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Abstract: Predictive neurobiological markers for prognosis are essential but underemphasized for
patients with bipolar disorder (BD), a neuroprogressive disorder. Hence, we developed models
for predicting symptom and functioning changes. Sixty-one patients with BD were recruited and
assessed using the Young Mania Rating Scale (YMRS), Montgomery–Åsberg Depression Rating Scale
(MADRS), Positive and Negative Syndrome Scale (PANSS), UKU Side Effect Rating Scale (UKU),
Personal and Social Performance Scale (PSP), and Global Assessment of Functioning scale both
at baseline and after 1-year follow-up. The models for predicting the changes in symptom and
functioning scores were trained using data on the brain morphology, functional connectivity, and
cytokines collected at baseline. The correlation between the predicted and actual changes in the YMRS,
MADRS, PANSS, and UKU scores was higher than 0.86 (q < 0.05). Connections from subcortical and
cerebellar regions were considered for predicting the changes in the YMRS, MADRS, and UKU scores.
Moreover, connections of the motor network were considered for predicting the changes in the YMRS
and MADRS scores. The neurobiological markers for predicting treatment-response symptoms and
functioning changes were consistent with the neuropathology of BD and with the differences found
between treatment responders and nonresponders.

Keywords: bipolar disorder; prediction; biomarker; functional connectivity; brain morphology;
cytokine

1. Introduction

Bipolar disorder (BD) is one of the leading causes of disability, and the lifetime preva-
lence of BD type I and type II globally is 0.6% and 0.4%, respectively [1]. The longitudinal
course of BD is characterized by recurrent episodes of mania, hypomania, or major depres-
sion [2]. Moreover, the interepisode duration after the third episode is shorter than that
between the first three episodes. Subsequently, the patient suffers one additional episode
per year on average [3]. During a relapse of mood episodes, patients may experience
progressive neuropathological changes [4,5], cognitive function deterioration [6,7], and
functional impairment [8,9]. Therefore, the prediction of treatment responses as early as
possible is essential for making optimal treatment decisions to protect against continuously
remaining diminished clinical performance.

Because BD is closely related to brain structure and function [10,11], studies have
investigated the replicable predictors of treatment responses in BD by using neuroimaging
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data. The predictive potential of neuroimaging markers has been investigated by using the
baseline status or by analyzing changes from a period of treatment to determine treatment
responses and explore the disease mechanism. Changes in the neuroimaging data of
patients after treatment have been observed, and the data of treatment nonresponders
differ from those of responders [12–14]. Moreover, in a previous study, more severe
structural and functional imaging changes were found in treatment nonresponders than in
treatment responders; these changes were highly correlated with symptoms or functional
outcomes [15]. In addition to group-level studies, studies on the prediction of symptoms
and functioning in individuals have been conducted. For example, Sartori et al. [16]
found a moderate correlation (r = 0.59) between the functioning assessment and baseline
gray matter volumes, including those of the frontal cortex. Furthermore, Fleck et al. [17]
classified patients as responders or nonresponders with 100% accuracy and predicted the
treatment response with respect to changes in symptoms with at least 87.9% accuracy.
In addition, by using brain-network-based analysis, Wang et al. [18] found significant
correlations between the estimated and observed scores of positive symptoms (r = 0.35)
and mania (r = 0.51) in patients with BD who experienced psychosis; these scores were
predicted using the between-network connectivity of the visual network, default mode
network (DMN), and salience network.

Because inflammatory dysregulation also occurs in patients with BD, cytokines and
other inflammatory proteins have attracted increased attention as potential regulators in
mood, activity control, and energy [19,20]. Studies have demonstrated that patients with
BD have higher cytokine levels than healthy controls do [21,22]. Furthermore, inflammatory
pathways are involved in the neuroprogression of BD. These pathways have been suggested
as the target of treatment [23]. In a previous study, acutely ill patients were found to
have lower cytokine levels than chronically ill patients did [24]. Moreover, the levels of
cytokines, including interleukin (IL)-6, tumor necrosis factor (TNF)-α, high-sensitivity
C-reactive proteins (CRPs), IL-1 receptor antagonist (IL-1RA), and soluble IL-2 receptor
(sIL-2R), in patients decreases after pharmacological treatment [24,25]. The remediation of
inflammation and increased anti-inflammatory biomarkers may aid the evaluation of the
response to treatments for acute illnesses. Guloksuz et al. [26] demonstrated that compared
with good lithium responders, patients with BD who exhibited a poor response had higher
levels of TNF-α. Thus, neuroimaging and inflammatory biomarkers have the potential to
predict treatment responses to BD.

Although research on neurobiological predictors of treatment response or nonre-
sponse in patients with BD is increasing, no formal definition of treatment resistance exists.
Different definitions exist regarding the distinction between responders and nonrespon-
ders [14,17]. Hence, an approach for directly predicting symptom and functioning scores is
required. In addition, several studies have used cross-sectional data, rather than longitu-
dinal data, to predict symptom scores [16,18]; however, longitudinal data are more likely
to indicate cause–effect relationships. Moreover, although Fleck et al. [17] successfully
predicted the decrease in symptoms by using longitudinal data, the sample size of their
study was small; thus, the generalization error may have been large [27]. Therefore, the
present study aimed to use potential predictors from structural or functional neuroimaging
and inflammatory biomarkers for predicting the change in symptom and functioning scores
during one year. We used the change in scores as the responses to treatment during a
year. Taking advantage of the advances in machine learning techniques, we established
nonlinear, multidimensional prediction models with a feature selection method to avoid
the “curse of dimensionality” for enhancing the development of prognosis and predicting
the treatment response to BD.

2. Materials and Methods
2.1. Participants

In this study, we recruited 61 outpatients with BD (including type I and type II) from
Taipei Veterans General Hospital in Taiwan for predicting the changes in symptom and func-
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tioning scores. All the patients were stable and were not in the acute stage. The diagnosis
of each patient was confirmed by an experienced physician according to the Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition. Patients with neurological illnesses
or any other disorders that affect cerebral metabolism, patients with a history of substance
abuse or substance dependence over the past 6 months, and patients that suffered from a
head injury with a documented sustained loss of consciousness or neurological sequelae
were excluded from this study. The clinical assessments of the patients with BD in the
analysis for predicting the changes in symptom and functioning scores involved the use
of the Young Mania Rating Scale (YMRS), Montgomery–Åsberg Depression Rating Scale
(MADRS), Positive and Negative Syndrome Scale (PANSS), UKU Side Effects Rating Scale
(UKU), Personal and Social Performance Scale (PSP), and Global Assessment of Function-
ing scale (GAF). In addition to the baseline symptom and functioning scores, the 1-year
follow-up (ranging from 0.5 to 1.2 years) scores were investigated. The investigation was
conducted according to the latest version of the Declaration of Helsinki. All the participants
gave written informed consent prior to their participation after the experimental procedures
were fully explained to them. The present study was approved by the Research Ethics
Committee of Taipei Veterans General Hospital.

2.2. Acquisition of Resting-State Functional and Structural Magnetic Resonance Imaging Images
and Inflammatory Biomarkers

Functional and structural scans were conducted at the Taipei Veterans General Hos-
pital by using a 3.0-T GE magnetic resonance imaging (MRI) scanner (GE Healthcare Life
Sciences, Little Chalfont, Milton Keynes, UK) with a quadrature head coil. Resting-state
functional images were obtained using a T2 *-weighted gradient-echo, echo-planar se-
quence (repetition time [TR] = 2500 ms, echo time [TE] = 30 ms, flip angle [FA] = 90◦, and
voxel size = 3.5 mm × 3.5 mm × 3.5 mm). A total of 200 MRI volumes from each subject
were obtained with their eyes closed. A functional whole-brain image volume consisted of
43 interleaved horizontal slices, all of which were parallel to the intercommissural plane.
Furthermore, the anatomical whole-brain image volumes were obtained using a sagittal
magnetization-prepared rapid acquisition gradient-echo three-dimensional T1-weighted
sequence (TR = 2530 ms, TE = 3 ms, echo spacing = 7.25 ms, FA = 7◦, field of view = 256
mm × 256 mm, and voxel size = 1 mm × 1 mm × 1 mm) to provide anatomical features for
the prediction and to achieve efficient spatial registration and localization of brain activity.
This strategy allowed for the better correction of any anatomical differences that might
have affected the interpretation during functional analysis.

In addition, cytokines and other inflammatory proteins of the participants, includ-
ing the soluble IL-6 receptor (sIL-6R), sIL-2R, CRP, P-selectin, monocyte chemoattractant
protein-1 (MCP-1), and TNF receptor-1 (TNF-R1), were assayed using enzyme-linked
immunosorbent assay kits (R&D systems, Minneapolis, MN, USA).

2.3. Preprocessing for Resting-State Functional and Structural MRI Data

The resting-state functional imaging data were preprocessed, and subsequent analy-
ses were performed using Statistical Parametric Mapping (SPM12, Wellcome Institute of
Neurology, University College London, London, UK, https://www.fil.ion.ucl.ac.uk/spm/
(accessed on 13 January 2020)) executed in MATLAB 2019b (MathWorks, Natick, MA, USA).
The following steps were included in the preprocessing of the images. First, the initial eight
volumes were excluded. The slice-dependent time shifts were compensated for timing
differences between slices, after which we corrected for head motion and excluded partici-
pants with a framewise displacement of >0.2. The functional imaging volumes were then
coregistered with their corresponding anatomical images, and spatial normalization was
performed into the Montreal Neurological Institute space by using a nonlinear warping
algorithm with resampling at a voxel size of 3 mm × 3 mm × 3 mm. Then, spurious
data were regressed out by using the Friston 24-parameter model, and the data included
white matter signals, cerebrospinal fluid signals, and global signals. Finally, the image data
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were filtered using a bandpass filter (between 0.01 and 0.08 Hz). Subsequently, smoothing
was conducted using a 4-mm full-width at half-maximum Gaussian kernel. Furthermore,
participants with considerable head motion (mean framewise displacement of >0.2), which
is a source of noise and artifacts, were not considered after the aforementioned procedures.
A total of 53 patients with BD were included in the subsequent stages of the experiments.
In addition, the cortical and subcortical structures from the structural imaging data were
determined using FreeSurfer (version 6.0, https://surfer.nmr.mgh.harvard.edu (accessed
on 23 January 2017)) with the following procedures: affine registration with the MNI305
space, B1 bias field correction, skull-stripping, cortical surface reconstruction, gray and
white matter segmentation, high-dimensional nonlinear alignment to the MNI305 template,
and brain region labeling. Moreover, instead of using the watershed algorithm in FreeSurfer,
a more precise skull-stripping method, namely HD-BET [28], which is based on an artificial
neural network, was employed.

2.4. Feature Extraction

After the preprocessing of the resting-state functional imaging data, functional con-
nectivity was determined according to Shen’s whole-brain functional-connectivity-based
atlas to parcellate the whole brain into 268 regions. These regions were then categorized
into eight networks: the medial frontal network (MFN), frontoparietal network (FPN),
DMN, subcortical and cerebellar regions (SC), motor network (MON), visual I network
(VisI), visual II network (VisII), and visual association network (VA). Then, the correlation
between each of the aforementioned pairs of regional time series across the 268 regions
was estimated using Pearson’s correlation coefficient and converted using Fisher’s r-to-z
transformation. Consequently, the functional networks of each patient were formed by
268 × 268 normalized, symmetric correlation matrices. In addition, in the structural imag-
ing data, the volume of the subcortical regions and the volume and thickness of the cortical
regions with the Desikan–Killiany atlas were obtained using FreeSurfer. Furthermore, all
the neurobiological features, including functional connectivity, volume, thickness, and
inflammatory biomarkers, were controlled by age and gender factors.

2.5. Feature Selection and Model Training for Predicting the Differences between the Follow-Up
and Initial Symptom and Functioning Scores

To establish models for predicting the changes in the symptom and functioning
scores, the differences during the 1-year interval of the clinical assessments, including
the YMRS, MADRS, PANSS, UKU, PSP, and GAF scores, were calculated and used as
responses separately for the prediction models. The functional and structural imaging
data and cytokines were used as predictors. Moreover, because the features were in high-
dimensional space, we used the least absolute shrinkage and selection operator (LASSO)
to investigate the main predictors of the changes in the symptom and functioning scores
before model training (see Figure 1) by selecting variables with nonzero coefficients. To
generate more generalized features, we bootstrapped the data of 90% of the 53 patients
(i.e., 48 patients) 100 times and applied the LASSO to each subsample of patients. The
features selected frequently as the variables with nonzero coefficients were used as the
predictors of the models. To avoid the “curse of dimensionality,” the number of selected
features for each symptom and functioning score was similar to the number of patients
(i.e., 53 patients). In addition, to meet the requirements of the LASSO algorithm, the
features were standardized prior to feature selection. Next, the models for predicting the
change in the score of each clinical assessment for the patients with BD were established
100 times with five-fold nested cross-validation, which helped make the model robust.
In the outer loop of nested cross-validation, the patients were randomly separated. Four
folds were used as the training set, and one fold was used as the test set. Then, in the
inner loop, support vector regression (SVR) was performed by using the training set, which
was trained using five-fold cross-validation to estimate the optimal hyperparameters. The
predicted values were obtained after all five test parcels were applied to each trained model.

https://surfer.nmr.mgh.harvard.edu
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Subsequently, the Pearson’s correlation coefficients between the actual and predicted values
were examined to determine the performance of prediction models. The mean performance
of 100 nested cross-validations was measured.
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2.6. Effects of Confounding Variables on the Prediction

The effects of illness duration, baseline symptom and functioning scores, and medica-
tion were examined by investigating the relationships between these potential confounding
variables and the features selected through the LASSO based on bootstrapping. The con-
founding effects were examined using Pearson’s correlation coefficients for continuous
variables and independent sample t tests for categorical variables, including patient groups
that had and had not taken atypical antipsychotics, patient groups that had and had not
taken antidepressants, and patient groups that had and had not taken mood stabilizers.
Moreover, because head motion may produce spurious functional connectivity even after
head motion correction, the relationships between mean framewise displacement and the
selected features were also estimated.

3. Results

The demographic and clinical information of the patients that participated in this
study is presented in Table 1. As presented in Table 1, only the change in the MADRS score
was significant from the baseline.
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Table 1. Demographic data (N = 53) for the prediction models of the changes in symptom and
functioning scores.

Baseline
(Mean ± SD)

Follow-Up
(Mean ± SD)

Change from Baseline
(Mean ± SD) p-Value ‡

Age 41.06 ± 11.733
Duration of illness 12.09 ± 9.185

Sex
Male (%) 13 (24.5)

Female (%) 40 (75.5)
Diagnostic subtype

Type I 31 (58.5)
Type II 22 (41.5)

Medication †

Atypical antipsychotics (%) 35 (72.9)
Antidepressants (%) 22 (45.8)
Mood stabilizers (%) 37 (77.1)
Clinical assessment

YMRS 2.91 ± 4.861 3.08 ± 4.636 0.17 ± 5.049 0.8075
MADRS 9.64 ± 10.273 12.47 ± 10.789 2.83 ± 8.485 0.0187
PANSS 38.89 ± 11.265 40.43 ± 10.445 1.55 ± 10.745 0.2993
UKU 3.57 ± 3.208 4.42 ± 3.915 0.85 ± 3.319 0.0682
PSP 71.57 ± 10.231 71.42 ± 9.844 −0.15 ± 8.880 0.9020
GAF 71.75 ± 10.963 70.40 ± 11.394 −1.36 ± 9.909 0.3229

YMRS: Young Mania Rating Scale; MADRS: Montgomery–Åsberg Depression Rating Scale; PANSS: Positive and
Negative Syndrome Scale; UKU: UKU Side Effects Rating Scale; PSP: Personal and Social Performance Scale; GAF:
Global Assessment of Functioning. † The medication data of five participants were missing. ‡ The p-value was
obtained using a paired t test.

3.1. Prediction Model Performance for the Changes in Symptom and Functioning Scores of the
Patients

The regression models for separately predicting the changes in symptom and func-
tioning scores within a 1-year interval, namely the YMRS, MADRS, PANSS, UKU, PSP,
and GAF scores, were developed on the basis of functional connectivity, morphological
features, and cytokines. All the predicted changes in the YMRS, MADRS, PANSS, UKU,
PSP, and GAF scores were significantly correlated with the actual changes after correcting
for false discovery rate (q < 0.05). Moreover, as indicated in Table 2, the models of the
MADRS and UKU clinical assessments could explain more than 75% of the variance in
the response around their means when using the five-fold nested cross-validation of the
SVR models and the features selected by the LASSO. However, the models predicting the
changes in scores of the YMRS, PANSS, PSP, and GAF did not perform well. Nevertheless,
as displayed in Figure 2, strong outliers, namely the values that were three interquartile
range (IQR) values lower than the first quartile or three IQR values higher than the third
quartile, were observed in the scores of the YMRS (two scores with a considerably negative
change) and PANSS (one score with a considerably negative change). To investigate the
effects of outliers on regression performance, the regression models for the changes in the
YMRS and PANSS scores were retrained after removing the strong outliers. Consequently,
the mean correlation coefficients of both the YMRS and PANSS scores increased to more
than 0.88, and their regression models could explain more than 75% of the variance in the
responses (Table 2).
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Table 2. Regression performance of the models used for predicting the changes in symptom and
functioning scores.

Assessments Mean ± SD of R † Mean ± SD of R † after
Removing Strong Outliers R-Squared

YMRS 0.6850 ± 0.1207 0.9187 ± 0.0867 0.8440
MADRS 0.8662 ± 0.0867 0.7503
PANSS 0.6166 ± 0.0714 0.8887 ± 0.0784 0.7898
UKU 0.8861 ± 0.0649 0.7852
PSP 0.8533 ± 0.0971 0.7281
GAF 0.8595 ± 0.0770 0.7387

YMRS: Young Mania Rating Scale; MADRS: Montgomery–Åsberg Depression Rating Scale; PANSS: Positive and
Negative Syndrome Scale; UKU: UKU Side Effects Rating Scale; PSP: Personal and Social Performance Scale; GAF:
Global Assessment of Functioning. † Pearson’s correlation coefficient.
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Figure 2. Distribution of the changes in symptom and functioning scores (follow-up score minus
baseline status score). The yellow boxes are box-plot of the changes in scores, and the red crosses
are outliers. YMRS: Young Mania Rating Scale; MADRS: Montgomery–Åsberg Depression Rating
Scale; PANSS: Positive and Negative Syndrome Scale; UKU: UKU Side Effects Rating Scale; PSP:
Personal and Social Performance Scale; GAF: Global Assessment of Functioning Scale. The red crosses
represent the outliers in the distribution.

3.2. Features Selected for the Models Developed for Predicting the Changes in Symptom and
Functioning Scores

During the process of feature selection, 42, 43, 44, 49, 51, and 70 features were fre-
quently selected when using the LASSO for the YMRS, MADRS, PANSS, UKU, PSP, and
GAF scores, respectively. Only for the GAF assessment was the number of selected features
higher than the number of participants because all the nonzero coefficients were repeated
less than 10 times during 100 iterations of the LASSO. All the features used for predicting
the changes in symptom and functioning scores were selected on the basis of functional
connectivity. No features were selected on the basis of morphological features or cytokines.
Moreover, the major features of each regression model were defined as the features that
were selected more than 30 times. Figure 3 shows the major features of the prediction
models that performed well, namely the models for the changes in the MADRS, UKU,
YMRS, and PANSS. The models for the changes in the YMRS and PANSS scores only
performed well after the removal of the strong outliers. As displayed in Figure 3, the major
features of the MADRS were distributed mostly in the SC, MON, and DMN, and those of
the UKU were distributed only within the SC. Furthermore, the functional connections,
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which were the major features of the YMRS and PANSS, were mostly distributed in the
SC/MON and MON/MFN, respectively. Table 3 lists the functional connectivity of the ma-
jor features, which are represented as the centroids of parcellated regions. This information
is provided because Shen’s parcellation is not restricted by the anatomical brain structure.
The remaining features involved in the model training were minor features.
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of 90% of the patients and the selected features. The number of features selected was similar to but
fewer than the sample size for training the support vector regression models. The illustration uses
the eight networks of Shen’s 268-region parcellation. (A) Major features of the regression for the
Montgomery–Åsberg Depression Rating Scale. (B) Major features of the regression for the UKU Side
Effects Rating Scale. (C) Major features of the regression for the Young Mania Rating Scale after
the removal of strong outliers. (D) Major features of the regression for the Positive and Negative
Syndrome Scale after the removal of strong outliers. The red line represents the connectivity that is
positively correlated with the changes in symptom and functioning scores, and the blue line represents
the connectivity that is negatively correlated with the changes in symptom and functioning scores.

Table 3. Major features of the prediction models for the changes in symptom and functioning scores.

Regions 1 (with Region Label) Regions 2 (with Region Label)

YMRS
67 Right fusiform gyrus in VA – 24 Right supplementary motor area in MON
76 Right lingual gyrus in VisII – 33 Right precentral cortex in MON
158 Left postcentral cortex in MON – 4 Right superior orbitofrontal cortex in FPN
158 Left postcentral cortex in MON – 135 Left inferior orbitofrontal cortex in SC
179 Left postcentral cortex in MON – 177 Left superior parietal cortex in VA
224 Left middle cingular cortex in SC – 153 Left inferior orbitofrontal cortex in MFN
225 Left precuneus in DMN – 194 Left inferior temporal cortex in MFN
227 Left posterior cingular cortex in DMN – 189 Left middle temporal pole in MON
233 Left parahippocampus in SC – 123 Right caudate in SC
249 Left lobule VIII of cerebellum in SC – 114 Right lobule VI of cerebellum in SC
257 Left caudate in SC – 219 Left anterior cingular cortex in MFN
266 Left medulla in SC – 51 Left middle temporal pole in MON
267 Left pons in SC – 189 Left middle temporal pole in MON
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Table 3. Cont.

Regions 1 (with Region Label) Regions 2 (with Region Label)

MADRS
90 Right precuneus in DMN – 37 Right insula in MON
126 Right thalamus in SC – 24 Right supplementary motor area in MON
156 Left inferior triangular frontal cortex in MFN – 3 Right rectus in DMN
172 Left postcentral cortex in MON – 60 Right inferior temporal cortex in MON
212 Left superior occipital cortex in VisII – 133 Right pons in SC
221 Left anterior cingular cortex in SC – 128 Right thalamus in SC
264 Left thalamus in SC – 242 Left crus II of cerebellum in FPN

PANSS
24 Right supplementary motor area in MON – 10 Right superior medial frontal cortex in MFN
39 Right postcentral cortex in MON – 26 Right superior frontal cortex in MON
62 Right Heschl’s gyrus in MON – 24 Right supplementary motor area in MON
62 Right Heschl’s gyrus in MON – 49 Right angular gyrus in DMN
64 Right middle temporal cortex in MFN – 10 Right superior medial frontal cortex in MFN
81 Right inferior occipital cortex in VisII – 49 Right angular gyrus in DMN
92 Right amygdala in MON – 75 Right superior occipital cortex in VisI
112 Right lobule VIII of cerebellum in FPN – 53 Right middle temporal pole in MFN
145 Left superior medial frontal cortex in MFN – 24 Right supplementary motor area in MON
168 Left insula in MON – 111 Right crus II of cerebellum in FPN
174 Left paracentral lobule in MON – 10 Right superior medial frontal cortex in MFN
213 Left lingual gyrus in VisII – 174 Left paracentral lobule in MON
214 Left infeior occipital cortex in VisII – 161 Left supplementary motor area in MON
224 Left middle cingular cortex in SC – 129 Right medulla in SC
261 Left putamen in SC – 52 Right middle temporal pole in MFN
264 Left thalamus in SC – 242 Left crus II of cerebellum in FPN
268 Left pons in SC – 88 Right middle cingular cortex in SC

UKU
136 Left rectus in SC – 120 Right caudate in SC

YMRS: Young Mania Rating Scale; MADRS: Montgomery–Åsberg Depression Rating Scale; PANSS: Positive and
Negative Syndrome Scale; UKU: UKU Side Effects Rating Scale; DMN: default mode network; FPN: frontoparietal
network; MFN: medial frontal network; MON: motor network; SC: subcortical and cerebellar network; VA: visual
association network; VisI: visual I network; VisII: visual II network.

3.3. Potential Influence of Various Clinical Confounding Factors on the Regression Performance of
the Changes in Symptom and Functioning Scores

After correcting for false discovery rate for multiple comparisons, all the features of
the successful prediction models exhibited no significant correlation with illness duration
and head motion. In the baseline clinical assessments, one of the major features for the
prediction model of the PANSS, namely the functional connectivity between the right
postcentral cortex and right superior frontal cortex, was strongly related to the baseline
PANSS score. Furthermore, one of the major features for the prediction model of the YMRS,
namely the functional connectivity between the left parahippocampus and right caudate,
was significantly different between patients who had taken antipsychotics and those who
had not. No significant association was found in the other features. These results suggested
that few clinical confounding factors affected the regression process.

3.4. Relationship between Major Features and Inflammatory Markers

No inflammatory cytokines were identified as major features in all the prediction mod-
els. Therefore, because inflammatory cytokines play an essential role in BD, a correlation
analysis was conducted on the successful prediction models for further investigating the
relationship between the cytokines of the patient group and the features selected during
SVR. In terms of the major and minor features used in predicting the changes in MADRS,
UKU, YMRS, and PANSS scores, significant correlation was observed between the CRP
and a minor feature of the prediction model of the YMRS score, namely the functional
connectivity between the left postcentral cortex in the MON and the left superior parietal
cortex in the VA (r = −0.5223, q = 0.0497; see Figure 4) after controlling the body mass index
and correcting the false discovery rate. In addition, since the CRP may vary according
to mood episodes, the CRP between BD with different mood episodes (i.e., euthymic,
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hypomania, depressed, and mixed) was compared and showed no significant difference
(p = 0.4600).
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Figure 4. Correlation between inflammatory cytokines and the features of prediction models. The
relationship of the C-reactive protein with the functional connectivity between the left postcentral
cortex within the motor network and the left superior parietal cortex within the visual association
network is also indicated. This connectivity was a minor feature for predicting the changes in the
YMRS score. The correlation analyses were conducted by controlling the body mass index and
correcting the false discovery rate. The orange line represents the best fit for the data points.

4. Discussion

The present study demonstrated that changes in the symptom and functioning scores
of patients with BD can be predicted using multiple large-scale networks. The predicted
changes in the YMRS, MADRS, PANSS, and UKU scores were highly correlated with the
actual changes and explained more than 75% of the variance in response. The results of
the present study suggest that changes in the YMRS, MADRS, and UKU scores are mainly
predicted by the SC. Changes in the YMRS and MADRS scores are also predicted by the
MON. In terms of the centroid of the connections, the regions of basal ganglia contributed to
the successful predictions in score changes. Furthermore, the regions of the limbic system,
including the thalamus and amygdala, the cerebellum, orbitofrontal cortex, and medial
frontal cortex, also contributed to the prediction of the changes in the YMRS, MADRS, and
PANSS scores. However, only a few studies have analyzed treatment response prediction in
terms of symptom and functioning score changes. All of these studies used morphological
patterns, structural integrity, or task-related functional connectivity for the analysis. To
the best of our knowledge, this study is the first to use functional connectivity to predict
symptom and functioning changes after 1-year of treatment for BD, which should help
improve the understanding of neurobiological mechanisms during BD treatment.

The functional connectivity related to the neuropathology of BD is essential in pre-
dicting treatment-response symptom and functioning changes. In this study, the major
features that can predict score changes in BD were those frequently selected during feature
selection in the regions of the basal ganglia, limbic system, the cerebellum, orbitofrontal
cortex, and medial frontal cortex. Most of them were regions in the SC and MFN. The
functional connectivity of these regions consisted of disruptions found in BD, which is a
disorder with emotional dysregulation centered on the prefrontal cortex and amygdala and
with abnormal reward processing centered on the prefrontal cortex and striatal regions [29].
Chen et al. [30] identified the abnormalities associated with BD in the parahippocampus,
amygdala, hippocampus, putamen, pallidum, caudate, inferior frontal cortex, and lin-
gual gyrus by employing meta-analytical methods. Consequently, the dysconnectivity
in BD was considered primarily in the fronto-limbic-striatal regions [31,32], which was
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also supported by anatomical alterations [29]. In addition to the disruptions found in the
cortical and subcortical regions, alterations were noted in the cerebellum, as indicated by
the decreased cortical volume [33] and altered functional activity and connectivity [34,35]
found in BD. This finding is consistent with those of studies that have indicated that the
cerebellum is involved in emotional cue perception and recognition, emotional integration,
and emotional modulation [36,37]. Moreover, the disruptions in the aforementioned region
were independent of the mood state because abnormalities were present in these regions
regardless of the mood state in BD [30,38].

In addition to being related to the neuropathology of BD, the aforementioned regions
exhibited differences between treatment responders and nonresponders. Studies have
demonstrated that nonresponders show a lower degree of functional connectivity between
the amygdala and other fronto-limbic regions [12]; a higher degree of baseline frontopari-
etal task-related activation [39]; smaller improvements in the fractional anisotropy of the
cingulum hippocampus tract, which connects the cingulum and hippocampal regions,
after treatment [14]; higher hyperintensity in the white matter of the deep subcortical re-
gions [40]; and a significant increase in the mean diffusivity in the core tracts, which affects
the thalamus, caudate, frontal, occipital, temporal, prefrontal, and parietal regions. Further-
more, Wegbreit et al. [12] found that patients whose right amygdala functional connectivity
improved after therapy exhibited a decreased YMRS score. Estudillo-Guerra et al. [41]
demonstrated that a significant decrease in YMRS scores is associated with perfusion in the
orbitofrontal cortex.

In addition to the functional connectivity of the subcortical, cerebellar, and medial
frontal regions, the major features were also present in the within- and between-network
connectivity of the MON, which was also vital for predicting the symptom and function-
ing scores of BD. Two studies of the Research Domain Criteria [42] have indicated that
the within-network connectivity of the MON and the between-network connectivity of
the MON and other subcortical regions, such as the caudate, thalamus, and cerebellum,
play an essential role in general psychopathology, cognitive dysfunction, and impulsivity
across multiple psychiatric disorders [43]. Moreover, Conio et al. [44] demonstrated that
dopaminergic and serotonergic pathways modulate the balance of functional connectivity
in sensorimotor regions and the DMN. Moreover, altered biochemical modulation induces
dysconnectivity in these networks, which results in the occurrence of different states of BD.
In addition to the relationships of BD with the SC and MFN, the relationship between the
MON and BD is crucial.

Because the feature for predicting the YMRS, namely the functional connectivity
between the left postcentral cortex and left superior parietal cortex, exhibited significant
negative correlation with the CRP in the present study, a relationship existed between
sensorimotor connectivity and inflammation. This finding was consistent with those of
previous studies that have showed that plasma metabolic and inflammatory markers
are negatively correlated with functional connectivity involving the reward and motor
circuits [45,46]. The aforementioned finding also indicated that the pathways in the reward
and motor circuits were sensitive to inflammation. CRP is an acute-phase protein that is
produced in response to inflammatory stimuli. It aggravates gliosis, which is a reaction
to damage caused to the brain, by releasing interleukins and reducing the synthesis of
brain-derived neurotrophic factors, which support neuron survival and growth and thus
contribute to neuronal damage [47]. In a previous study, CRP levels were found to be
moderately correlated with BD in patients with depression and euthymia but highly
correlated with BD in patients with mania [47]. However, no inflammatory markers were
selected as features for predicting changes in symptom scores in this study; thus, the
obtained results may have been caused by the heterogeneity of the patients. In previous
studies, elevated CRP levels have been found only in patients with atypical depression and
not in patients with typical depression [48,49].

The present study has several limitations. First, in this study, the changes in symptom
and functioning scores were predicted in a naturalistic sample by using neurobiological
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markers; thus, most of the participants had been treated with medication. However, a
significant difference in a major feature was only found when predicting the change in the
YMRS score between patients who had and who had not taken antipsychotics. Second, the
feature selection process for the prediction of the changes in symptom and functioning
scores was conducted for all samples; thus, double dipping was not avoided [50]. No
independent test dataset was included during the development of the prediction models.
However, the main purpose of the present study was not to develop an effective model for
assisting the prognosis of BD but to investigate essential neurobiological markers. Third,
only minor changes were observed in the symptom and functioning scores within a 1-year
interval among the patients recruited in the present study; therefore, their status was
relatively stable. The neurobiological markers used for predicting the score changes in the
present study may not be available in patients with pronounced changes in symptom and
functioning scores.
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