The TRACK-MS Test Battery: A Very Brief Tool to Track Multiple Sclerosis-Related Cognitive Impairment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Procedures
2.3. Statistical Analyses
3. Results
4. Discussion
5. Limitations and Future Perspectives
6. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DeLuca, G.C.; Yates, R.L.; Beale, H.; Morrow, S.A. Cognitive impairment in multiple sclerosis: Clinical, radiologic and pathologic insights. Brain Pathol. 2015, 25, 79–98. [Google Scholar] [CrossRef] [PubMed]
- McNicholas, N.; O’Connell, K.; Yap, S.M.; Killeen, R.P.; Hutchinson, M.; McGuigan, C. Cognitive dysfunction in early multiple sclerosis: A review. QJM Mon. J. Assoc. Physicians 2018, 111, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Oreja-Guevara, C.; Ayuso Blanco, T.; Brieva Ruiz, L.; Hernandez Perez, M.A.; Meca-Lallana, V.; Ramio-Torrenta, L. Cognitive Dysfunctions and Assessments in Multiple Sclerosis. Front. Neurol. 2019, 10, 581. [Google Scholar] [CrossRef] [PubMed]
- First, M.B. Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility. J. Nerv. Ment. Dis. 2013, 201, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, B.K. Disorders of cognition. Semin. Neurol. 2011, 31, 18–28. [Google Scholar] [CrossRef]
- Battaglia, S.; Cardellicchio, P.; Di Fazio, C.; Nazzi, C.; Fracasso, A.; Borgomaneri, S. The Influence of Vicarious Fear-Learning in “Infecting” Reactive Action Inhibition. Front. Behav. Neurosci. 2022, 16, 946263. [Google Scholar] [CrossRef]
- Battaglia, S.; Cardellicchio, P.; Di Fazio, C.; Nazzi, C.; Fracasso, A.; Borgomaneri, S. Stopping in (e)motion: Reactive action inhibition when facing valence-independent emotional stimuli. Front. Behav. Neurosci. 2022, 16, 998714. [Google Scholar] [CrossRef]
- Tanaka, M.; Toth, F.; Polyak, H.; Szabo, A.; Mandi, Y.; Vecsei, L. Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines 2021, 9, 734. [Google Scholar] [CrossRef]
- Tanaka, M.; Vecsei, L. Editorial of Special Issue “Crosstalk between Depression, Anxiety, and Dementia: Comorbidity in Behavioral Neurology and Neuropsychiatry”. Biomedicines 2021, 9, 517. [Google Scholar] [CrossRef]
- Rao, S.M.; Leo, G.J.; Bernardin, L.; Unverzagt, F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 1991, 41, 685–691. [Google Scholar] [CrossRef]
- Benedict, R.H.; Cookfair, D.; Gavett, R.; Gunther, M.; Munschauer, F.; Garg, N.; Weinstock-Guttman, B. Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). J. Int. Neuropsychol. Soc. JINS 2006, 12, 549–558. [Google Scholar] [CrossRef]
- Chiaravalloti, N.D.; DeLuca, J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008, 7, 1139–1151. [Google Scholar] [CrossRef]
- Dulau, C.; Deloire, M.; Diaz, H.; Saubusse, A.; Charre-Morin, J.; Prouteau, A.; Brochet, B. Social cognition according to cognitive impairment in different clinical phenotypes of multiple sclerosis. J. Neurol. 2017, 264, 740–748. [Google Scholar] [CrossRef]
- Cotter, J.; Vithanage, N.; Colville, S.; Lyle, D.; Cranley, D.; Cormack, F.; Barnett, J.H.; Murray, K.; Pal, S. Investigating Domain-Specific Cognitive Impairment Among Patients With Multiple Sclerosis Using Touchscreen Cognitive Testing in Routine Clinical Care. Front. Neurol. 2018, 9, 331. [Google Scholar] [CrossRef] [Green Version]
- Ciampi, E.; Uribe-San-Martin, R.; Vasquez, M.; Ruiz-Tagle, A.; Labbe, T.; Cruz, J.P.; Lillo, P.; Slachevsky, A.; Reyes, D.; Reyes, A.; et al. Relationship between Social Cognition and traditional cognitive impairment in Progressive Multiple Sclerosis and possible implicated neuroanatomical regions. Mult. Scler. Relat. Disord. 2018, 20, 122–128. [Google Scholar] [CrossRef]
- Ntoskou, K.; Messinis, L.; Nasios, G.; Martzoukou, M.; Makris, G.; Panagiotopoulos, E.; Papathanasopoulos, P. Cognitive and Language Deficits in Multiple Sclerosis: Comparison of Relapsing Remitting and Secondary Progressive Subtypes. Open Neurol. J. 2018, 12, 19–30. [Google Scholar] [CrossRef]
- Macias Islas, M.A.; Ciampi, E. Assessment and Impact of Cognitive Impairment in Multiple Sclerosis: An Overview. Biomedicines 2019, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Brochet, B.; Ruet, A. Cognitive Impairment in Multiple Sclerosis With Regards to Disease Duration and Clinical Phenotypes. Front. Neurol. 2019, 10, 261. [Google Scholar] [CrossRef] [Green Version]
- Greim, B.; Zettl, U.K. Neuropsychological disorders in multiple sclerosis. Fortschr. Der Neurol.-Psychiatr. 2009, 77 (Suppl. 1), S28–S31. [Google Scholar] [CrossRef]
- Amato, M.P.; Zipoli, V.; Portaccio, E. Multiple sclerosis-related cognitive changes: A review of cross-sectional and longitudinal studies. J. Neurol. Sci. 2006, 245, 41–46. [Google Scholar] [CrossRef]
- Brochet, B.; Clavelou, P.; Defer, G.; De Seze, J.; Louapre, C.; Magnin, E.; Ruet, A.; Thomas-Anterion, C.; Vermersch, P. Cognitive Impairment in Secondary Progressive Multiple Sclerosis: Effect of Disease Duration, Age, and Progressive Phenotype. Brain Sci. 2022, 12, 183. [Google Scholar] [CrossRef] [PubMed]
- Ruano, L.; Portaccio, E.; Goretti, B.; Niccolai, C.; Severo, M.; Patti, F.; Cilia, S.; Gallo, P.; Grossi, P.; Ghezzi, A.; et al. Age and disability drive cognitive impairment in multiple sclerosis across disease subtypes. Mult. Scler. 2017, 23, 1258–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortese, M.; Riise, T.; Bjornevik, K.; Bhan, A.; Farbu, E.; Grytten, N.; Hogenesch, I.; Midgard, R.; Smith Simonsen, C.; Telstad, W.; et al. Preclinical disease activity in multiple sclerosis: A prospective study of cognitive performance prior to first symptom. Ann. Neurol. 2016, 80, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Arnett, P.A.; Strober, L.B. Cognitive and neurobehavioral features in multiple sclerosis. Expert Rev. Neurother. 2011, 11, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Goverover, Y.; Chiaravalloti, N.; DeLuca, J. The influence of executive functions and memory on self-generation benefit in persons with multiple sclerosis. J. Clin. Exp. Neuropsychol. 2013, 35, 775–783. [Google Scholar] [CrossRef]
- Kalmar, J.H.; Gaudino, E.A.; Moore, N.B.; Halper, J.; Deluca, J. The relationship between cognitive deficits and everyday functional activities in multiple sclerosis. Neuropsychology 2008, 22, 442–449. [Google Scholar] [CrossRef]
- Kavaliunas, A.; Tinghog, P.; Friberg, E.; Olsson, T.; Alexanderson, K.; Hillert, J.; Karrenbauer, V.D. Cognitive function predicts work disability among multiple sclerosis patients. Mult. Scler. J.–Exp. Transl. Clin. 2019, 5, 2055217318822134. [Google Scholar] [CrossRef] [Green Version]
- Morrow, S.A.; Drake, A.; Zivadinov, R.; Munschauer, F.; Weinstock-Guttman, B.; Benedict, R.H. Predicting loss of employment over three years in multiple sclerosis: Clinically meaningful cognitive decline. Clin. Neuropsychol. 2010, 24, 1131–1145. [Google Scholar] [CrossRef]
- van Gorp, D.A.M.; van der Hiele, K.; Heerings, M.A.P.; Jongen, P.J.; van der Klink, J.J.L.; Reneman, M.F.; Arnoldus, E.P.J.; Beenakker, E.A.C.; van Eijk, J.J.J.; Frequin, S.; et al. Cognitive functioning as a predictor of employment status in relapsing-remitting multiple sclerosis: A 2-year longitudinal study. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2019, 40, 2555–2564. [Google Scholar] [CrossRef] [Green Version]
- Menascu, S.; Stern, M.; Aloni, R.; Kalron, A.; Magalshvili, D.; Achiron, A. Assessing cognitive performance in radiologically isolated syndrome. Mult. Scler. Relat. Disord. 2019, 32, 70–73. [Google Scholar] [CrossRef]
- Rosca, E.C.; Simu, M. Montreal cognitive assessment for evaluating cognitive impairment in multiple sclerosis: A systematic review. Acta Neurol. Belg. 2020, 120, 1307–1321. [Google Scholar] [CrossRef]
- Reuter, F.; Zaaraoui, W.; Crespy, L.; Faivre, A.; Rico, A.; Malikova, I.; Soulier, E.; Viout, P.; Ranjeva, J.P.; Pelletier, J.; et al. Frequency of cognitive impairment dramatically increases during the first 5 years of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2011, 82, 1157–1159. [Google Scholar] [CrossRef]
- Goretti, B.; Portaccio, E.; Zipoli, V.; Hakiki, B.; Siracusa, G.; Sorbi, S.; Amato, M.P. Coping strategies, psychological variables and their relationship with quality of life in multiple sclerosis. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2009, 30, 15–20. [Google Scholar] [CrossRef]
- Cerqueira, J.J.; Compston, D.A.S.; Geraldes, R.; Rosa, M.M.; Schmierer, K.; Thompson, A.; Tinelli, M.; Palace, J. Time matters in multiple sclerosis: Can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis? J. Neurol. Neurosurg. Psychiatry 2018, 89, 844–850. [Google Scholar] [CrossRef]
- Ross, A.P.; Halper, J.; Harris, C.J. Assessing relapses and response to relapse treatment in patients with multiple sclerosis: A nursing perspective. Int. J. MS Care 2012, 14, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Benedict, R.H.; Morrow, S.; Rodgers, J.; Hojnacki, D.; Bucello, M.A.; Zivadinov, R.; Weinstock-Guttman, B. Characterizing cognitive function during relapse in multiple sclerosis. Mult. Scler. 2014, 20, 1745–1752. [Google Scholar] [CrossRef]
- Sumowski, J.F.; Benedict, R.; Enzinger, C.; Filippi, M.; Geurts, J.J.; Hamalainen, P.; Hulst, H.; Inglese, M.; Leavitt, V.M.; Rocca, M.A.; et al. Cognition in multiple sclerosis: State of the field and priorities for the future. Neurology 2018, 90, 278–288. [Google Scholar] [CrossRef] [Green Version]
- Baetge, S.J.; Filser, M.; Renner, A.; Ullrich, S.; Lassek, C.; Penner, I.K. On the validity of single tests, two-test combinations and the full Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in detecting patients with cognitive impairment. Mult. Scler. 2020, 26, 1919–1928. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Beatty, W.W.; Goodkin, D.E. Screening for cognitive impairment in multiple sclerosis. An evaluation of the Mini-Mental State Examination. Arch. Neurol. 1990, 47, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Kalb, R.; Beier, M.; Benedict, R.H.; Charvet, L.; Costello, K.; Feinstein, A.; Gingold, J.; Goverover, Y.; Halper, J.; Harris, C.; et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult. Scler. 2018, 24, 1665–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakirtzis, C.; Ioannidis, P.; Messinis, L.; Nasios, G.; Konstantinopoulou, E.; Papathanasopoulos, P.; Grigoriadis, N. The Rationale for Monitoring Cognitive Function in Multiple Sclerosis: Practical Issues for Clinicians. Open Neurol. J. 2018, 12, 31–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corfield, F.; Langdon, D. A Systematic Review and Meta-Analysis of the Brief Cognitive Assessment for Multiple Sclerosis (BICAMS). Neurol. Ther. 2018, 7, 287–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filser, M.; Schreiber, H.; Pottgen, J.; Ullrich, S.; Lang, M.; Penner, I.K. The Brief International Cognitive Assessment in Multiple Sclerosis (BICAMS): Results from the German validation study. J. Neurol. 2018, 265, 2587–2593. [Google Scholar] [CrossRef] [PubMed]
- Langdon, D.W.; Amato, M.P.; Boringa, J.; Brochet, B.; Foley, F.; Fredrikson, S.; Hamalainen, P.; Hartung, H.P.; Krupp, L.; Penner, I.K.; et al. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult. Scler. 2012, 18, 891–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedict, R.H.; Amato, M.P.; Boringa, J.; Brochet, B.; Foley, F.; Fredrikson, S.; Hamalainen, P.; Hartung, H.; Krupp, L.; Penner, I.; et al. Brief International Cognitive Assessment for MS (BICAMS): International standards for validation. BMC Neurol. 2012, 12, 55. [Google Scholar] [CrossRef] [Green Version]
- Penner, I.-K.; Filser, M.; Renner, A.; Ullrich, S.; Lassek, C.; Baetge, S. Screening of cognitive impairment in patients with multiple sclerosis (MS): The BICAMS short version for patient-centered care in small neurological institutions (P2.420). Neurology 2018, 90, P2.420. [Google Scholar]
- Van Schependom, J.; D’Hooghe, M.B.; Cleynhens, K.; D’Hooge, M.; Haelewyck, M.C.; De Keyser, J.; Nagels, G. The Symbol Digit Modalities Test as sentinel test for cognitive impairment in multiple sclerosis. Eur. J. Neurol. Off. J. Eur. Fed. Neurol. Soc. 2014, 21, 1219–1225. [Google Scholar] [CrossRef]
- Benedict, R.H.; DeLuca, J.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R.; Multiple Sclerosis Outcome Assessments, C. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult. Scler. 2017, 23, 721–733. [Google Scholar] [CrossRef]
- Strober, L.; Chiaravalloti, N.; Moore, N.; DeLuca, J. Unemployment in multiple sclerosis (MS): Utility of the MS Functional Composite and cognitive testing. Mult. Scler. 2014, 20, 112–115. [Google Scholar] [CrossRef] [PubMed]
- Leach, J.M.; Cutter, G.; Golan, D.; Doniger, G.; Zarif, M.; Bumstead, B.; Buhse, M.; Kaczmarek, O.; Sethi, A.; Covey, T.; et al. Measuring cognitive function by the SDMT across functional domains: Useful but not sufficient. Mult. Scler. Relat. Disord. 2022, 60, 103704. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Xu, G.; Wang, J.; Yin, N.; Meng, N. Clinical and MRI predictors of cognitive decline in patients with relapsing-remitting multiple sclerosis: A 2-year longitudinal study. Mult. Scler. Relat. Disord. 2022, 65, 103838. [Google Scholar] [CrossRef]
- Oset, M.; Stasiolek, M.; Matysiak, M. Cognitive Dysfunction in the Early Stages of Multiple Sclerosis-How Much and How Important? Curr. Neurol. Neurosci. Rep. 2020, 20, 22. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [Green Version]
- Ross, T.P.; Calhoun, E.; Cox, T.; Wenner, C.; Kono, W.; Pleasant, M. The reliability and validity of qualitative scores for the Controlled Oral Word Association Test. Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 2007, 22, 475–488. [Google Scholar] [CrossRef] [Green Version]
- Rosti-Otajarvi, E.; Hamalainen, P.; Koivisto, K.; Hokkanen, L. The reliability of the MSFC and its components. Acta Neurol. Scand. 2008, 117, 421–427. [Google Scholar] [CrossRef]
- Grote, C.; Salmon, P. Spatial complexity and hand usage on the Block Design Test. Percept. Mot. Ski. 1986, 62, 59–67. [Google Scholar] [CrossRef]
- Taranu, D. Cerebral symptoms and their trajectory in different multiple sclerosis types: A 1-year longitudinal observational study of cognitive impairment, psychopathology and fatigue. Dissertation Thesis, University of Ulm, Ulm, Germany, July 2021. [Google Scholar]
- Sandry, J.; Simonet, D.V.; Brandstadter, R.; Krieger, S.; Katz Sand, I.; Graney, R.A.; Buchanan, A.V.; Lall, S.; Sumowski, J.F. The Symbol Digit Modalities Test (SDMT) is sensitive but non-specific in MS: Lexical access speed, memory, and information processing speed independently contribute to SDMT performance. Mult. Scler. Relat. Disord. 2021, 51, 102950. [Google Scholar] [CrossRef]
- Archibald, C.J.; Fisk, J.D. Information processing efficiency in patients with multiple sclerosis. J. Clin. Exp. Neuropsychol. 2000, 22, 686–701. [Google Scholar] [CrossRef]
- Papp, K.V.; Kaplan, R.F.; Springate, B.; Moscufo, N.; Wakefield, D.B.; Guttmann, C.R.; Wolfson, L. Processing speed in normal aging: Effects of white matter hyperintensities and hippocampal volume loss. Neuropsychol. Dev. Cogn. Sect. B Aging Neuropsychol. Cogn. 2014, 21, 197–213. [Google Scholar] [CrossRef]
- Estiasari, R.; Fajrina, Y.; Lastri, D.N.; Melani, S.; Maharani, K.; Imran, D.; Pangeran, D.; Sitorus, F. Validity and Reliability of Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in Indonesia and the Correlation with Quality of Life. Neurol. Res. Int. 2019, 2019, 4290352. [Google Scholar] [CrossRef] [Green Version]
- Sousa, C.; Rigueiro-Neves, M.; Miranda, T.; Alegria, P.; Vale, J.; Passos, A.M.; Langdon, D.; Sa, M.J. Validation of the brief international cognitive assessment for multiple sclerosis (BICAMS) in the Portuguese population with multiple sclerosis. BMC Neurol. 2018, 18, 172. [Google Scholar] [CrossRef]
- Dusankova, J.B.; Kalincik, T.; Havrdova, E.; Benedict, R.H. Cross cultural validation of the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) and the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Clin. Neuropsychol. 2012, 26, 1186–1200. [Google Scholar] [CrossRef]
- Costers, L.; Gielen, J.; Eelen, P.L.; Schependom, J.V.; Laton, J.; Remoortel, A.V.; Vanzeir, E.; Wijmeersch, B.V.; Seeldrayers, P.; Haelewyck, M.C.; et al. Does including the full CVLT-II and BVMT-R improve BICAMS? Evidence from a Belgian (Dutch) validation study. Mult. Scler. Relat. Disord. 2017, 18, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.A.; Osman, L.; Berard, J.A.; Rees, L.M.; Freedman, M.S.; MacLean, H.; Cousineau, D. Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS): Canadian contribution to the international validation project. J. Neurol. Sci. 2016, 362, 147–152. [Google Scholar] [CrossRef]
- Goretti, B.; Niccolai, C.; Hakiki, B.; Sturchio, A.; Falautano, M.; Minacapelli, E.; Martinelli, V.; Incerti, C.; Nocentini, U.; Murgia, M.; et al. The Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS): Normative values with gender, age and education corrections in the Italian population. BMC Neurol. 2014, 14, 171. [Google Scholar] [CrossRef] [Green Version]
- Sonder, J.M.; Burggraaff, J.; Knol, D.L.; Polman, C.H.; Uitdehaag, B.M. Comparing long-term results of PASAT and SDMT scores in relation to neuropsychological testing in multiple sclerosis. Mult. Scler. 2014, 20, 481–488. [Google Scholar] [CrossRef]
- Lopez-Gongora, M.; Querol, L.; Escartin, A. A one-year follow-up study of the Symbol Digit Modalities Test (SDMT) and the Paced Auditory Serial Addition Test (PASAT) in relapsing-remitting multiple sclerosis: An appraisal of comparative longitudinal sensitivity. BMC Neurol. 2015, 15, 40. [Google Scholar] [CrossRef] [Green Version]
- Strober, L.; Englert, J.; Munschauer, F.; Weinstock-Guttman, B.; Rao, S.; Benedict, R.H. Sensitivity of conventional memory tests in multiple sclerosis: Comparing the Rao Brief Repeatable Neuropsychological Battery and the Minimal Assessment of Cognitive Function in MS. Mult. Scler. 2009, 15, 1077–1084. [Google Scholar] [CrossRef]
- Portaccio, E.; Goretti, B.; Zipoli, V.; Siracusa, G.; Sorbi, S.; Amato, M.P. A short version of Rao’s Brief Repeatable Battery as a screening tool for cognitive impairment in multiple sclerosis. Clin. Neuropsychol. 2009, 23, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Brochet, B.; Deloire, M.S.; Bonnet, M.; Salort-Campana, E.; Ouallet, J.C.; Petry, K.G.; Dousset, V. Should SDMT substitute for PASAT in MSFC? A 5-year longitudinal study. Mult. Scler. 2008, 14, 1242–1249. [Google Scholar] [CrossRef] [PubMed]
- Sadigh-Eteghad, S.; Abbasi Garravnd, N.; Feizollahi, M.; Talebi, M. The Expanded Disability Status Scale Score and Demographic Indexes Are Correlated with the Severity of Cognitive Impairment in Multiple Sclerosis Patients. J. Clin. Neurol. 2021, 17, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Caneda, M.A.; Vecino, M.C. The correlation between EDSS and cognitive impairment in MS patients. Assessment of a Brazilian population using a BICAMS version. Arq. Neuro-Psiquiatr. 2016, 74, 974–981. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.M.; Arnett, P.A. Dysarthria predicts poorer performance on cognitive tasks requiring a speeded oral response in an MS population. J. Clin. Exp. Neuropsychol. 2007, 29, 804–812. [Google Scholar] [CrossRef]
Descriptive Variables | Patients with MS (n = 66) | Healthy Controls (n = 22) | p-Value |
---|---|---|---|
Age in years (Mean, SD) | 48.3 (10.3) | 49.8 (14.8) | 0.60 a |
Sex (female/male) | 41/25 | 11/11 | 0.31 b |
Education years (Mean, SD) | 10.5 (2.4) | 11.8 (2.2) | 0.03 a |
EDSS 0–3.0 (n) EDSS 3–6.0 (n) EDSS > 6.5 (n) | 22 24 20 | ||
No therapy (n) | 26 | ||
First line therapy (n) | 18 | ||
Second line therapy (n) | 7 | ||
Third line therapy (n) | 9 | ||
Biotin (n) | 6 |
Variables | Patients with MS (n = 66) | Healthy Controls (n = 22) | ||
---|---|---|---|---|
Baseline | 1 Year | Baseline | 1 Year | |
Verbal episodic memory VLMT total correct, mean (SD) VLMT delayed recall, mean (SD) | ||||
51.3 (10.6) | 54.4 (10.4) | 59.3 (8.4) | 63.1 (7.9) | |
10.3 (3.3) | 11.0 (3.1) | 12.8(1.9) | 13.5 (1.8) | |
Visual episodic memory BVMT-R total correct, mean (SD) BVMT-R delayed recall, mean (SD) | ||||
21.1 (7.5) | 22.0 (5.3) | 26.4 (5.7) | 25.9 (6.5) | |
8.3 (2.6) | 8.2 (2.0) | 10.5 (1.6) | 9.6 (1.7) | |
Verbal attention-executive functions COWAT, mean (SD) PASAT-3 total correct, mean (SD) | ||||
28.7 (9.4) | 29.7 (9.1) | 39.5 (7.3) | 40.5 (7.2) | |
41.3 (13.8) | 43.5 (12.2) | 47.9 (6.3) | 47.8 (7.4) | |
Visual attention-executive functions SDMT total correct, mean (SD) BDT, mean (SD) | ||||
46.0 (13.6) | 48.1 (14.0) | 56.4 (8.2) | 55.5 (9.3) | |
43.1 (11.4) | 45.9 (11.4) | 52.0(10.2) | 52.4 (9.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taranu, D.; Tumani, H.; Holbrook, J.; Tumani, V.; Uttner, I.; Fissler, P. The TRACK-MS Test Battery: A Very Brief Tool to Track Multiple Sclerosis-Related Cognitive Impairment. Biomedicines 2022, 10, 2975. https://doi.org/10.3390/biomedicines10112975
Taranu D, Tumani H, Holbrook J, Tumani V, Uttner I, Fissler P. The TRACK-MS Test Battery: A Very Brief Tool to Track Multiple Sclerosis-Related Cognitive Impairment. Biomedicines. 2022; 10(11):2975. https://doi.org/10.3390/biomedicines10112975
Chicago/Turabian StyleTaranu, Daniela, Hayrettin Tumani, Jill Holbrook, Visal Tumani, Ingo Uttner, and Patrick Fissler. 2022. "The TRACK-MS Test Battery: A Very Brief Tool to Track Multiple Sclerosis-Related Cognitive Impairment" Biomedicines 10, no. 11: 2975. https://doi.org/10.3390/biomedicines10112975
APA StyleTaranu, D., Tumani, H., Holbrook, J., Tumani, V., Uttner, I., & Fissler, P. (2022). The TRACK-MS Test Battery: A Very Brief Tool to Track Multiple Sclerosis-Related Cognitive Impairment. Biomedicines, 10(11), 2975. https://doi.org/10.3390/biomedicines10112975