Stage- and Subfield-Associated Hippocampal miRNA Expression Patterns after Pilocarpine-Induced Status Epilepticus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Experimental Animals
2.1.2. Pilocarpine-Induced SE Mouse Model Preparation
2.1.3. Tissue Preparation for miRNA Isolation
2.2. Total RNA and miRNA Isolation
2.3. SurePrint G3 Mouse miRNA Microarray
2.4. qRT-PCR Analysis of Chosen miRNAs
2.5. Bioinformatics Analysis of the miRNA Microarray Results
3. Results
3.1. miRNA Microarray Analysis
3.2. Validation of the miRNA Microarray Data by qRT-PCR
4. Bioinformatics Analysis of the miRNA Microarray Results
4.1. Gene Expression Trend Analysis
4.2. Gene Ontology Enrichment Analysis
4.3. Pathway Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blumcke, I.; Thom, M.; Wiestler, O.D. Ammon’s horn sclerosis: A maldevelopmental disorder associated with temporal lobe epilepsy. Brain Pathol. 2002, 12, 199–211. [Google Scholar] [PubMed]
- Coulter, D.A.; Yue, C.; Ang, C.W.; Weissinger, F.; Goldberg, E.; Hsu, F.-C.; Carlson, G.C.; Takano, H. Hippocampal microcircuit dynamics probed using optical imaging approaches. J. Physiol. 2011, 589, 1893–1903. [Google Scholar] [CrossRef] [PubMed]
- Storm-Mathisen, J.; Ottersen, O.P. Immunocytochemistry of glutamate at the synaptic level. J. Histochem. Cytochem. 1990, 38, 1733–1743. [Google Scholar] [CrossRef] [Green Version]
- Caballero-Bleda, M.; Witter, M.P. Projections from the presubiculum and the parasubiculum to morphologically characterized entorhinal-hippocampal projection neurons in the rat. Exp. Brain Res. 1994, 101, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Curia, G.; Longo, D.; Biagini, G.; Jones, R.S.; Avoli, M. The pilocarpine model of temporal lobe epilepsy. J. Neurosci. Methods 2008, 172, 143–157. [Google Scholar] [CrossRef]
- Kim, H.; Choi, Y.; Joung, H.Y.; Choi, Y.S.; Kim, H.J.; Joo, Y.; Oh, J.H.; Hann, H.J.; Cho, Z.H.; Lee, H.W. Structural and Functional Alterations at Pre-Epileptic Stage Are Closely Associated with Epileptogenesis in Pilocarpine-induced Epilepsy Model. Exp. Neurobiol. 2017, 26, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Gage, F.H.; Kempermann, G.; Palmer, T.; Peterson, D.A.; Ray, J. Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol. 1998, 36, 249–266. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Henshall, D.C. Antagomirs and microRNA in status epilepticus. Epilepsia 2013, 54 (Suppl. 6), 17–19. [Google Scholar] [CrossRef]
- Matos, G.; Scorza, F.A.; Mazzotti, D.R.; Guindalini, C.; Cavalheiro, E.A.; Tufik, S.; Andersen, M.L. The effects of sleep deprivation on microRNA expression in rats submitted to pilocarpine-induced status epilepticus. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 51, 159–165. [Google Scholar] [CrossRef]
- Hu, K.; Xie, Y.-Y.; Zhang, C.; Ouyang, D.-S.; Long, H.-Y.; Sun, D.-N.; Long, L.-L.; Feng, L.; Li, Y.; Xiao, B. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 2012, 13, 115. [Google Scholar] [CrossRef] [Green Version]
- Gorter, J.A.; Iyer, A.; White, I.; Colzi, A.; van Vliet, E.A.; Sisodiya, S.; Aronica, E. Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol. Dis. 2014, 62, 508–520. [Google Scholar] [CrossRef]
- Gstir, R.; Schafferer, S.; Scheideler, M.; Misslinger, M.; Griehl, M.; Daschil, N.; Humpel, C.; Obermair, G.J.; Schmuckermair, C.; Striessnig, J.; et al. Generation of a neuro-specific microarray reveals novel differentially expressed noncoding RNAs in mouse models for neurodegenerative diseases. RNA 2014, 20, 1929–1943. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-L.; Liu, H.; Guan, X. Changes in microRNA expression profile in hippocampus during the acquisition and extinction of cocaine-induced conditioned place preference in rats. J. Biomed. Sci. 2013, 20, 96. [Google Scholar] [CrossRef] [Green Version]
- Risbud, R.M.; Porter, B.E. Changes in MicroRNA Expression in the Whole Hippocampus and Hippocampal Synaptoneurosome Fraction following Pilocarpine Induced Status Epilepticus. PLoS ONE 2013, 8, e53464. [Google Scholar] [CrossRef] [Green Version]
- Kaalund, S.S.; Venø, M.T.; Bak, M.; Møller, R.S.; Laursen, H.; Madsen, F.; Broholm, H.; Quistorff, B.; Uldall, P.; Tommerup, N.; et al. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-Convergence on axonal guidance. Epilepsia 2014, 55, 2017–2027. [Google Scholar] [CrossRef]
- Hagihara, H.; Toyama, K.; Yamasaki, N.; Miyakawa, T. Dissection of Hippocampal Dentate Gyrus from Adult Mouse. J. Vis. Exp. 2009, 33, e1543. [Google Scholar] [CrossRef] [Green Version]
- Bak, M.; Silahtaroglu, A.; Møller, M.; Christensen, M.; Rath, M.F.; Skryabin, B.; Tommerup, N.; Kauppinen, S. MicroRNA expression in the adult mouse central nervous system. RNA 2008, 14, 432–444. [Google Scholar] [CrossRef] [Green Version]
- Olsen, L.; Klausen, M.; Helboe, L.; Nielsen, F.C.; Werge, T. MicroRNAs Show Mutually Exclusive Expression Patterns in the Brain of Adult Male Rats. PLoS ONE 2009, 4, e7225. [Google Scholar] [CrossRef]
- Brennan, G.P.; Henshall, D.C. microRNAs in the pathophysiology of epilepsy. Neurosci. Lett. 2018, 667, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Korotkov, A.; Mills, J.D.; Gorter, J.A.; van Vliet, E.; Aronica, E. Systematic review and meta-analysis of differentially expressed miRNAs in experimental and human temporal lobe epilepsy. Sci. Rep. 2017, 7, 11592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Zhou, N.; Yang, P.; Deng, L.; Liu, G. MicroRNA-27a-3p Downregulation Inhibits Inflammatory Response and Hippocampal Neuronal Cell Apoptosis by Upregulating Mitogen-Activated Protein Kinase 4 (MAP2K4) Expression in Epilepsy: In Vivo and In Vitro Studies. Med Sci. Monit. 2019, 25, 8499–8508. [Google Scholar] [CrossRef]
- Xiang, L.; Ren, Y.; Cai, H.; Zhao, W.; Song, Y. MicroRNA-132 aggravates epileptiform discharges via suppression of BDNF/TrkB signaling in cultured hippocampal neurons. Brain Res. 2015, 1622, 484–495. [Google Scholar] [CrossRef]
- Korotkov, A.; Broekaart, D.W.M.; Banchaewa, L.; Pustjens, B.; Scheppingen, J.; Anink, J.J.; Baayen, J.C.; Idema, S.; Gorter, J.A.; Vliet, E.A.; et al. microRNA-132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro-epileptogenic factors in human cultured astrocytes. Glia 2019, 68, 60–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Cui, G.; Tang, H.; Kong, L.; Wang, X.; Cui, C.; Xiao, Q.; Ji, H. Relationships between plasma expression levels of microRNA-146a and microRNA-132 in epileptic patients and their cognitive, mental and psychological disorders. Bioengineered 2021, 13, 941–949. [Google Scholar] [CrossRef]
- Lee, S.T.; Jeon, D.; Chu, K.; Jung, K.H.; Moon, J.; Sunwoo, J.; Park, D.K.; Yang, H.; Park, J.H.; Kim, M.; et al. Inhibition of miR-203 Reduces Spontaneous Recurrent Seizures in Mice. Mol. Neurobiol. 2017, 54, 3300–3308. [Google Scholar] [CrossRef]
- Aronica, E.; Fluiter, K.; Iyer, A.; Zurolo, E.; Vreijling, J.; Van Vliet, E.A.; Baayen, J.C.; Gorter, J.A. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur. J. Neurosci. 2010, 31, 1100–1107. [Google Scholar] [CrossRef]
- Baloun, J.; Bencurova, P.; Totkova, T.; Kubova, H.; Hermanova, M.; Hendrych, M.; Pail, M.; Pospisilova, S.; Brazdil, M. Epilepsy miRNA Profile Depends on the Age of Onset in Humans and Rats. Front. Neurosci. 2020, 14, 924. [Google Scholar] [CrossRef]
- Thomas, K.T.; Gross, C.; Bassell, G.J. microRNAs Sculpt Neuronal Communication in a Tight Balance That Is Lost in Neurological Disease. Front. Mol. Neurosci. 2018, 11, 455. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Chen, X.; Liu, J.; Qin, X. Long-term iTBS promotes neural structural and functional recovery by enhancing neurogenesis and migration via miR-551b-5p/BDNF/TrkB pathway in a rat model of cerebral ischemia-reperfusion injury. Brain Res. Bull. 2022, 184, 46–55. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, Y.K.; Zhang, C.G.; Wu, B.Y. miR-19a/b-3p promotes inflammation during cerebral ischemia/reperfusion injury via SIRT1/FoxO3/SPHK1 pathway. J. Neuroinflamm. 2021, 18, 122. [Google Scholar] [CrossRef]
- Chang, H.-L.; Wang, H.-C.; Chunag, Y.-T.; Chou, C.-W.; Lin, I.-L.; Lai, C.-S.; Chang, L.-L.; Cheng, K.-I. miRNA Expression Change in Dorsal Root Ganglia After Peripheral Nerve Injury. J. Mol. Neurosci. 2016, 61, 169–177. [Google Scholar] [CrossRef]
- Xu, J.; Sun, M.; Li, X.; Huang, L.; Gao, Z.; Gao, J.; Xie, A. MicroRNA expression profiling after recurrent febrile seizures in rat and emerging role of miR-148a-3p/SYNJ1 axis. Sci. Rep. 2021, 11, 1262. [Google Scholar] [CrossRef]
- Yu, Y.; Du, L.; Zhang, J. Febrile Seizure-Related miR-148a-3p Exerts Neuroprotection by Promoting the Proliferation of Hippocampal Neurons in Children with Temporal Lobe Epilepsy. Dev. Neurosci. 2021, 43, 312–320. [Google Scholar] [CrossRef]
- Li, R.; Hu, J.; Cao, S. The Clinical Significance of miR-135b-5p and Its Role in the Proliferation and Apoptosis of Hippocampus Neurons in Children with Temporal Lobe Epilepsy. Dev. Neurosci. 2020, 42, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Luo, Z.; Chen, X. Hsa_circ_0044235 regulates the pyroptosis of rheumatoid arthritis via MiR-135b-5p-SIRT1 axis. Cell Cycle 2021, 20, 1107–1121. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yang, H.; Yue, Y.; Tian, F. MicroRNAs and target genes in epileptogenesis. Epilepsia 2020, 61, 2086–2096. [Google Scholar] [CrossRef]
- Roncon, P.; Soukupovà, M.; Binaschi, A.; Falcicchia, C.; Zucchini, S.; Ferracin, M.; Langley, S.R.; Petretto, E.; Johnson, M.R.; Marucci, G.; et al. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy—Comparison with human epileptic samples. Sci. Rep. 2015, 5, 14143. [Google Scholar] [CrossRef] [Green Version]
- Bekenstein, U.; Mishra, N.; Milikovsky, D.Z.; Hanin, G.; Zelig, D.; Sheintuch, L.; Berson, A.; Greenberg, D.S.; Friedman, A.; Soreq, H. Dynamic changes in murine forebrain miR-211 expression associate with cholinergic imbalances and epileptiform activity. Proc. Natl. Acad. Sci. USA 2017, 114, E4996–E5005. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.L.; Plotkin, J.L.; Venø, M.T.; von Schimmelmann, M.; Feinberg, P.; Mann, S.; Handler, A.; Kjems, J.; Surmeier, D.J.; O’Carroll, D.; et al. MicroRNA-128 Governs Neuronal Excitability and Motor Behavior in Mice. Science 2013, 342, 1254–1258. [Google Scholar] [CrossRef] [Green Version]
- Brennan, G.P.; Dey, D.; Chen, Y.; Patterson, K.P.; Magnetta, E.J.; Hall, A.M.; Dube, C.M.; Mei, Y.-T.; Baram, T.Z. Dual and Opposing Roles of MicroRNA-124 in Epilepsy Are Mediated through Inflammatory and NRSF-Dependent Gene Networks. Cell Rep. 2016, 14, 2402–2412. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Omran, A.; Ashhab, M.U.; Kong, H.; Gan, N.; He, F.; Yin, F. Expression Patterns of miR-124, miR-134, miR-132, and miR-21 in an Immature Rat Model and Children with Mesial Temporal Lobe Epilepsy. J. Mol. Neurosci. 2013, 50, 291–297. [Google Scholar] [CrossRef]
- Sano, T.; Reynolds, J.P.; Jiménez-Mateos, E.; Matsushima, S.; Taki, W.; Henshall, D.C. MicroRNA-34a upregulation during seizure-induced neuronal death. Cell Death Dis. 2012, 3, e287. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.-G.; Luo, Y.-H.; Xu, J.-W.; Lu, Q.-C. Plasma Exosomal MiRNAs Expression Profile in Mesial Temporal Lobe Epilepsy With Hippocampal Sclerosis: Case-Control Study and Analysis of Potential Functions. Front. Mol. Neurosci. 2020, 13, 584828. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Hussen, B.M.; Abak, A.; Taheri, M.; Khoshnoud, R.J. Aberrant expression of miRNAs in epilepsy. Mol. Biol. Rep. 2022, 49, 5057–5074. [Google Scholar] [CrossRef]
- Gross, C.; Yao, X.; Engel, T.; Tiwari, D.; Xing, L.; Rowley, S.; Danielson, S.W.; Thomas, K.T.; Jimenez-Mateos, E.M.; Schroeder, L.M.; et al. MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset. Cell Rep. 2016, 17, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, J. MicroRNA Dysregulation in Epilepsy: From Pathogenetic Involvement to Diagnostic Biomarker and Therapeutic Agent Development. Front. Mol. Neurosci. 2021, 14, 650372. [Google Scholar] [CrossRef]
- Li, Y.; Huang, C.; Feng, P.; Jiang, Y.; Wang, W.; Zhou, N.; Chen, L. Aberrant expression of miR-153 is associated with overexpression of hypoxia-inducible factor-1α in refractory epilepsy. Sci. Rep. 2016, 6, 32091. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Zhu, Y.; Zhang, J.; Wu, W.; Sun, Y.; Zhang, X.; Tao, J.; Li, Z. MicroRNA-221-3p Suppresses the Microglia Activation and Seizures by Inhibiting of HIF-1α in Valproic Acid-Resistant Epilepsy. Front. Pharmacol. 2021, 12, 714556. [Google Scholar] [CrossRef]
- Pan, W.; Song, X.; Hu, Q.; Zhang, Y. miR-485 inhibits histone deacetylase HDAC5, HIF1α and PFKFB3 expression to alleviate epilepsy in cellular and rodent models. Aging 2021, 13, 14416–14432. [Google Scholar] [CrossRef] [PubMed]
- Beamer, E.; Jurado-Arjona, J.; Jiménez-Mateos, E.; Morgan, J.; Reschke, C.R.; Kenny, A.; de Leo, G.; Olivos-Oré, L.A.; Arribas-Blázquez, M.; Madden, S.F.; et al. MicroRNA-22 Controls Aberrant Neurogenesis and Changes in Neuronal Morphology After Status Epilepticus. Front. Mol. Neurosci. 2018, 11, 442 2. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-H.; Zhang, Y.-X.; Zheng, Y.; Yang, F.; Hu, Y.; Xu, S.; Yan, S.-Q.; Ding, Y.; Guo, Y.; Ding, M.-P. Expression of plasma microRNA-145-5p and its correlation with clinical features in patients with refractory epilepsy. Epilepsy Res. 2019, 154, 21–25. [Google Scholar] [CrossRef]
- Irmady, K.; Jackman, K.A.; Padow, V.A.; Shahani, N.; Martin, L.A.; Cerchietti, L.; Unsicker, K.; Iadecola, C.; Hempstead, B.L. Mir-592 regulates the induction and cell death-promoting activity of p75NTR in neuronal ischemic injury. J. Neurosci. 2014, 34, 3419–3428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venø, M.T.; Reschke, C.R.; Morris, G.; Connolly, N.M.; Su, J.; Yan, Y.; Engel, T.; Jimenez-Mateos, E.M.; Harder, L.M.; Pultz, D.; et al. A systems approach delivers a functional microRNA catalog and expanded targets for seizure suppression in temporal lobe epilepsy. Proc. Natl. Acad. Sci. USA 2020, 117, 15977–15988. [Google Scholar] [CrossRef]
- Thomas, K.T.; Anderson, B.R.; Shah, N.; Zimmer, S.E.; Hawkins, D.; Valdez, A.N.; Gu, Q.; Bassell, G.J. Inhibition of the Schizophrenia-Associated MicroRNA miR-137 Disrupts Nrg1α Neurodevelopmental Signal Transduction. Cell Rep. 2017, 20, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Zhao, M.; Yang, P. LncRNA UCA1 Suppresses the Inflammation Via Modulating miR-203-Mediated Regulation of MEF2C/NF-κB Signaling Pathway in Epilepsy. Neurochem. Res. 2020, 45, 783–795. [Google Scholar] [CrossRef]
- Taganov, K.D.; Boldin, M.P.; Chang, K.; Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12481–12486. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Wang, P.; Lin, L.; Liu, X.; Ma, F.; An, H.; Wang, Z.; Cao, X. MicroRNA-146a Feedback Inhibits RIG-I-Dependent Type I IFN Production in Macrophages by Targeting TRAF6, IRAK1, and IRAK2. J. Immunol. 2009, 183, 2150–2158. [Google Scholar] [CrossRef] [Green Version]
- Cukovic, D.; Bagla, S.; Ukasik, D.; Stemmer, P.; Jena, B.; Naik, A.; Sood, S.; Asano, E.; Luat, A.; Chugani, D.; et al. Exosomes in Epilepsy of Tuberous Sclerosis Complex: Carriers of Pro-Inflammatory MicroRNAs. Non-Coding RNA 2021, 7, 40. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, C.; Bao, T.; Zhao, X.; Xiong, W.; Luo, C.; Yin, G.; Fan, J. Exosome-Shuttled miR-672-5p from Anti-Inflammatory Microglia Repair Traumatic Spinal Cord Injury by Inhibiting AIM2/ASC/Caspase-1 Signaling Pathway Mediated Neuronal Pyroptosis. J. Neurotrauma 2022, 39, 1057–1074. [Google Scholar] [CrossRef]
Primer Name | Group | qRT-PCR Fold-Change | Microarray Fold-Change | F | P |
---|---|---|---|---|---|
miR-124 | Control | 1 ± 0.25 | 1 | 1.693 | 0.245 |
Day 3 | 0.64 ± 0.2 | −1.745579 | |||
Day 14 | 0.89 ± 0.3 | −1.1375024 | |||
Day 60 | 0.68 ± 0.12 | −1.1038424 | |||
miR-137 | Control | 1 ± 0.15 | 1 | 2.154 | 0.172 |
Day 3 | 0.62 ± 0.23 * | −2.0571318 | |||
Day 14 | 0.78 ± 0.1 | −1.3803179 | |||
Day 60 | 0.75 ± 0.23 | −1.619207 | |||
miR-142-3p | Control | 1 ± 0.11 | 1 | 14.289 | 0.001 |
Day 3 | 5.32 ± 0.81 * | 5.619121 | |||
Day 14 | 3.42 ± 1.64 *# | 2.8325222 | |||
Day 60 | 1.34 ± 0.19 # | 1.7457325 | |||
miR-19a | Control | 1 ± 0.34 | 1 | 25.305 | 0.000 |
Day 3 | 2.87 ± 0.19 * | 2.878858 | |||
Day 14 | 1.17 ± 0.52 # | 1.1613489 | |||
Day 60 | 0.71 ± 0.17 # | −1.1601521 | |||
miR-203 | Control | 1 ± 0.36 | 1 | 8.605 | 0.007 |
Day 3 | 4.5 ± 1.14 * | 4.5549407 | |||
Day 14 | 3.44 ± 0.77 * | 3.667932 | |||
Day 60 | 1.89 ± 1.18 # | 2.421915 | |||
miR-27a | Control | 1 ± 0.16 | 1 | 2.477 | 0.136 |
Day 3 | 1.39 ± 0.14 | 1.7447702 | |||
Day 14 | 1.57 ± 0.41 * | 1.6940101 | |||
Day 60 | 1.32 ± 0.25 | 1.7312951 | |||
miR-494 | Control | 1 ± 0.62 | 1 | 0.272 | 0.844 |
Day 3 | 1.02 ± 0.35 | 7.6855636 | |||
Day 14 | 1.05 ± 0.58 | 2.0513108 | |||
Day 60 | 0.73 ± 0.32 | −1.0420982 | |||
miR-551b | Control | 1 ± 0.21 | 1 | 2.848 | 0.105 |
Day 3 | 0.59 ± 0.28 | −1.9337255 | |||
Day 14 | 0.53 ± 0.14 * | −1.7970246 | |||
Day 60 | 0.54 ± 0.27 * | −1.3070583 | |||
miR-146a | Control | 1 ± 0.34 | 1 | 2.660 | 0.119 |
Day 3 | 2.99 ± 0.86 | 3.089705 | |||
Day 14 | 4.86 ± 3.23 * | 4.8941493 | |||
Day 60 | 1.69 ± 1.31 | 2.211484 | |||
miR-188-5p | Control | 1 ± 0.1 | 1 | 6.129 | 0.018 |
Day 3 | 1.23 ± 0.18 | 333.90417 | |||
Day 14 | 0.89 ± 0.22 # | 22.7263 | |||
Day 60 | 0.69 ± 0.09 *# | 26.388815 | |||
miR-193 | Control | 1 ± 0.26 | 1 | 0.073 | 0.973 |
Day 3 | 1.02 ± 0.38 | 2.0996573 | |||
Day 14 | 1.13 ± 0.44 | 1.5109724 | |||
Day 60 | 1.09 ± 0.43 | 1.6478502 |
Primer Name | Group | qRT-PCR Fold-Change | Microarray Fold-Change | F | P |
---|---|---|---|---|---|
miR-124 | Control | 1 ± 0.12 | 1 | 2.225 | 0.163 |
Day 3 | 0.55 ± 0.2 | −1.5798804 | |||
Day 14 | 0.81 ± 0.16 | −1.3798828 | |||
Day 60 | 0.58 ± 0.4 | −1.1080296 | |||
miR-137 | Control | 1 ± 0.25 | 1 | 0.604 | 0.630 |
Day 3 | 0.77 ± 0.08 | −1.832393 | |||
Day 14 | 0.88 ± 0.22 | −1.588261 | |||
Day 60 | 1.03 ± 0.41 | −1.2935005 | |||
miR-142-3p | Control | 1 ± 0.07 | 1 | 19.760 | 0.000 |
Day 3 | 6.4 ± 1.82 * | 4.912 | |||
Day 14 | 2.75 ± 0.9 # | 2.225 | |||
Day 60 | 0.72 ± 0.21 #,^ | 1.392988 | |||
miR-19a | Control | 1 ± 0.35 | 1 | 5.542 | 0.024 |
Day 3 | 2.61 ± 1.08 * | 2.1299305 | |||
Day 14 | 1.23 ± 0.48 # | −1.2170526 | |||
Day 60 | 0.54 ± 0.43 # | −1.7115029 | |||
miR-203 | Control | 1 ± 0.67 | 1 | 2.745 | 0.113 |
Day 3 | 7.57 ± 5.08 * | 5.519774 | |||
Day 14 | 3.82 ± 1.32 | 3.3713422 | |||
Day 60 | 2.43 ± 2.6 | 2.5886562 | |||
miR-27a | Control | 1 ± 0.31 | 1 | 2.385 | 0.145 |
Day 3 | 1.6 ± 0.28 | 1.5262655 | |||
Day 14 | 1.61 ± 0.48 | 1.5529257 | |||
Day 60 | 0.96 ± 0.5 | 1.6639766 | |||
miR-494 | Control | 1 ± 0.28 | 1 | 0.764 | 0.545 |
Day 3 | 1.28 ± 0.43 | 4.505004 | |||
Day 14 | 1.51 ± 0.43 | 1.3652874 | |||
Day 60 | 1.17 ± 0.52 | −1.180082 | |||
miR-551b | Control | 1 ± 0.1 | 1 | 12.988 | 0.002 |
Day 3 | 0.63 ± 0.23 * | −1.7511983 | |||
Day 14 | 0.32 ± 0.04 *,# | −3.644983 | |||
Day 60 | 0.32 ± 0.19 *,# | −2.47584 | |||
miR-132 | Control | 1 ± 0.23 | 1 | ||
Day 3 | 3.38 ± 0.81 | 2.6384544 | 5.801 | 0.021 | |
Day 14 | 6.55 ± 1.34 * | 5.115643 | |||
Day 60 | 6.28 ± 3.43 * | 4.9513855 | |||
miR-135b | Control | 1 ± 0.35 | 1 | 3.726 | 0.061 |
Day 3 | 1.56 ± 0.32 | 1.2437161 | |||
Day 14 | 4.86 ± 2.21 *,# | 3.8363545 | |||
Day 60 | 3.77 ± 2.37 | 3.7484105 | |||
miR-148a | Control | 1 ± 0.17 | 1 | 9.789 | 0.005 |
Day 3 | 0.83 ± 0.36 | −1.731051 | |||
Day 14 | 0.34 ± 0.17 *,# | −3.1871736 | |||
Day 60 | 0.17 ± 0.09 *,# | −4.944259 | |||
miR-188-5p | Control | 1 ± 0.16 | 1 | 1.971 | 0.197 |
Day 3 | 1.27 ± 0.05 | 28.367397 | |||
Day 14 | 0.79 ± 0.27 | 3.5954535 | |||
Day 60 | 0.63 ± 0.6 | 2.1866686 | |||
miR-672 | Control | 1 ± 0.07 | 1 | 3.806 | 0.058 |
Day 3 | 0.81 ± 0.26 | −1.6016815 | |||
Day 14 | 0.59 ± 0.11 * | −1.9541458 | |||
Day 60 | 0.52 ± 0.2 6 * | −1.6448656 |
Changed miRNA in Both the CA and DG Areas | Predicted Intersecting Target Gene Number | Changed miRNA in DG Area | Predicted Intersecting Target Gene Number | Changed miRNA in CA Area | Predicted Intersecting Target Gene Number |
---|---|---|---|---|---|
miR-124 | 1630 | miR-128 | 828 | miR-193 | 164 |
miR-127 | 20 | miR-132 | 305 | miR-487b | 11 |
miR-129-5p | 391 | miR-133b | 476 | miR-93 | 932 |
miR-136 | 170 | miR-143 | 273 | ||
miR-137 | 912 | miR-145 | 552 | ||
miR-139-5p | 289 | miR-195 | 940 | ||
miR-142-3p | 252 | miR-204 | 396 | ||
miR-149 | 288 | miR-211 | 396 | ||
miR-150 | 201 | miR-28 | 192 | ||
miR-153 | 599 | miR-31 | 271 | ||
miR-186 | 504 | miR-33 | 313 | ||
miR-190 | 119 | miR-346 | 84 | ||
miR-203 | 608 | miR-381 | 548 | ||
miR-20b | 935 | miR-383 | 115 | ||
miR-21 | 230 | miR-384-3p | 152 | ||
miR-210 | 27 | miR-431 | 87 | ||
miR-218 | 757 | miR-488 | 210 | ||
miR-22 | 370 | miR-497 | 940 | ||
miR-221 | 308 | miR-873 | 178 | ||
miR-222 | 308 | ||||
miR-223 | 220 | ||||
miR-25 | 725 | ||||
miR-324-5p | 85 | ||||
miR-326 | 268 | ||||
miR-328 | 123 | ||||
miR-335-5p | 175 | ||||
miR-362-3p | 225 | ||||
miR-370 | 245 | ||||
miR-377 | 364 | ||||
miR-379 | 67 | ||||
miR-384-5p | 1078 | ||||
miR-410 | 434 | ||||
miR-411 | 121 | ||||
miR-433 | 196 | ||||
miR-485 | 489 | ||||
miR-494 | 314 | ||||
miR-496 | 77 | ||||
miR-874 | 194 | ||||
miR-9 | 1017 |
GO Name (CA Area) | −LgP | GO Name (DG Area) | −LgP |
---|---|---|---|
myeloid cell differentiation | 4.79 | sensory perception of temperature stimulus | 5.17 |
positive regulation of cell differentiation | 4.24 | head development | 4.72 |
macromolecule de-acylation | 4.10 | response to metalation | 4.47 |
amyloid precursor protein metabolic process | 4.06 | modification-dependent macromolecule catabolic process | 4.26 |
positive regulation of multi-organism process | 3.87 | RNA localisation | 3.93 |
prostanoid metabolic process | 4.03 | stem cell division | 4.09 |
membrane biogenesis | 4.06 | ossification | 4.07 |
cellular protein complex assembly | 3.82 | adrenergic receptor signalling pathway | 3.88 |
ganglion development | 3.69 | cell aggregation | 3.74 |
membrane docking | 3.55 | detection of biotic stimulus | 3.72 |
response to peptide | 3.55 | developmental growth involved in morphogenesis | 3.70 |
suckling behaviour | 3.82 | cell-cell adhesion via plasma-membrane adhesion molecules | 3.58 |
CA Area-Specific Pathways | −LgP | DG Area-Specific Pathways | −LgP |
---|---|---|---|
Ras signalling pathway | 10 | Hippo signalling pathway | 10 |
Hedgehog signalling pathway | 4.60 | PI3K-Akt signalling pathway | 10 |
Glycosaminoglycan biosynthesis—heparan sulphate/heparin | 3.95 | Tight junction | 4.22 |
Synaptic vesicle cycle | 3.77 | Cholinergic synapse | 3.98 |
Adipocytokine signalling pathway | 3.61 | N-Glycan biosynthesis | 3.27 |
Chemokine signalling pathway | 3.32 | Glycosaminoglycan biosynthesis—keratan sulphate | 2.51 |
B cell receptor signalling pathway | 3.14 | Renin secretion | 2.44 |
ECM-receptor interaction | 2.81 | ||
Jak-STAT signalling pathway | 2.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Dheen, S.T.; Tang, F.; Luo, Y.; Meng, R.; Samuel, T.S.W.; Zhang, L. Stage- and Subfield-Associated Hippocampal miRNA Expression Patterns after Pilocarpine-Induced Status Epilepticus. Biomedicines 2022, 10, 3012. https://doi.org/10.3390/biomedicines10123012
Li Y, Dheen ST, Tang F, Luo Y, Meng R, Samuel TSW, Zhang L. Stage- and Subfield-Associated Hippocampal miRNA Expression Patterns after Pilocarpine-Induced Status Epilepticus. Biomedicines. 2022; 10(12):3012. https://doi.org/10.3390/biomedicines10123012
Chicago/Turabian StyleLi, Yue, S Thameem Dheen, Fengru Tang, Yumin Luo, Ran Meng, Tay Sam Wah Samuel, and Lan Zhang. 2022. "Stage- and Subfield-Associated Hippocampal miRNA Expression Patterns after Pilocarpine-Induced Status Epilepticus" Biomedicines 10, no. 12: 3012. https://doi.org/10.3390/biomedicines10123012
APA StyleLi, Y., Dheen, S. T., Tang, F., Luo, Y., Meng, R., Samuel, T. S. W., & Zhang, L. (2022). Stage- and Subfield-Associated Hippocampal miRNA Expression Patterns after Pilocarpine-Induced Status Epilepticus. Biomedicines, 10(12), 3012. https://doi.org/10.3390/biomedicines10123012