Monoclonal Antibodies and Antivirals against SARS-CoV-2 Reduce the Risk of Long COVID: A Retrospective Propensity Score-Matched Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Eligibility of Patients to Early Therapy with mAbs or Antivirals
2.3. Follow-Up and Definition of Long COVID
2.4. Statistical Analysis
3. Results
3.1. Study Population and Occurrence of Long COVID
3.2. Determinants of Long COVID
3.3. Propensity-Score-Matched Case-Control Comparison
4. Discussion
Study Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gandhi, R.T.; Lynch, J.B.; Del Rio, C. Mild or Moderate COVID-19. N. Engl. J. Med. 2020, 383, 1757–1766. [Google Scholar] [CrossRef] [PubMed]
- Berlin, D.A.; Gulick, R.M.; Martinez, F.J. Severe COVID-19. N. Engl. J. Med. 2020, 383, 2451–2460. [Google Scholar] [CrossRef]
- Blann, A.D.; Heitmar, R. SARS-CoV-2 and COVID-19: A Narrative Review. Br. J. Biomed. Sci. 2022, 79, 10426. [Google Scholar] [CrossRef] [PubMed]
- Stratton, C.W.; Tang, Y.W.; Lu, H. Pathogenesis-directed therapy of 2019 novel coronavirus disease. J. Med. Virol. 2021, 93, 1320–1342. [Google Scholar] [CrossRef]
- Hirsch, C.; Park, Y.S.; Piechotta, V.; Chai, K.L.; Estcourt, L.J.; Monsef, I.; Salomon, S.; Wood, E.M.; So-Osman, C.; McQuilten, Z.; et al. SARS-CoV-2-neutralising monoclonal antibodies to prevent COVID-19. Cochrane Database Syst. Rev. 2022, 6, CD014945. [Google Scholar] [PubMed]
- Saravolatz, L.D.; Depcinski, S.; Sharma, M. Molnupiravir and Nirmatrelvir-Ritonavir: Oral COVID Antiviral Drugs. Clin. Infect. Dis. 2022, ciac180. [Google Scholar] [CrossRef] [PubMed]
- Dougan, M.; Nirula, A.; Azizad, M.; Mocherla, B.; Gottlieb, R.L.; Chen, P.; Hebert, C.; Perry, R.; Boscia, J.; Heller, B.; et al. BLAZE-1 Investigators. Bamlanivimab plus Etesevimab in Mild or Moderate COVID-19. N. Engl. J. Med. 2021, 385, 1382–1392. [Google Scholar] [CrossRef]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Xiao, J.; Hooper, A.T.; Hamilton, J.D.; Musser, B.J.; et al. Trial Investigators. REGEN-COV Antibody Combination and Outcomes in Outpatients with COVID-19. N. Engl. J. Med. 2021, 385, e81. [Google Scholar] [CrossRef]
- Gupta, A.; Gonzalez-Rojas, Y.; Juarez, E.; Crespo Casal, M.; Moya, J.; Falci, D.R.; Sarkis, E.; Solis, J.; Zheng, H.; Scott, N.; et al. COMET-ICE Investigators. Early Treatment for COVID-19 with SARS-CoV-2 Neutralizing Antibody Sotrovimab. N. Engl. J. Med. 2021, 385, 1941–1950. [Google Scholar] [CrossRef]
- Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco, Y.; Williams-Diaz, A.; Brown, M.L.; et al. MOVe-OUT Study Group. Molnupiravir for Oral Treatment of COVID-19 in Nonhospitalized Patients. N. Engl. J. Med. 2022, 386, 509–520. [Google Scholar] [CrossRef]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. EPIC-HR Investigators. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Michelen, M.; Manoharan, L.; Elkheir, N.; Cheng, V.; Dagens, A.; Hastie, C.; O’Hara, M.; Suett, J.; Dahmash, D.; Bugaeva, P.; et al. Characterising long COVID: A living systematic review. BMJ Glob. Health 2021, 6, e005427. [Google Scholar] [CrossRef]
- Deer, R.R.; Rock, M.A.; Vasilevsky, N.; Carmody, L.; Rando, H.; Anzalone, A.J.; Basson, M.D.; Bennett, T.D.; Bergquist, T.; Boudreau, E.A.; et al. Characterizing Long COVID: Deep Phenotype of a Complex Condition. EBioMedicine 2021, 74, 103722. [Google Scholar] [CrossRef]
- Mnatzaganian, G.; Davidson, D.C.; Hiller, J.E.; Ryan, P. Propensity score matching and randomization. J. Clin. Epidemiol. 2015, 68, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Daitch, V.; Yelin, D.; Awwad, M.; Guaraldi, G.; Milić, J.; Mussini, C.; Falcone, M.; Tiseo, G.; Carrozzi, L.; Pistelli, F.; et al. ESCMID study group for infections in the elderly (ESGIE). Characteristics of long COVID among older adults: A cross-sectional study. Int. J. Infect. Dis. 2022; in press. [Google Scholar]
- Floridia, M.; Grassi, T.; Giuliano, M.; Tiple, D.; Pricci, F.; Villa, M.; Silenzi, A.; Onder, G. Characteristics of Long-COVID care centers in Italy. A national survey of 124 clinical sites. Front. Public Health 2022, 10, 975527. [Google Scholar] [CrossRef] [PubMed]
- Spinicci, M.; Vellere, I.; Graziani, L.; Tilli, M.; Borchi, B.; Mencarini, J.; Campolmi, I.; Gori, L.; Rasero, L.; Fattirolli, F.; et al. Careggi Post-acute COVID-19 Study Group. Clinical and Laboratory Follow-up After Hospitalization for COVID-19 at an Italian Tertiary Care Center. Open Forum Infect. Dis. 2021, 8, ofab049. [Google Scholar] [CrossRef]
- Ko, J.Y.; Danielson, M.L.; Town, M.; Derado, G.; Greenlund, K.J.; Kirley, P.D.; Alden, N.B.; Yousey-Hindes, K.; Anderson, E.J.; Ryan, P.A.; et al. COVID-NET Surveillance Team. Risk Factors for Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization: COVID-19-Associated Hospitalization Surveillance Network and Behavioral Risk Factor Surveillance System. Clin. Infect. Dis. 2021, 72, e695–e703. [Google Scholar] [CrossRef]
- Cheng, D.O.; Hurst, J.R. COVID-19 and ‘basal’ exacerbation frequency in COPD. Thorax 2021, 76, 432–433. [Google Scholar] [CrossRef]
- Salciccioli, J.D.; She, L.; Tulchinsky, A.; Rockhold, F.; Cardet, J.C.; Israel, E. Effect of COVID-19 on asthma exacerbation. J. Allergy Clin. Immunol. Pract. 2021, 9, 2896–2899.e1. [Google Scholar] [CrossRef]
- Wollborn, J.; Karamnov, S.; Fields, K.G.; Yeh, T.; Muehlschlegel, J.D. COVID-19 increases the risk for the onset of atrial fibrillation in hospitalized patients. Sci. Rep. 2022, 12, 12014. [Google Scholar] [CrossRef] [PubMed]
- Ates, O.; Yilmaz, I.; Karaarslan, N.; Ersoz, E.; Hacioglu Kasim, F.B.; Dogan, M.; Ozbek, H. Coexistence of SARS-CoV-2 and cerebrovascular diseases: Does COVID-19 positivity trigger cerebrovascular pathologies? J. Infect. Dev. Ctries 2022, 16, 981–992. [Google Scholar] [CrossRef]
- Taxonera, C.; Fisac, J.; Alba, C. Can COVID-19 Trigger De Novo Inflammatory Bowel Disease? Gastroenterology 2021, 160, 1029–1030. [Google Scholar] [CrossRef] [PubMed]
- Korompoki, E.; Gavriatopoulou, M.; Fotiou, D.; Ntanasis-Stathopoulos, I.; Dimopoulos, M.A.; Terpos, E. Late-onset hematological complications post COVID-19: An emerging medical problem for the hematologist. Am. J. Hematol. 2022, 97, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Aram, K.; Patil, A.; Goldust, M.; Rajabi, F. COVID-19 and exacerbation of dermatological diseases: A review of the available literature. Dermatol. Ther. 2021, 34, e15113. [Google Scholar] [CrossRef]
- Ashraf, S.; Imran, M.A.; Ashraf, S.; Hafsa, H.T.; Khalid, S.; Akram, M.K.; Ghufran, M.; Cheema, K.K.; Ahmad, A.; Izhar, M. COVID-19: A Potential Trigger for Thyroid Dysfunction. Am. J. Med. Sci. 2021, 362, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Buicu, A.L.; Cernea, S.; Benedek, I.; Buicu, C.F.; Benedek, T. Systemic Inflammation and COVID-19 Mortality in Patients with Major Noncommunicable Diseases: Chronic Coronary Syndromes, Diabetes and Obesity. Clin. Med. 2021, 10, 1545. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.X.; Tyagi, T.; Jain, K.; Gu, V.W.; Lee, S.H.; Hwa, J.M.; Kwan, J.M.; Krause, D.S.; Lee, A.I.; Halene, S.; et al. Thrombocytopathy and endotheliopathy: Crucial contributors to COVID-19 thromboinflammation. Nat. Rev. Cardiol. 2021, 18, 194–209. [Google Scholar] [CrossRef] [PubMed]
- Notarte, K.I.; Catahay, J.A.; Velasco, J.V.; Pastrana, A.; Ver, A.T.; Pangilinan, F.C.; Peligro, P.J.; Casimiro, M.; Guerrero, J.J.; Gellaco, M.M.L.; et al. Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: A systematic review. EClinicalMedicine 2022, 53, 101624. [Google Scholar] [CrossRef]
Variables | All n = 737 | Long COVID − n = 533 | Long COVID + n = 204 | p |
---|---|---|---|---|
Gender, M/F | 376/361 | 292/241 | 84/120 | 0.001 |
Age, yrs | 65.16 ± 13.46 | 63.77 ± 13.71 | 68.79 ± 12.08 | <0.001 |
Hypertension, n (%) | 571 (78) | 402 (75) | 169 (83) | 0.031 |
CAD, n (%) | 167 (23) | 116 (22) | 51 (25) | 0.376 |
Atrial Fibrillation, n (%) | 131(18) | 93 (18) | 38 (19) | 0.747 |
Heart Failure, n (%) | 110 (15) | 82 (15) | 28 (14) | 0.644 |
Diabetes, n (%) | 249 (34) | 167 (31) | 82 (40) | 0.024 |
Obesity, n (%) | 240 (33) | 165 (31) | 75 (37) | 0.136 |
COPD/Asthma/ILD, n (%) | 114 (16) | 84 (16) | 30 (15) | 0.820 |
Immunodeficiency, n (%) | 86 (12) | 61 (11) | 25 (12) | 0.798 |
CKD, n (%) | 51 (7) | 36 (7) | 15 (7) | 0.744 |
Comorbidities, n (%) | 0.010 | |||
0 | 31 (4) | 28 (5) | 3 (2) | |
1 | 200 (27) | 154 (29) | 46 (23) | |
2 | 238 (33) | 172 (32) | 66 (32) | |
≥3 | 268 (36) | 179 (34) | 89 (44) | |
Hospital Admission, n (%) | 32 (4) | 13 (2) | 19 (9) | <0.001 |
Vaccination, n (%) | 504 (68) | 383 (72) | 121 (59) | 0.001 |
mAbs/antivirals, n (%) | 135 (18) | 114 (22) | 21 (11) | <0.001 |
Univariate Model | Multivariate Model | |||
---|---|---|---|---|
Variables | Odds Ratio (95% CI) | p | Odds Ratio (95% CI) | p |
Age, yrs | 1.03 (1.02–1.05) | <0.001 | 1.03 (1.02–1.05) | <0.001 |
Gender, female vs. male | 1.73 (1.25–2.40) | 0.001 | 1.88 (1.33–2.67) | <0.001 |
Hospital admission, yes vs. no | 4.11 (1.99–8.48) | <0.001 | - | - |
Comorbidities | ||||
1 | - | - | - | - |
2 | 3.58 (1.05–12.18) | 0.041 | - | - |
≥3 | 4.64 (1.37–15.68) | 0.013 | 3.49 (1.00–12.07) | 0.049 |
Vaccination, yes vs. no | 0.57 (0.41–0.80) | 0.001 | 0.59 (0.41–0.85) | 0.005 |
mAbs/antivirals, yes vs. no | 0.42 (0.26–0.69) | 0.001 | 0.44 (0.26–0.74) | 0.002 |
Variables | Control (Untreated) n = 89 | Case (Treated) n = 89 | p |
---|---|---|---|
Gender, M/F | 40/49 | 39/50 | 0.880 |
Age, yrs | 65.29 ± 12.59 | 65.69 ± 12.54 | 0.832 |
Hospital admission, n (%) | 3 (4) | 3 (4) | 0.999 |
Comorbidities ≥ 3, n (%) | 17 (19) | 17 (19) | 0.999 |
Vaccination, n (%) | 61 (69) | 61 (69) | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimellaro, A.; Addesi, D.; Cavallo, M.; Spagnolo, F.; Suraci, E.; Cordaro, R.; Spinelli, I.; Passafaro, F.; Colosimo, M.; Pintaudi, M.; et al. Monoclonal Antibodies and Antivirals against SARS-CoV-2 Reduce the Risk of Long COVID: A Retrospective Propensity Score-Matched Case–Control Study. Biomedicines 2022, 10, 3135. https://doi.org/10.3390/biomedicines10123135
Cimellaro A, Addesi D, Cavallo M, Spagnolo F, Suraci E, Cordaro R, Spinelli I, Passafaro F, Colosimo M, Pintaudi M, et al. Monoclonal Antibodies and Antivirals against SARS-CoV-2 Reduce the Risk of Long COVID: A Retrospective Propensity Score-Matched Case–Control Study. Biomedicines. 2022; 10(12):3135. https://doi.org/10.3390/biomedicines10123135
Chicago/Turabian StyleCimellaro, Antonio, Desirée Addesi, Michela Cavallo, Francesco Spagnolo, Edoardo Suraci, Raffaella Cordaro, Ines Spinelli, Francesco Passafaro, Manuela Colosimo, Medea Pintaudi, and et al. 2022. "Monoclonal Antibodies and Antivirals against SARS-CoV-2 Reduce the Risk of Long COVID: A Retrospective Propensity Score-Matched Case–Control Study" Biomedicines 10, no. 12: 3135. https://doi.org/10.3390/biomedicines10123135
APA StyleCimellaro, A., Addesi, D., Cavallo, M., Spagnolo, F., Suraci, E., Cordaro, R., Spinelli, I., Passafaro, F., Colosimo, M., Pintaudi, M., Pintaudi, C., & on behalf of the CATAnzaro LOng COVID (CATALOCO) Study Group. (2022). Monoclonal Antibodies and Antivirals against SARS-CoV-2 Reduce the Risk of Long COVID: A Retrospective Propensity Score-Matched Case–Control Study. Biomedicines, 10(12), 3135. https://doi.org/10.3390/biomedicines10123135