.; Gabriel, M.; Binder, S. Intrasurgical microscope-integrated spectral domain optical coherence tomography–assisted membrane peeling. RETINA 2015, 35, 2100–2106. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; Itoh, Y.; Xu, L.T.; Kaiser, P.K.; Singh, R.P.; Srivastava, S.K. Factors Associated with Persistent Subfoveal Fluid and Complete Macular Hole Closure in the PIONEER Study. Investig. Ophthalmol. Vis. Sci. 2014, 56, 1141–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehlers, J.P.; Xu, D.; Kaiser, P.K.; Singh, R.P.; Srivastava, S.K. Intrasurgical dynamics of macular hole surgery: An Assessment of Surgery-Induced Ultrastructural Alterations with Intraoperative Optical Coherence Tomography. RETINA 2014, 34, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Ray, R.; Barañano, D.E.; Fortun, J.A.; Schwent, B.J.; Cribbs, B.E.; Bergstrom, C.S.; Hubbard, G.B.; Srivastava, S.K. Intraoperative Microscope-Mounted Spectral Domain Optical Coherence Tomography for Evaluation of Retinal Anatomy during Macular Surgery. Ophthalmology 2011, 118, 2212–2217. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.P.; Goshe, J.; Dupps, W.J.; Kaiser, P.K.; Singh, R.P.; Gans, R.; Eisengart, J.; Srivastava, S.K. Determination of Feasibility and Utility of Microscope-Integrated Optical Coherence Tomography during Ophthalmic Surgery: The DISCOVER Study RESCAN Results. JAMA Ophthalmol. 2015, 133, 1124–1132. [Google Scholar] [CrossRef]
- Ehlers, J.P.; Dupps, W.J.; Kaiser, P.K.; Goshe, J.; Singh, R.P.; Petkovsek, D.; Srivastava, S.K. The Prospective Intraoperative and Perioperative Ophthalmic ImagiNg With Optical CoherEncE TomogRaphy (PIONEER) Study: 2-Year Results. Am. J. Ophthalmol. 2014, 158, 999–1007.e1. [Google Scholar] [CrossRef]
- Muijzer, M.B.; Schellekens, P.A.W.J.; Beckers, H.J.M.; de Boer, J.H.; Imhof, S.M.; Wisse, R.P.L. Clinical Applications for Intraoperative Optical Coherence Tomography: A Systematic Review. Eye 2022, 36, 379–391. [Google Scholar] [CrossRef]
- Ung, C.; Miller, J.B. Intraoperative Optical Coherence Tomography in Vitreoretinal Surgery. Semin. Ophthalmol. 2019, 34, 312–316. [Google Scholar] [CrossRef]
- Pujari, A.; Agarwal, D.; Chawla, R.; Kumar, A.; Sharma, N. Intraoperative Optical Coherence Tomography Guided Ocular Surgeries: Critical Analysis of Clinical Role and Future Perspectives. Clin. Ophthalmol. Auckl. NZ 2020, 14, 2427–2440. [Google Scholar] [CrossRef]
- Wu, A.-L.; Liu, Y.-T.; Chou, H.-D.; Chuang, L.-H.; Chen, K.-J.; Chen, Y.-P.; Liu, L.; Yeung, L.; Wang, N.-K.; Hwang, Y.-S.; et al. Role of Growth Factors and Internal Limiting Membrane Constituents in Müller Cell Migration. Exp. Eye Res. 2021, 202, 108352. [Google Scholar] [CrossRef] [PubMed]
- Nadal, J.; Delas, B.; Piñero, A. Vitrectomy without Face-down Posturing for Idiopathic Macular Holes. RETINA 2012, 32, 918–921. [Google Scholar] [CrossRef]
- Pasu, S.; Bell, L.; Zenasni, Z.; Lanz, D.; Simmonds, I.A.; Thompson, A.; Yorston, D.; Laidlaw, D.A.H.; Bunce, C.; Hooper, R.; et al. Facedown Positioning Following Surgery for Large Full-Thickness Macular Hole: A Multicenter Randomized Clinical Trial. JAMA Ophthalmol. 2020, 138, 725–730. [Google Scholar] [CrossRef]
- Ch’ng, S.W.; Patton, N.; Ahmed, M.; Ivanova, T.; Baumann, C.; Charles, S.; Jalil, A. The Manchester Large Macular Hole Study: Is It Time to Reclassify Large Macular Holes? Am. J. Ophthalmol. 2018, 195, 36–42. [Google Scholar] [CrossRef]
- Yamada, K.; Oishi, A.; Kusano, M.; Kinoshita, H.; Tsuiki, E.; Kitaoka, T. Effect of Inverted Internal Limiting Membrane Flap Technique on Small-Medium Size Macular Holes. Sci. Rep. 2022, 12, 731. [Google Scholar] [CrossRef]
- Albabtain, B.; Mura, M.; Schatz, P.; Alsulaiman, S.M.; Alsakran, W.A.; Semidey, V.A. Comparison of Posterior Hyaloid Assessment Using Preoperative Optical Coherence Tomography and Intraoperative Triamcinolone Acetonide Staining During Vitrectomy. Clin. Ophthalmol. Auckl. NZ 2021, 15, 3939–3945. [Google Scholar] [CrossRef]
- Ip, M.S.; Baker, B.J.; Duker, J.S.; Reichel, E.; Baumal, C.R.; Gangnon, R.; Puliafito, C.A. Anatomical Outcomes of Surgery for Idiopathic Macular Hole as Determined by Optical Coherence Tomography. Arch. Ophthalmol. Chic. Ill 1960 2002, 120, 29–35. [Google Scholar] [CrossRef]
- Ullrich, S.; Haritoglou, C.; Gass, C.; Schaumberger, M.; Ulbig, M.W.; Kampik, A. Macular Hole Size as a Prognostic Factor in Macular Hole Surgery. Br. J. Ophthalmol. 2002, 86, 390–393. [Google Scholar] [CrossRef]
- Wakely, L.; Rahman, R.; Stephenson, J. A Comparison of Several Methods of Macular Hole Measurement Using Optical Coherence Tomography, and Their Value in Predicting Anatomical and Visual Outcomes. Br. J. Ophthalmol. 2012, 96, 1003–1007. [Google Scholar] [CrossRef]
- Andrew, N.; Chan, W.O.; Tan, M.; Ebneter, A.; Gilhotra, J.S. Modification of the Inverted Internal Limiting Membrane Flap Technique for the Treatment of Chronic and Large Macular Holes. RETINA 2016, 36, 834–837. [Google Scholar] [CrossRef]
- Maier, M.; Bohnacker, S.; Klein, J.; Klaas, J.; Feucht, N.; Nasseri, A.; Lohmann, C.P. [Vitrectomy and iOCT-assisted inverted ILM flap technique in patients with full thickness macular holes]. Ophthalmol. Z. Dtsch. Ophthalmol. Ges. 2019, 116, 617–624. [Google Scholar] [CrossRef]
- Carrasco-Zevallos, O.M.; Viehland, C.; Keller, B.; Draelos, M.; Kuo, A.N.; Toth, C.A.; Izatt, J.A. Review of Intraoperative Optical Coherence Tomography: Technology and Applications [Invited]. Biomed. Opt. Express 2017, 8, 1607–1637. [Google Scholar] [CrossRef] [Green Version]
- Mura, M.; Barca, F. Intraocular Optical Coherence Tomography. Dev. Ophthalmol. 2014, 54, 147–149. [Google Scholar] [CrossRef]
- Steel, D.H.W.; Chen, Y.; Latimer, J.; White, K.; Avery, P.J. Does Internal Limiting Membrane Peeling Size Matter? J. Vitreoretin. Dis. 2017, 1, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Jin, S.; Shi, L.; Qin, H.; Zhao, J. Factors Associated with Anatomic Failure and Hole Reopening after Macular Hole Surgery. J. Ophthalmol. 2021, 2021, 7861180. [Google Scholar] [CrossRef] [PubMed]
Author (et al.) | Year | Study Design | Study Sample (Eyes) | Type of Surgery | iOCT Specifications | Grade 1 | Level 2 |
---|---|---|---|---|---|---|---|
Yee [15] | 2021 | Post hoc | 84 | PPV ILM peeling | Rescan 700/ EnFocus | Moderate | 3 |
Tao [16] | 2021 | Retrospective | 339 | PPV ILM peeling | Adoptivue iOCT | Low | 4 |
Nisihitsuka [17] | 2021 | Retrospective | 10 | PPV ILM peeling | Rescan 700 | Very low | 4 |
Tao [18] | 2020 | Retrospective | 53 | PPV ILM peeling | Adoptivue iOCT | Low | 4 |
Lorusso [19] | 2020 | Retrospective | 29 | PPV ILM peeling | Rescan 700 | Low | 4 |
Lytvynchuk [20] | 2019 | Prospective, non-randomized, observational | 8 | PPV ILM peeling/ flap technique | Rescan 700/ EnFocus UltraHD | Very low | 4 |
Inoue [21] | 2019 | Retrospective, case-control | 33 | PPV ILM peeling | Rescan 700 | Low | 4 |
Ehlers [22] | 2019 | Post hoc | 37 | PPV ILM peeling | Bioptigen SDOIS | Low | 4 |
Runkle [23] | 2018 | Post hoc | 95 | PPV ILM peeling | Bioptigen Envisu | Moderate | 4 |
Kumar [24] | 2018 | Retrospective, interventional | 25 | PPV ILM peeling | Rescan 700 | Low | 4 |
Bruyere [25] | 2018 | Retrospective, observational | 22 | PPV ILM peeling | Rescan 700, integrated HD OCT | Low | 4 |
Uchida [26] | 2017 | Post hoc | 34 | PPV ILM peeling/flap technique | Rescan 700, Lumera 700 | Low | 4 |
Razi-Esfahani [27] | 2015 | Case series | 32 | PPV ILM peeling | iVue hand-held SD-OCT | Low | 4 |
Falkner-Radler [28] | 2015 | Prospective, interventional | 70 | PPVILM peeling | Carl Zeiss Meditec/Cirrus | Moderate | 4 |
Ehlers [29] | 2014 | Retrospective | 21 | PPV ILM peeling | Bioptigen SDOIS | Low | 4 |
Ehlers [30] | 2014 | Prospective | 37 | PPV ILM peeling | Bioptigen SDOIS | Low | 4 |
Ray [31] | 2011 | Retrospective | 25 eyes (13 MH) | PPV ILM peeling | Bioptigen | Low | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Confalonieri, F.; Haave, H.; Bragadottir, R.; Stene-Johansen, I.; Lumi, X.; Lytvynchuk, L.; Petrovski, G. Intraoperative Optical Coherence Tomography in the Management of Macular Holes: State of the Art and Future Perspectives. Biomedicines 2022, 10, 2873. https://doi.org/10.3390/biomedicines10112873
Confalonieri F, Haave H, Bragadottir R, Stene-Johansen I, Lumi X, Lytvynchuk L, Petrovski G. Intraoperative Optical Coherence Tomography in the Management of Macular Holes: State of the Art and Future Perspectives. Biomedicines. 2022; 10(11):2873. https://doi.org/10.3390/biomedicines10112873
Chicago/Turabian StyleConfalonieri, Filippo, Hanna Haave, Ragnheidur Bragadottir, Ingar Stene-Johansen, Xhevat Lumi, Lyubomyr Lytvynchuk, and Goran Petrovski. 2022. "Intraoperative Optical Coherence Tomography in the Management of Macular Holes: State of the Art and Future Perspectives" Biomedicines 10, no. 11: 2873. https://doi.org/10.3390/biomedicines10112873
APA StyleConfalonieri, F., Haave, H., Bragadottir, R., Stene-Johansen, I., Lumi, X., Lytvynchuk, L., & Petrovski, G. (2022). Intraoperative Optical Coherence Tomography in the Management of Macular Holes: State of the Art and Future Perspectives. Biomedicines, 10(11), 2873. https://doi.org/10.3390/biomedicines10112873