Transcription Factors and ncRNAs Associated with CYP3A Expression in Human Liver and Small Intestine Assessed with Weighted Gene Co-Expression Network Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. GTEx v8 Data and Data Pre-Process
2.2. Construction of WGCNA Network and Detection of Modules
2.3. Function Enrichment Analysis in Target Modules
2.4. Identification of TFs and ncRNAs Co-Expressed with CYP3As in Target Modules
2.5. Functional Annotation of TFs and ncRNAs Co-Expressed with CYP3As in Target Modules
2.6. Multiple Stepwise Regression Analysis
3. Results
3.1. Construction of the WGCNA Network and Expression Modules
3.2. Identification of TFs and ncRNAs Co-Expressed with CYP3As in Target Modules
3.3. Functional Enrichment Analysis in Target Modules
3.4. Comparison of CYP3A Associated TFs in the Liver and Small Intestine with and without ncRNAs
3.5. Comparison of CYP3A-Associated TFs and ncRNAs between Three CYP3As in the Liver and Small Intestine
3.6. Comparison of CYP3A Expression Network between Liver and Small Intestines
3.7. Multiple Stepwise Regression Analysis for the Association with CYP3A4,5,7 RNA Expression Values
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hohmann, N.; Haefeli, W.E.; Mikus, G. CYP3A activity: Towards dose adaptation to the individual. Expert Opin. Drug Metab. Toxicol. 2016, 12, 479–497. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.C.; Edwards, R.J.; Boobis, A.R.; Ingelman-Sundberg, M. CYP3A7 Protein Expression Is High in a Fraction of Adult Human Livers and Partially Associated with the CYP3A7*1C Allele. Pharm. Genom. 2005, 15, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Lolodi, O.; Wang, Y.M.; Wright, W.C.; Chen, T. Differential Regulation of CYP3A4 and CYP3A5 and its Implication in Drug Discovery. Curr. Drug Metab. 2017, 18, 1095–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, H.; Nie, Y.L.; Li, J.F.; Meng, X.G.; Yang, W.H.; Chen, Y.L.; Wang, S.J.; Ma, X.; Kan, Q.C.; Zhang, L.R. Developmental regulation of CYP3A4 and CYP3A7 in Chinese Han population. Drug Metab. Pharmacokinet. 2016, 31, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, B.; Molony, C.; Chudin, E.; Hao, K.; Zhu, J.; Gaedigk, A.; Suver, C.; Zhong, H.; Leeder, J.S.; et al. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res. 2010, 20, 1020–1036. [Google Scholar] [CrossRef] [Green Version]
- Smith, N.F.; Mani, S.; Schuetz, E.G.; Yasuda, K.; Sissung, T.M.; Bates, S.E.; Figg, W.D.; Sparreboom, A. Induction of CYP3A4 by vinblastine: Role of the nuclear receptor NR1I2. Ann. Pharmacother. 2010, 44, 1709–1717. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Lu, R.; Rempala, G.; Sadee, W. Ligand-Free Estrogen Receptor α (ESR1) as Master Regulator for the Expression of CYP3A4 and Other Cytochrome P450 Enzymes in the Human Liver. Mol. Pharmacol. 2019, 96, 430–440. [Google Scholar] [CrossRef]
- Collins, J.M.; Wang, D. Cis-acting regulatory elements regulating CYP3A4 transcription in human liver. Pharm. Genom. 2020, 30, 107–116. [Google Scholar] [CrossRef]
- Zhong, S.; Han, W.; Hou, C.; Liu, J.; Wu, L.; Liu, M.; Liang, Z.; Lin, H.; Zhou, L.; Liu, S.; et al. Relation of Transcriptional Factors to the Expression and Activity of Cytochrome P450 and UDP-Glucuronosyltransferases 1A in Human Liver: Co-Expression Network Analysis. AAPS J. 2017, 19, 203–214. [Google Scholar] [CrossRef]
- Long, Y.; Wang, X.; Youmans, D.T.; Cech, T.R. How do lncRNAs regulate transcription? Sci. Adv. 2017, 3, eaao2110. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.S.; Dowling, A.L.; Quigley, S.D.; Farin, F.M.; Zhang, J.; Lamba, J.; Schuetz, E.G.; Thummel, K.E. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol. Pharmacol. 2002, 62, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-Coding RNAs and their Integrated Networks. J. Integr. Bioinform. 2019, 16, 20190027. [Google Scholar] [CrossRef]
- He, W.; Wei, D.; Cai, D.; Chen, S.; Li, S.; Chen, W. Altered Long Non-Coding RNA Transcriptomic Profiles in Ischemic Stroke. Hum. Gene Ther. 2018, 29, 719–732. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Pei, G.; Chen, L.; Zhang, W. WGCNA Application to Proteomic and Metabolomic Data Analysis. Methods Enzymol. 2017, 585, 135–158. [Google Scholar]
- Zheng, S.; Tansey, W.P.; Hiebert, S.W.; Zhao, Z. Integrative network analysis identifies key genes and pathways in the progression of hepatitis C virus induced hepatocellular carcinoma. BMC Med. Genom. 2011, 4, 62. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Cui, Y.; Ding, X.; Liu, S.; Han, B.; Duan, X.; Zhang, H.; Sun, T. Analysis of mRNA-lncRNA and mRNA-lncRNA-pathway co-expression networks based on WGCNA in developing pediatric sepsis. Bioengineered 2021, 12, 1457–1470. [Google Scholar] [CrossRef]
- Yin, X.; Wang, P.; Yang, T.; Li, G.; Teng, X.; Huang, W.; Yu, H. Identification of key modules and genes associated with breast cancer prognosis using WGCNA and ceRNA network analysis. Aging 2020, 13, 2519–2538. [Google Scholar] [CrossRef]
- Yin, L.; Cai, Z.; Zhu, B.; Xu, C. Identification of Key Pathways and Genes in the Dynamic Progression of HCC Based on WGCNA. Genes 2018, 9, 92. [Google Scholar] [CrossRef] [Green Version]
- Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef]
- Somekh, J.; Shen-Orr, S.S.; Kohane, I.S. Batch correction evaluation framework using a-priori gene-gene associations: Applied to the GTEx dataset. BMC Bioinform. 2019, 20, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankish, A.; Diekhans, M.; Ferreira, A.M.; Johnson, R.; Jungreis, I.; Loveland, J.; Mudge, J.M.; Sisu, C.; Wright, J.; Armstrong, J.; et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019, 47, D766–D773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Miao, Y.R.; Jia, L.H.; Yu, Q.Y.; Zhang, Q.; Guo, A.Y. AnimalTFDB 3.0: A comprehensive resource for annotation and prediction of animal transcription factors. Nucleic Acids Res. 2019, 47, D33–D38. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- RNAcentral Consortium. RNAcentral 2021: Secondary structure integration, improved sequence search and new member databases. Nucleic Acids Res. 2021, 49, D212–D220. [Google Scholar] [CrossRef]
- Banerjee, M.; Chen, T. Differential Regulation of CYP3A4 Promoter Activity by a New Class of Natural Product Derivatives Binding to Pregnane X Receptor. Biochem. Pharmacol. 2013, 86, 824–835. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Yao, N.; Wu, J.; Liu, M.; Liu, F.; Zhang, H.; Xiong, Y.; Xia, C. Constitutive androstane receptor weakens the induction of panaxytriol on CYP3A4 by repressing the activation of pregnane X receptor. Biochem. Pharmacol. 2019, 159, 32–39. [Google Scholar] [CrossRef]
- Chen, L.; Bao, Y.; Piekos, S.C.; Zhu, K.; Zhang, L.; Zhong, X.B. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells. Mol. Pharmacol. 2018, 94, 749–759. [Google Scholar] [CrossRef]
- Chen, L.; Wang, P.; Manautou, J.E.; Zhong, X.B. Knockdown of Long Noncoding RNAs Hepatocyte Nuclear Factor 1α Antisense RNA 1 and Hepatocyte Nuclear Factor 4α Antisense RNA 1 Alters Susceptibility of Acetaminophen-Induced Cytotoxicity in HepaRG Cells. Mol. Pharmacol. 2020, 97, 278–286. [Google Scholar] [CrossRef]
- Wang, P.; Chen, S.; Wang, Y.; Wang, X.; Yan, L.; Yang, K.; Zhong, X.B.; Han, S.; Zhang, L. The Long Noncoding RNA Hepatocyte Nuclear Factor 4α Antisense RNA 1 Negatively Regulates Cytochrome P450 Enzymes in Huh7 Cells via Histone Modifications. Drug Metab. Dispos. 2021, 49, 361–368. [Google Scholar] [CrossRef]
- Wang, X.; Yu, Y.; Wang, P.; Yang, K.; Wang, Y.; Yan, L.; Zhong, X.B.; Zhang, L. Long Noncoding RNAs Hepatocyte Nuclear Factor 4A Antisense RNA 1 and Hepatocyte Nuclear Factor 1A Antisense RNA 1 Are Involved in Ritonavir-Induced Cytotoxicity in Hepatoma Cells. Drug Metab. Dispos. 2022, 50, 704–715. [Google Scholar] [CrossRef]
- Engreitz, J.M.; Haines, J.E.; Perez, E.M.; Munson, G.; Chen, J.; Kane, M.; McDonel, P.E.; Guttman, M.; Lander, E.S. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 2016, 539, 452–455. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Mo, M.; Tan, H.J.J.; Tan, C.; Zeng, X.; Zhang, G.; Huang, D.; Liang, J.; Liu, S.; Qiu, X. LINC02499, a novel liver-specific long non-coding RNA with potential diagnostic and prognostic value, inhibits hepatocellular carcinoma cell proliferation, migration, and invasion. Hepatol. Res. 2020, 50, 726–740. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Matthaei, J.; Bonat, W.H.; Kerb, R.; Tzvetkov, M.V.; Strube, J.; Brunke, S.; Sachse-Seeboth, C.; Sehrt, D.; Hofmann, U.; von Bornemann Hjelmborg, J.; et al. Inherited and Acquired Determinants of Hepatic CYP3A Activity in Humans. Front. Genet. 2020, 11, 944. [Google Scholar] [CrossRef]
- Xie, H.G.; Wood, A.J.; Kim, R.B.; Stein, C.M.; Wilkinson, G.R. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics 2004, 5, 243–272. [Google Scholar] [CrossRef]
- Chen, D.; Lu, H.; Sui, W.; Li, L.; Xu, J.; Yang, T.; Yang, S.; Zheng, P.; Chen, Y.; Chen, J.; et al. Functional CYP3A variants affecting tacrolimus trough blood concentrations in Chinese renal transplant recipients. Pharmacogenomics J. 2021, 21, 376–389. [Google Scholar] [CrossRef]
- Yin, J.; Li, F.; Zhou, Y.; Mou, M.; Lu, Y.; Chen, K.; Xue, J.; Luo, Y.; Fu, J.; He, X.; et al. INTEDE: Interactome of drug-metabolizing enzymes. Nucleic Acids Res. 2021, 49, D1233–D1243. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Jiang, S.; Zhang, Y.; Wang, X.; Peng, X.; Meng, C.; Liu, Y.; Wang, H.; Guo, L.; Qin, S.; et al. The effect of microRNAs in the regulation of human CYP3A4: A systematic study using a mathematical model. Sci. Rep. 2014, 4, 4283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.Z.; Gao, W.; Yu, A.M. MicroRNAs regulate CYP3A4 expression via direct and indirect targeting. Drug Metab. Dispos. 2009, 37, 2112–2117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, S.; Nakajima, M.; Kida, K.; Yamaura, Y.; Fukami, T.; Yokoi, T. MicroRNAs regulate human hepatocyte nuclear factor 4alpha, modulating the expression of metabolic enzymes and cell cycle. J. Biol. Chem. 2010, 285, 4415–4422. [Google Scholar] [CrossRef] [Green Version]
- Takagi, S.; Nakajima, M.; Mohri, T.; Yokoi, T. Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J. Biol. Chem. 2008, 283, 9674–9680. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.F.; Zhu, L.L.; Yang, X.B.; Gao, N.; Fang, Y.; Wen, Q.; Qiao, H.L. Variation in the expression of cytochrome P450-related miRNAs and transcriptional factors in human livers: Correlation with cytochrome P450 gene phenotypes. Toxicol. Appl. Pharmacol. 2021, 412, 115389. [Google Scholar] [CrossRef]
Liver (Mean ± SD) | Small Intestine (Mean ± SD) | |
---|---|---|
Total number (n) | 193 | 175 |
Age (years) | 54.48 ± 11.04 | 47.66 ± 13.63 |
Sex (male/female) (n) | 131/62 | 109/66 |
Race(White/Black/Asian/unknown) | 169/19/4/1 | 144/27/2/2 |
Height (in) | 68.11 ± 3.74 | 67.57 ± 3.80 |
Weight (lb) | 179.03 ± 36.15 | 179.62 ± 34.47 |
BMI (kg/m2) | 26.97 ± 4.14 | 27.51 ± 3.98 |
Liver diseases (Yes/No) | 3/190 | 3/172 |
Gastrointestinal diseases (Yes/No) | 0/193 | 0/175 |
Total number of genes (n) | 56,200 | |
Protein-coding genes (n) a | 19,646 | |
Pseudogenes (n) a | 14,897 | |
To be Experimentally Confirmed (TEC) a | 1008 | |
Unidentified genes (n) b | 497 | |
NcRNAs (n) a,c | 20,152 | |
Long non-coding RNAs (lncRNA) (n) a,d | 13,731 | |
MicroRNAs precursors (miRNA) (n) a,d | 1576 | |
Miscellaneous other RNAs (misc_RNA) (n) a,d | 2007 | |
Small nuclear RNAs (snRNA) (n) a,d | 1864 | |
Small nucleolar RNAs (snoRNA) (n) a,d | 847 | |
Ribosomal RNAs (rRNA) (n) a,d | 51 | |
Small Cajal body-specific RNAs (scaRNA) (n) a,d | 40 | |
Mitochondrial transfer RNAs (Mt_tRNA) (n) a,d | 22 | |
Mitochondrial ribosomal RNAs (Mt_rRNA) (n) a,d | 2 | |
Ribozymes (n) a,d | 6 | |
Small non-coding RNAs (sRNA) (n) a,d | 4 | |
Small cytoplasmic RNA (scRNA) (n) a,d | 1 | |
VaultRNA (vtRNA) (n) a,d | 1 |
Group | Tissue | Gene Type | Module | Module Size | CYP3A | Number of TFs | Number of ncRNAs |
---|---|---|---|---|---|---|---|
Group 1 | Liver | All genes | Turquoise | 3103 | CYP3A4, 3A5 and 3A7 | 161 | 390 lncRNAs and 5 miRNAs |
Group 2 | Small intestine | All genes | Turquoise | 4866 | CYP3A4 and 3A5 | 339 | 658 lncRNAs and 3 miRNAs |
Red | 1437 | CYP3A7 | 55 | 257 lncRNAs and 4 miRNAs | |||
Group 3 | Liver | Protein coding genes | Turquoise | 3090 | CYP3A5 and 3A7 | 223 | NA |
Blue | 1991 | CYP3A4 | 109 | NA | |||
Group 4 | Small intestine | Protein coding genes | Blue | 4078 | CYP3A4 and 3A5 | 358 | NA |
Green | 1809 | CYP3A7 | 83 | NA |
Liver (n = 193) | |||||||
---|---|---|---|---|---|---|---|
Dependent Variable | Independent Variable | Type | R-Square | p-Value | R-Square Change | Beta | p-Value |
CYP3A4 | 68.11% | 3.19 × 10−36 | |||||
ESR1 | humanTF | 36.36% | 0.488 | 1.44 × 10−9 | |||
DBH-AS1 | lncRNA | 0.80% | −0.462 | 1.23 × 10−6 | |||
AL161668.4 | lncRNA | 2.17% | −0.411 | 3.74 × 10−6 | |||
AC008537.3 | lncRNA | 1.94% | 0.334 | 3.88 × 10−6 | |||
HNF4A-AS1 | lncRNA | 2.60% | 0.515 | 5.18 × 10−6 | |||
AC027682.6 | lncRNA | 2.48% | −0.346 | 1.29 × 10−4 | |||
HIF1A | humanTF | 0.86% | −0.262 | 1.84 × 10−3 | |||
AC004160.2 | lncRNA | 3.95% | 0.186 | 2.75 × 10−3 | |||
LINC02499 | lncRNA | 2.59% | −0.266 | 6.23 × 10−3 | |||
CTD-2325A15.5 | lncRNA | 1.46% | −0.172 | 1.12 × 10−2 | |||
AC122713.2 | lncRNA | 0.94% | −0.179 | 1.13 × 10−2 | |||
ZNF385B | humanTF | 0.79% | 0.234 | 1.82 × 10−2 | |||
AL359715.3 | lncRNA | 0.84% | 0.146 | 2.11 × 10−2 | |||
HMGB3 | humanTF | 0.82% | −0.159 | 3.40 × 10−2 | |||
ZGPAT | humanTF | 0.73% | 0.221 | 3.53 × 10−2 | |||
CYP3A5 | 69.52% | 2.10 × 10−39 | |||||
LINC02499 | lncRNA | 48.48% | 0.514 | 3.84 × 10−8 | |||
AL161668.4 | lncRNA | 1.50% | −0.407 | 9.04 × 10−7 | |||
HLF | humanTF | 2.48% | 0.302 | 2.16 × 10−4 | |||
CTD-2325A15.5 | lncRNA | 1.77% | −0.242 | 2.49 × 10−4 | |||
AL122035.2 | lncRNA | 0.71% | 0.211 | 9.84 × 10−4 | |||
HMGB3 | humanTF | 1.19% | −0.214 | 2.67 × 10−3 | |||
ZNF680 | humanTF | 0.86% | −0.203 | 3.44 × 10−3 | |||
NFYC | humanTF | 0.74% | 0.174 | 8.33 × 10−3 | |||
AC008537.3 | lncRNA | 0.99% | 0.179 | 1.11 × 10−2 | |||
NR1I2 | humanTF | 0.41% | 0.187 | 1.86 × 10−2 | |||
GCFC2 | humanTF | 2.01% | 0.157 | 2.45 × 10−2 | |||
ZNF473 | humanTF | 0.62% | 0.146 | 2.48 × 10−2 | |||
AC137056.1 | lncRNA | 0.47% | −0.142 | 3.26 × 10−2 | |||
CYP3A7 | 44.52% | 1.64 × 10−19 | |||||
HNF4A-AS1 | lncRNA | 23.84% | 0.875 | 1.84 × 10−8 | |||
DCXR-DT | lncRNA | 4.53% | −0.447 | 3.24 × 10−5 | |||
AL161668.4 | lncRNA | 2.32% | −0.431 | 8.09 × 10−5 | |||
AL117382.3 | lncRNA | 1.52% | −0.267 | 1.83 × 10−2 | |||
AL513327.1 | lncRNA | 1.98% | −0.169 | 2.49 × 10−2 | |||
AC104809.1 | lncRNA | 1.48% | 0.193 | 2.88 × 10−2 | |||
AC083841.1 | lncRNA | 1.44% | 0.186 | 3.04 × 10−2 | |||
NR3C2 | humanTF | 2.48% | 0.154 | 7.77 × 10−2 | |||
RP11-669E14.4 | lncRNA | 4.94% | 0.151 | 9.43 × 10−2 | |||
Small Intestine (n = 175) | |||||||
Dependent Variable | Independent Variable | Type | R-Square | p-Value | R-Square change | Beta | p-Value |
CYP3A4 | 95.67% | 3.18 × 10−101 | |||||
NR1I2 | humanTF | 1.46% | 0.937 | 1.05 × 10−13 | |||
CREB3L3 | humanTF | 2.34% | 0.427 | 1.28 × 10−8 | |||
LOC102724153 | lncRNA | 83.59% | 0.362 | 5.84 × 10−7 | |||
FOXA3 | humanTF | 1.52% | −0.323 | 1.23 × 10−5 | |||
BARX2 | humanTF | 0.91% | −0.293 | 2.24 × 10−5 | |||
CTD-2547H18.1 | lncRNA | 0.63% | 0.207 | 1.03 × 10−4 | |||
GATA6 | humanTF | 0.19% | 0.186 | 1.49 × 10−4 | |||
LINC02323 | lncRNA | 3.60% | −0.198 | 1.95 × 10−4 | |||
OVOL2 | humanTF | 0.21% | −0.298 | 3.63 × 10−4 | |||
RP11-284F21.10 | lncRNA | 0.20% | −0.214 | 1.93 × 10−3 | |||
SPINT1-AS1 | lncRNA | 0.17% | 0.209 | 3.36 × 10−3 | |||
LINC02313 | lncRNA | 0.28% | 0.121 | 4.17 × 10−3 | |||
LOC105375431 | lncRNA | 0.43% | −0.123 | 1.60 × 10−2 | |||
MNX1-AS2 | lncRNA | 0.15% | −0.116 | 1.93 × 10−2 | |||
CYP3A5 | 98.09% | 7.01 × 10−127 | |||||
NR1I2 | humanTF | 0.64% | 0.771 | 2.67 × 10−22 | |||
RP11-63P12.7 | lncRNA | 1.64% | 0.255 | 4.15 × 10−11 | |||
MLXIPL | humanTF | 0.55% | 0.132 | 1.13 × 10−9 | |||
HNF1B | humanTF | 0.28% | 0.409 | 4.42 × 10−9 | |||
RP3-523K23.2 | lncRNA | 0.15% | −0.264 | 1.94 × 10−6 | |||
ZBTB7B | humanTF | 0.20% | −0.190 | 1.25 × 10−5 | |||
KBTBD11-OT1 | lncRNA | 0.14% | −0.137 | 1.29 × 10−5 | |||
RP11-150O12.3 | lncRNA | 0.25% | −0.143 | 1.07 × 10−4 | |||
RP11-284F21.9 | lncRNA | 0.30% | 0.127 | 7.77 × 10−4 | |||
TBILA | lncRNA | 0.12% | 0.121 | 1.46 × 10−3 | |||
TBX10 | humanTF | 0.38% | −0.107 | 3.69 × 10−3 | |||
RP11-284F21.10 | lncRNA | 0.08% | −0.138 | 7.97 × 10−3 | |||
LINC00543 | lncRNA | 0.35% | −0.093 | 8.63 × 10−3 | |||
MNX1 | humanTF | 0.08% | 0.122 | 1.33 × 10−2 | |||
RP13-497K6.1 | lncRNA | 0.11% | 0.050 | 1.52 × 10−2 | |||
LOC100128770 | lncRNA | 0.05% | 0.074 | 4.77 × 10−2 | |||
CYP3A7 | 80.38% | 4.53 × 10−50 | |||||
RP11-94C24.13 | lncRNA | 6.16% | 0.470 | 5.77 × 10−9 | |||
FOXD1 | humanTF | 2.04% | −0.347 | 3.14 × 10−7 | |||
NR6A1 | humanTF | 0.91% | 0.367 | 2.38 × 10−4 | |||
NR3C2 | humanTF | 2.01% | 0.307 | 2.40 × 10−4 | |||
ONECUT3 | humanTF | 0.77% | −0.209 | 8.86 × 10−4 | |||
RP11-503C24.6 | lncRNA | 62.50% | 0.345 | 9.47 × 10−4 | |||
RP11-794G24.1 | lncRNA | 1.78% | −0.234 | 1.50 × 10−3 | |||
ZNF664 | humanTF | 0.82% | −0.225 | 1.94 × 10−3 | |||
RP11-459I19.1 | lncRNA | 0.76% | −0.212 | 2.21 × 10−3 | |||
EGFR-AS1 | lncRNA | 0.60% | 0.310 | 5.12 × 10−3 | |||
LOC105373958 | lncRNA | 0.65% | 0.180 | 5.81 × 10−3 | |||
RAG1 | humanTF | 0.69% | 0.190 | 1.04 × 10−2 | |||
RP11-211N11.5 | lncRNA | 0.70% | −0.164 | 1.78 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Zhang, S.; Wen, X.; Sadee, W.; Wang, D.; Yang, S.; Li, L. Transcription Factors and ncRNAs Associated with CYP3A Expression in Human Liver and Small Intestine Assessed with Weighted Gene Co-Expression Network Analysis. Biomedicines 2022, 10, 3061. https://doi.org/10.3390/biomedicines10123061
Huang H, Zhang S, Wen X, Sadee W, Wang D, Yang S, Li L. Transcription Factors and ncRNAs Associated with CYP3A Expression in Human Liver and Small Intestine Assessed with Weighted Gene Co-Expression Network Analysis. Biomedicines. 2022; 10(12):3061. https://doi.org/10.3390/biomedicines10123061
Chicago/Turabian StyleHuang, Huina, Siqi Zhang, Xiaozhen Wen, Wolfgang Sadee, Danxin Wang, Siyao Yang, and Liang Li. 2022. "Transcription Factors and ncRNAs Associated with CYP3A Expression in Human Liver and Small Intestine Assessed with Weighted Gene Co-Expression Network Analysis" Biomedicines 10, no. 12: 3061. https://doi.org/10.3390/biomedicines10123061
APA StyleHuang, H., Zhang, S., Wen, X., Sadee, W., Wang, D., Yang, S., & Li, L. (2022). Transcription Factors and ncRNAs Associated with CYP3A Expression in Human Liver and Small Intestine Assessed with Weighted Gene Co-Expression Network Analysis. Biomedicines, 10(12), 3061. https://doi.org/10.3390/biomedicines10123061