Interorgan Metabolism of Ganglioside Is Altered in Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Characteristics
2.2. Study Design
2.3. Diet Characteristics
2.4. Sample Preparation and Chylomicron Collection
2.5. Liquid Chromatography/Triple Quad Mass Spectrometry Analysis
2.6. Statistical Methods
3. Results
3.1. Dietary Intake
3.2. Effect of Dietary Fat on Ganglioside Concentration in Plasma and the Chylomicron Fraction
3.3. Effect of Fasting and 4 h Postprandial State on Plasma Ganglioside Content in Control and Diabetic Subjects
3.4. Effect of Type 2 Diabetes and Postprandial Period on Total GD1 in Chylomicrons
3.5. Effect of Type 2 Diabetes and Postprandial Period on Mono-Unsaturated and Saturated GD1, GD3 and GM3 Species in Chylomicrons
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
T2DM | Type 2 diabetes mellitus |
LC/MS | Liquid chromatography/Mass spectrometry |
TLC | Thin Layer Chromatography |
References
- Svennerholm, L. The gangliosides. J. Lipid Res. 1964, 5, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Tettamanti, G. Ganglioside/glycosphingolipid turnover: New concepts. Glycoconj. J. 2004, 20, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Prokazova, N.; Samovilova, N.; Gracheva, E.; Golovanova, N. Ganglioside GM3 and Its Biological Functions. Biochemistry 2009, 74, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Suh, M.; Ramanujam, K.; Steiner, K.; Begg, D.; Clandinin, M.T. Diet-induced changes in membrane gangliosides in rat intestinal mucosa, plasma and brain. J. Pediatr. Gastroenterol. Nutr. 2005, 40, 487–495. [Google Scholar] [CrossRef]
- Yu, R.K.; Tsai, Y.T.; Ariga, T.; Yanagisawa, M. Structures, biosynthesis, and functions of gangliosides-an overview. J. Oleo Sci. 2011, 60, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Nihei, W.; Nagafuku, M.; Hayamizu, H.; Odagiri, Y.; Tamura, Y.; Kikuchi, Y.; Veillon, L.; Kanoh, H.; Inamori, K.; Arai, K.; et al. NPC1L1-dependent intestinal cholesterol absorption requires ganglioside GM3 in membrane microdomains. J. Lipid Res. 2018, 59, 2181–2187. [Google Scholar] [CrossRef] [Green Version]
- Owen, D. The extended postprandial phase in diabetes. Biochem. Soc. Trans. 2003, 5, 1085–1089. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, V.; Uchida, T.; Yenush, L.; Davis, R.; White, M.F. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser. J. Biol. Chem. 2000, 275, 9047–9054. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, J.; Hayashi, A.A.; Webb, J.; Adeli, K. Postprandial dyslipidemia in insulin resistance: Mechanisms and role of intestinal insulin sensitivity. Atheroscler. Suppl. 2008, 9, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Dube, N.; Delvin, E.; Yotov, W.; Garofalo, C.; Bendayan, M.; Veerkamp, J.H.; Levy, E. Modulation of intestinal and liver fatty acid-binding proteins in Caco-2 cells by lipids, hormones and cytokines. J. Cell Biochem. 2001, 81, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Miklavcic, J.J.; Shoemaker, G.K.; Schnabl, K.L.; Larsen, B.M.; Thomson, A.B.; Mazurak, V.C.; Clandinin, M.T. Ganglioside Intake Increases Plasma Ganglioside Content in Human Participants. J. Parenter. Enteral Nutr. 2015, 41, 657–666. [Google Scholar] [CrossRef]
- Dumontet, C.; Rebbaa, A.; Portoukalian, J. Kinetics and organ distribution of [14C]-sialic acid-GM3 and [3H]-sphingosine-GM1 after intravenous injection in rats. Biochem. Biophys. Res. Commun. 1992, 189, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Schnabl, K.L.; Larcelet, M.; Thomson, A.B.; Clandinin, M.T. Uptake and fate of ganglioside GD3 in human intestinal Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 2297, G52–G59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, M.E.; Attie, A.D.; Biddinger, S.B. The Regulation of ApoB Metabolism by Insulin. Trends Endocrinol. Metab. 2013, 24, 391–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, A.; Taketomi, T. Occurrence of Sulfatide as a Major Glycosphingolipid in WHHL Rabbit Serum Lipoproteins. J. Biochem. 1987, 102, 83–92. [Google Scholar] [CrossRef]
- Sato, T.; Nihei, Y.; Nagafuku, M.; Tagami, S.; Chin, R.; Kawamura, M.; Miyazaki, S.; Suzuki, M.; Sugahara, S.; Takahashi, Y.; et al. Circulating levels of ganglioside GM3 in metabolic syndrome: A pilot study. Obes. Res. Clin. Pract. 2008, 2, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Nagafuku, M.; Sato, T.; Sato, S.; Shimizu, K.; Taira, T.; Inokuchi, J. Control of homeostatic and pathogenic balance in adipose tissue by ganglioside GM3. Glycobiology 2015, 25, 303–318. [Google Scholar] [CrossRef]
- Veillon, L.; Go, S.; Matsuyama, W.; Suzuki, A.; Nagasaki, M.; Yatomi, Y.; Inokuchi, J. Identification of Ganglioside GM3 Molecular Species in Human Serum Associated with Risk Factors of Metabolic Syndrome. PLoS ONE 2015, 10, e0129645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilke, M.S.; French, M.A.; Goh, Y.K.; Ryan, E.A.; Jones, P.J.; Clandinin, M.T. Synthesis of specific fatty acids contributes to VLDL-triacylglycerol composition in humans with and without type 2 diabetes. Diabetologia 2009, 52, 1628–1637. [Google Scholar] [CrossRef] [Green Version]
- Pham, P.H.; Duffy, T.L.; Dmytrash, A.L.; Lien, V.W.; Thomson, A.B.; Clandinin, M.T. Estimate of dietary ganglioside intake in a group of healthy Edmontonians based on selected foods. J. Food Compos. Anal. 2011, 24, 1032–1037. [Google Scholar] [CrossRef]
- Musliner, T.A.; Long, M.D.; Forte, T.M.; Nichols, A.V.; Gong, E.L.; Blanche, P.J.; Krauss, R.M. Dissociation of high density lipoprotein precursors from apolipoprotein B-containing lipoproteins in the presence of unesterified fatty acids and a source of apolipoprotein A-I. J. Lipid Res. 1991, 32, 917–933. [Google Scholar] [CrossRef] [PubMed]
- Layne, K.S.; Goh, Y.K.; Jumpsen, J.A.; Ryan, E.A.; Chow, P.; Clandinin, M.T. Normal subjects consuming physiological levels of 18:3(n-3) and 20:5(n-3) from flaxseed or fish oils have characteristic differences in plasma lipid and lipoprotein fatty acid levels. J. Nutr. 1996, 126, 2130–2140. [Google Scholar] [CrossRef] [Green Version]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Serna, I.M.; Polakowski, R.; Shoemaker, G.K.; Mazurak, V.C.; Clandinin, M.T. Profiling gangliosides from milk products and other biological membranes using LC/MS. J. Food Compos. Anal. 2015, 44, 45–55. [Google Scholar] [CrossRef]
- Suzuki, K. A Simple and accurate micromethod for quantitative determination of ganglioside patterns. Life Sci. 1964, 3, 1227–1233. [Google Scholar] [CrossRef]
- Stonehouse, W.; Klingner, B.; McJarrow, P.; Fong, B.; O’Callaghan, N. Exploring In Vivo Dynamics of Bovine Milk Derived Gangliosides. Nutrients 2020, 12, 711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senn, H.J.; Orth, M.; Fitzke, E.; Wieland, H.; Gerok, W. Gangliosides in normal human serum. Concentration, pattern and transport by lipoproteins. Eur. J. Biochem. 1989, 181, 657–662. [Google Scholar] [CrossRef]
- Senn, H.J.; Orth, M.; Fitzke, E.; Köster, W.; Wieland, H.; Gerok, W. Human serum gangliosides in hypercholesterolemia, before and after extracorporeal elimination of LDL. Atherosclerosis 1992, 94, 109–117. [Google Scholar] [CrossRef]
- Zheng, W.; Kollmeyer, J.; Symolon, H.; Momin, A.; Munter, E.; Wang, E.; Kelly, S.; Allegood, J.C.; Liu, Y.; Peng, Q.; et al. Ceramides and other bioactive sphingolipid backbones in health and disease: Lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim. Biophys. Acta 2006, 1758, 1864–1884. [Google Scholar] [CrossRef] [Green Version]
- Miklavcic, J.J.; Schnabl, K.L.; Mazurak, V.C.; Thomson, A.B.; Clandinin, M.T. Dietary ganglioside reduces proinflammatory signaling in the intestine. J. Nutr. Metab. 2012, 2012, 280286. [Google Scholar] [CrossRef]
- Norris, G.H.; Blesso, C.N. Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017, 9, 1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tagami, S.; Inokuchi, J.; Kabayama, K.; Yoshimura, H.; Kitamura, F.; Uemura, S.; Ogawa, C.; Ishii, A.; Saito, M.; Ohtsuka, Y.; et al. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 2002, 277, 3085–3092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, T.; Hashiramoto, A.; Haluzik, M.; Mizukami, H.; Beck, S.; Norton, A.; Kono, M.; Tsuji, S.; Daniotti, J.L.; Werth, N.; et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc. Natl. Acad. Sci. USA 2003, 100, 3445–3449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, A.; Hata, K.; Suzuki, S.; Sawada, M.; Wada, T.; Yamaguchi, K.; Obinata, M.; Tateno, H.; Suzuki, H.; Miyagi, T. Overexpression of plasma membrane-associated sialidase attenuates insulin signaling in transgenic mice. J. Biol. Chem. 2003, 278, 27896–27902. [Google Scholar] [CrossRef] [Green Version]
- Jennemann, R.; Kaden, S.; Volz, M.; Nordström, V.; Herzer, S.; Sandhoff, R.; Gröne, H.J. Gangliosides modulate insulin secretion by pancreatic beta cells under glucose stress. Glycobiology 2020, 30, 722–734. [Google Scholar] [CrossRef] [PubMed]
- Reali, F.; Morine, M.J.; Kahramanoğulları, O.; Raichur, S.; Schneider, H.C.; Crowther, D.; Priami, C. Mechanistic interplay between ceramide and insulin resistance. Sci. Rep. 2017, 7, 41231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turpin, S.M.; Nicholls, H.T.; Willmes, D.M.; Mourier, A.; Brodesser, S.; Wunderlich, C.M.; Mauer, J.; Xu, E.; Hammerschmidt, P.; Brönneke, H.S.; et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014, 20, 678–686. [Google Scholar] [CrossRef] [Green Version]
- Kono, M.; Dreier, J.L.; Ellis, J.M.; Allende, M.L.; Kalkofen, D.N.; Sanders, K.M.; Bielawski, J.; Bielawska, A.; Hannun, Y.A.; Proia, R.L. Neutral ceramidase encoded by the Asah2 gene is essential for the intestinal degradation of sphingolipids. J. Biol. Chem. 2006, 281, 7324–7331. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Zhu, R.; Jin, J. Neutral ceramidase-enriched exosomes prevent palmitic acid-induced insulin resistance in H4IIEC3 hepatocytes. FEBS Open Bio. 2016, 6, 1078–1084. [Google Scholar] [CrossRef]
Group | Control | T2DM |
---|---|---|
Gender (M/F) | 3M/4F | 3M/4F |
Age (year) | 51.4 ± 9.2 | 50.0 ± 8.8 |
BMI (kg/m2) | 33.5 ± 8.3 | 33.2 ± 7.5 |
Weight (kg) | 93.4 ± 24.1 | 91.9 ± 15.4 |
Waist (cm) | 105.6 ± 15.8 | 105.6 ± 13.5 |
Glucose (mmol/L) | 5.0 ± 0.4 | 6.2 ± 1.1 * |
HBAlc (%) | 5.3 ± 0.4 | 5.9 ± 0.5 * |
Insulin (pmol/L) | 69.0 ± 53.0 | 95.0 ± 55.0 |
HOMA-IR | 2.2 ± 1.7 | 3.9 ± 2.4 |
FFAs (mmol/L) | 0.9 ± 0.4 | 0.7 ± 0.3 |
Triglycerides (mmol/L) | 1.3 ± 0.4 | 2.0 ± 0.8 |
TC (mmol/L) | 5.4 ± 0.8 | 4.8 ± 0.6 |
HDL-C (mmol/L) | 1.3 ± 0.2 | 1.2 ± 0.2 |
LDL-C (mmol/L) | 3.5 ± 0.7 | 2.7 ± 0.6 * |
C-reactive protein (mg/L) | 0.6 ± 0.3 | 1.6 ± 1.2 |
Ganglioside Content | High Diet Fat Relative Percentage (%) | Low Diet Fat Relative Percentage (%) | p-Value |
---|---|---|---|
Plasma GM3 Plasma GD3 Plasma GD1 Chylomicron GM3 Chylomicron GD3 Chylomicron GD1 | 70.7 ± 3.1 23.3 ± 3.4 6.0 ± 0.7 77.1 ± 3.0 19.8 ± 3.2 3.1 ± 0.5 | 76.0 ± 1.4 17.8 ± 1.3 6.2 ± 0.6 74.9 ± 3.9 22.3 ± 4.1 2.8 ± 0.4 | 0.1 0.3 0.9 0.7 0.6 0.6 |
Ganglioside Species | Time (h) | Control (ng/mL) | T2DM (ng/mL) |
---|---|---|---|
GM3 | 0 | 681.7 ± 89.0 | 641.7 ± 67.0 |
4 | 648.9 ± 59.0 | 667.5 ± 76.5 | |
GD3 | 0 | 26.8 ± 7.9 | 20.9 ± 3.1 |
4 | 23.7 ± 3.1 | 27.6 ± 5.5 | |
GD1 | 0 | 11.2 ± 2.8 | 9.7 ± 3.2 |
4 | 14.8 ± 2.6 | 12.8 ± 4.3 | |
Total | 0 | 719.7 ± 97.6 | 672.3 ± 72.1 |
4 | 679.4 ± 63.2 | 707.9 ± 58.0 |
Individual Ganglioside Species | Time | Control Relative Percentage (%) | T2DM Relative Percentage (%) |
---|---|---|---|
GD3 d34:1 | 0 h | 6.0 ± 0.2 a | 9.1 ± 0.3 b |
4 h | 7.8 ± 0.3 | 6.4 ± 0.3 | |
GD1 d36:1 | 0 h | 2.2 ± 0.3 | 2.7 ± 0.1 |
4 h | 2.9 ± 0.1 | 1.1 ± 0.2 *,a | |
GM3 d36:0 | 0 h | 0.3 ± 0.02 | 0.2 ± 0.03 |
4 h | 0.1 ± 0.01 *,a | 0.4 ± 0.04 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivas Serna, I.M.; Beveridge, M.; Wilke, M.; Ryan, E.A.; Clandinin, M.T.; Mazurak, V.C. Interorgan Metabolism of Ganglioside Is Altered in Type 2 Diabetes. Biomedicines 2022, 10, 3141. https://doi.org/10.3390/biomedicines10123141
Rivas Serna IM, Beveridge M, Wilke M, Ryan EA, Clandinin MT, Mazurak VC. Interorgan Metabolism of Ganglioside Is Altered in Type 2 Diabetes. Biomedicines. 2022; 10(12):3141. https://doi.org/10.3390/biomedicines10123141
Chicago/Turabian StyleRivas Serna, Irma Magaly, Michelle Beveridge, Michaelann Wilke, Edmond A. Ryan, Michael Thomas Clandinin, and Vera Christine Mazurak. 2022. "Interorgan Metabolism of Ganglioside Is Altered in Type 2 Diabetes" Biomedicines 10, no. 12: 3141. https://doi.org/10.3390/biomedicines10123141
APA StyleRivas Serna, I. M., Beveridge, M., Wilke, M., Ryan, E. A., Clandinin, M. T., & Mazurak, V. C. (2022). Interorgan Metabolism of Ganglioside Is Altered in Type 2 Diabetes. Biomedicines, 10(12), 3141. https://doi.org/10.3390/biomedicines10123141