Growth Differentiation Factor 15 (GDF-15) Levels Associate with Lower Survival in Chronic Kidney Disease Patients with COVID-19
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Design and Population
2.2. Data Collection
2.3. Plasma Cytokine Quantification
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petersen, E.; Koopmans, M.; Go, U.; Hamer, D.H.; Petrosillo, N.; Castelli, F.; Storgaard, M.; al Khalili, S.; Simonsen, L. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis. 2020, 20, e238–e244. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Gillies, C.L.; Singh, R.; Singh, A.; Chudasama, Y.; Coles, B.; Seidu, S.; Zaccardi, F.; Davies, M.J.; Khunti, K. Prevalence of co-morbidities and their association with mortality in patients with COVID-19: A systematic review and meta-analysis. Diabetes Obes. Metab. 2020, 22, 1915–1924. [Google Scholar] [CrossRef]
- Nandy, K.; Salunke, A.; Pathak, S.K.; Nandy, K.; Salunke, A.; Pathak, S.K.; Pandey, A.; Doctor, C.; Puj, K.; Sharma, M.; et al. Coronavirus disease (COVID-19): A systematic review and meta-analysis to evaluate the impact of various comorbidities on serious events. Diabetes Metab. Syndr. 2020, 14, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Hsu, C.M.; Weiner, D.E.; Aweh, G.; Miskulin, D.C.; Manley, H.J.; Stewart, C.; Ladik, V.; Hosford, J.; Lacson, E.C.; Johnson, D.S.; et al. COVID-19 Among US Dialysis Patients: Risk Factors and Outcomes From a National Dialysis Provider. Am. J. Kidney Dis. 2021, 77, 748–756.e741. [Google Scholar] [CrossRef]
- Flythe, J.E.; Assimon, M.M.; Tugman, M.J.; Chang, E.H.; Gupta, S.; Shah, J.; Sosa, M.A.; Renaghan, A.D.; Melamed, M.L.; Wilson, F.P.; et al. Characteristics and Outcomes of Individuals with Pre-existing Kidney Disease and COVID-19 Admitted to Intensive Care Units in the United States. Am. J. Kidney Dis. 2021, 77, 190–203.e191. [Google Scholar] [CrossRef]
- Gur, E.; Levy, D.; Topaz, G.; Naser, R.; Wand, O.; Kitay-Cohen, Y.; Benchetrit, S.; Sarel, E.; Cohen-Hagai, K. Disease severity and renal outcomes of patients with chronic kidney disease infected with COVID-19. Clin. Exp. Nephrol. 2022, 26, 445–452. [Google Scholar] [CrossRef]
- Ortiz, P.A.; Covic, A.; Fliser, D.; Fouque, D.; Goldsmith, D.; Kanbay, M.; Mallamaci, F.; Massy, Z.A.; Rossignol, P.; Vanholder, R.; et al. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 2014, 383, 1831–1843. [Google Scholar] [CrossRef]
- Go, A.S.; Yang, J.; Ackerson, L.M.; Lepper, K.; Shlipak, M.G.; Robbins, S.; Massie, B.M. Hemoglobin level, chronic kidney disease, and the risks of death and hospitalization in adults with chronic heart failure: The Anemia in Chronic Heart Failure: Outcomes and Resource Utilization (ANCHOR) Study. Circulation 2006, 113, 2713–2723. [Google Scholar] [CrossRef] [Green Version]
- Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.K.S.; et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 2021, 184, 149–168.e117. [Google Scholar] [CrossRef]
- Nair, V.; Robinson-Cohen, C.; Smith, M.R.; Bellovich, K.A.; Bhat, Z.Y.; Bobadilla, M.; Brosius, F.; De Boer, I.H.; Essioux, L.; Formentini, I.; et al. Growth Differentiation Factor-15 and Risk of CKD Progression. J. Am. Soc. Nephrol. 2017, 28, 2233–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempf, T.; von Haehling, S.; Peter, T.; Allhoff, T.; Cicoira, M.; Doehner, W.; Ponikowski, P.; Filippatos, G.S.; Rozentryt, P.; Drexler, H.; et al. Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J. Am. Coll. Cardiol. 2007, 50, 1054–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisner, M.D.; Anthonisen, N.; Coultas, D.; Kuenzli, N.; Perez-Padilla, R.; Postma, D.; Romieu, I.; Silverman, E.K.; Balmes, J.R. An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2010, 182, 693–718. [Google Scholar] [CrossRef]
- Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. GDF15: An emerging modulator of immunity and a strategy in COVID-19 in association with iron metabolism. Trends Endocrinol. Metab. 2021, 32, 875–889. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, D.S.; Isnard, S.; Berini, C.; Lin, J.; Routy, J.-P.; Royston, L. Coping With Stress: The Mitokine GDF-15 as a Biomarker of COVID-19 Severity. Front. Immunol. 2022, 13, 820350. [Google Scholar] [CrossRef]
- Council, E.-E.; Group, E.W. Chronic kidney disease is a key risk factor for severe COVID-19: A call to action by the ERA-EDTA. Nephrol. Dial. Transplant. 2021, 36, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Jdiaa, S.S.; Mansour, R.; El Alayli, A.; Gautam, A.; Thomas, P.; Mustafa, R.A. COVID-19 and chronic kidney disease: An updated overview of reviews. J. Nephrol. 2022, 35, 69–85. [Google Scholar] [CrossRef]
- Sarnak, M.J.; Jaber, B.L. Mortality caused by sepsis in patients with end-stage renal disease compared with the general population. Kidney. Int. 2000, 58, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.B.; Collins, A.J. Infectious complications in chronic kidney disease. Adv. Chronic. Kidney Dis. 2006, 13, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Sarnak, M.J.; Jaber, B.L. Pulmonary infectious mortality among patients with end-stage renal disease. Chest 2001, 120, 1883–1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozzolino, M.; Magagnoli, L.; Ciceri, P.; Conte, F.; Galassi, A. Effects of a medium cut-off (Theranova®) dialyser on haemodialysis patients: A prospective, cross-over study. Clin. Kidney J. 2021, 14, 382–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tincati, C.; Cannizzo, E.S.; Giacomelli, M.; Badolato, R.; Monforte, A.d.; Marchetti, G. Heightened Circulating Interferon-Inducible Chemokines, and Activated Pro-Cytolytic Th1-Cell Phenotype Features COVID-19 Aggravation in the Second Week of Illness. Front. Immunol. 2020, 11, 580987. [Google Scholar] [CrossRef]
- Melo, A.K.G.; Milby, K.M.; Caparroz, A.L.M.A.; Pinto, A.C.P.N.; Santos, R.R.P.; Rocha, A.P.; Ferreira, G.A.; Souza, V.A.; Valadares, L.D.A.; Vieira, R.M.R.A.; et al. Biomarkers of cytokine storm as red flags for severe and fatal COVID-19 cases: A living systematic review and meta-analysis. PLoS ONE 2021, 16, e0253894. [Google Scholar] [CrossRef]
- Wischhusen, J.; Melero, I.; Fridman, W.H. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint. Front. Immunol. 2020, 11, 951. [Google Scholar] [CrossRef]
- Unsicker, K.; Spittau, B.; Krieglstein, K. The multiple facets of the TGF-β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev. 2013, 24, 373–384. [Google Scholar] [CrossRef]
- Johann, K.; Kleinert, M.; Klaus, S. The Role of GDF15 as a Myomitokine. Cells 2021, 10, 2990. [Google Scholar] [CrossRef]
- Teng, X.; Zhang, J.; Shi, Y.; Liu, Y.; Yang, Y.; He, J.; Luo, S.; Huang, Y.; Liu, Y.; Liu, D.; et al. Comprehensive Profiling of Inflammatory Factors Revealed That Growth Differentiation Factor-15 Is an Indicator of Disease Severity in COVID-19 Patients. Front. Immunol. 2021, 12, 662465. [Google Scholar] [CrossRef]
- Zimmers, T.A.; Jin, X.; Hsiao, E.C.; McGrath, S.A.; Esquela, A.F.; Koniaris, L.G. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock 2005, 23, 543–548. [Google Scholar] [PubMed]
- Hsiao, E.C.; Koniaris, L.G.; Zimmers-Koniaris, T.; Sebald, S.M.; Huynh, T.V.; Lee, S.J. Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Mol. Cell Biol. 2000, 20, 3742–3751. [Google Scholar] [CrossRef] [PubMed]
- Ago, T.; Sadoshima, J. GDF15, a cardioprotective TGF-beta superfamily protein. Circ. Res. 2006, 98, 294–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luan, H.H.; Wang, A.; Hilliard, B.K.; Carvalho, F.; Rosen, C.E.; Ahasic, A.M.; Herzog, E.L.; Kang, I.; Pisani, M.A.; Yu, S.; et al. GDF15 Is an Inflammation-Induced Central Mediator of Tissue Tolerance. Cell 2019, 178, 1231–1244.e1211. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Wollert, K.C.; Larson, M.G.; Coglianese, E.; McCabe, E.L.; Cheng, S.; Ho, J.E.; Fradley, M.G.; Ghorbani, A.; Xanthakis, V.; et al. Prognostic utility of novel biomarkers of cardiovascular stress: The Framingham Heart Study. Circulation 2012, 126, 1596–1604. [Google Scholar] [CrossRef] [Green Version]
- Rohatgi, A.; Patel, P.; Das, S.R.; Ayers, C.R.; Khera, A.; Martinez-Rumayor, A.; Berry, J.D.; McGuire, D.K.; de Lemos, J. Association of growth differentiation factor-15 with coronary atherosclerosis and mortality in a young, multiethnic population: Observations from the Dallas Heart Study. Clin. Chem. 2012, 58, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Buendgens, L.; Yagmur, E.; Bruensing, J.; Herbers, U.; Baeck, C.; Trautwein, C.; Koch, A.; Tacke, F. Growth Differentiation Factor-15 Is a Predictor of Mortality in Critically Ill Patients with Sepsis. Dis. Markers 2017, 2017, 5271203. [Google Scholar] [CrossRef] [Green Version]
- Perez-Gomez, M.V.; Pizarro-Sanchez, S.; Gracia-Iguacel, C.; Cano, S.; Cannata-Ortiz, P.; Sanchez-Rodriguez, J.; Sanz, A.B.; Sanchez-Niño, M.D.; Ortiz, A. Urinary Growth Differentiation Factor-15 (GDF15) levels as a biomarker of adverse outcomes and biopsy findings in chronic kidney disease. J. Nephrol. 2021, 34, 1819–1832. [Google Scholar] [CrossRef]
- Bao, X.; Xu, B.; Borné, Y.; Orho-Melander, M.; Melander, O.; Nilsson, J.; Christensson, A.; Engström, G. Growth differentiation factor-15 and incident chronic kidney disease: A population-based cohort study. BMC Nephrol. 2021, 22, 351. [Google Scholar] [CrossRef]
- Tuegel, C.; Katz, R.; Alam, M.; Bhat, Z.; Bellovich, K.; de Boer, I.; Brosius, F.; Gadegbeku, C.; Gipson, D.; Hawkins, J.; et al. GDF-15, Galectin 3, Soluble ST2, and Risk of Mortality and Cardiovascular Events in CKD. Am. J. Kidney Dis. 2018, 72, 519–528. [Google Scholar] [CrossRef]
- Wang, K.; Zelnick, L.R.; Anderson, A.; Cohen, J.; Dobre, M.; Deo, R.; Feldman, H.; Go, A.; Hsu, J.; Jaar, B.; et al. Cardiac Biomarkers and Risk of Mortality in CKD (the CRIC Study). Kidney Int. Rep. 2020, 5, 2002–2012. [Google Scholar] [CrossRef] [PubMed]
- Breit, S.N.; Carrero, J.J.; Tsai, V.W.; Yagoutifam, N.; Luo, W.; Kuffner, T.; Bauskin, A.R.; Wu, L.; Jiang, L.; Barany, P.; et al. Macrophage inhibitory cytokine-1 (MIC-1/GDF15) and mortality in end-stage renal disease. Nephrol. Dial. Transpl. 2012, 27, 70–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benes, J.; Kotrc, M.; Wohlfahrt, P.; Conrad, M.J.; Franekova, J.; Jabor, A.; Lupinek, P.; Kautzner, J.; Melenovsky, V.; Jarolim, P. The Role of GDF-15 in Heart Failure Patients with Chronic Kidney Disease. Can. J. Cardiol. 2019, 35, 462–470. [Google Scholar] [CrossRef] [PubMed]
- Al-Mudares, F.; Reddick, S.; Ren, J.; Venkatesh, A.; Zhao, C.; Lingappan, K. Role of Growth Differentiation Factor 15 in Lung Disease and Senescence: Potential Role Across the Lifespan. Front. Med. 2020, 7, 594137. [Google Scholar] [CrossRef]
- Verhamme, F.; Seys, L.J.M.; De Smet, E.; Provoost, S.; Janssens, W.; Elewaut, D.; Joos, G.F.; Brusselle, G.; Bracke, K. Elevated GDF-15 contributes to pulmonary inflammation upon cigarette smoke exposure. Mucosal. Immunol. 2017, 10, 1400–1411. [Google Scholar] [CrossRef] [Green Version]
- Nickel, N.; Jonigk, D.; Kempf, T.; Bockmeyer, C.L.; Maegel, L.; Rische, J.; Laenger, F.; Lehmann, U.; Sauer, C.; Greer, M.; et al. GDF-15 is abundantly expressed in plexiform lesions in patients with pulmonary arterial hypertension and affects proliferation and apoptosis of pulmonary endothelial cells. Respir. Res. 2011, 12, 62. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Jiang, D.; Schaefer, N.R.; Harmacek, L.; O’Connor, B.P.; Eling, T.E.; Eickelberg, O.; Chu, H.W. Overproduction of growth differentiation factor 15 promotes human rhinovirus infection and virus-induced inflammation in the lung. Am. J. Physiol. Lung. Cell Mol. Physiol. 2018, 314, L514–L527. [Google Scholar] [CrossRef] [Green Version]
- Guven, G.; Ince, C.; Topeli, A.; Caliskan, K. Cardio-Pulmonary-Renal Consequences of Severe COVID-19. Cardiorenal. Med. 2021, 11, 133–139. [Google Scholar] [CrossRef]
- Myhre, P.L.; Prebensen, C.; Strand, H.; Røysland, R.; Jonassen, C.M.; Rangberg, A.; Sørensen, V.; Søvik, S.; Røsjø, H.; Svensson, M.; et al. Growth Differentiation Factor 15 Provides Prognostic Information Superior to Established Cardiovascular and Inflammatory Biomarkers in Unselected Patients Hospitalized With COVID-19. Circulation 2020, 142, 2128–2137. [Google Scholar] [CrossRef]
- Alserawan, L.; Peñacoba, P.; Orozco Echevarría, S.E.; Castillo, D.; Ortiz, E.; Martínez-Martínez, L.; Naranjo, E.M.; Domingo, P.; Castellví, I.; Juárez, C.; et al. Growth Differentiation Factor 15 (GDF-15): A Novel Biomarker Associated with Poorer Respiratory Function in COVID-19. Diagnostics 2021, 11, 1998. [Google Scholar] [CrossRef]
- Gisby, J.; Clarke, C.L.; Medjeral-Thomas, N.; Malik, T.H.; Papadaki, A.; Mortimer, P.M.; Buang, N.B.; Lewis, S.; Pereira, M.; Toulza, F.; et al. Longitudinal proteomic profiling of dialysis patients with COVID-19 reveals markers of severity and predictors of death. Elife 2021, 10, e64827. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, P.; Bono, V.; Magagnoli, L.; Sala, M.; d’Arminio Monforte, A.; Galassi, A.; Barassi, A.; Marchetti, G.; Cozzolino, M. Cytokine and chemokine retention profile in COVID-19 patients with chronic kidney disease. Toxins 2022, 14, 673. [Google Scholar] [CrossRef] [PubMed]
- Prietl, B.; Odler, B.; Kirsch, A.H.; Artinger, K.; Eigner, M.; Schmaldienst, S.; Pfeifer, V.; Stanzer, S.; Eberl, A.; Raml, R.; et al. Chronic inflammation might Protect hemodialysis patients from severe COVID-19. Front. Immunol. 2022, 13, 821818. [Google Scholar] [CrossRef] [PubMed]
- Chiappalupi, S.; Salvadori, L.; Donato, R.; Riuzzi, F.; Sorci, G. Hyperactivated RAGE in comorbidities as a risk factor for Severe COVID-19-The role of RAGE-RAS crosstalk. Biomolecules 2021, 11, 876. [Google Scholar] [CrossRef]
- Gohda, T.; Murakoshi, M.; Suzuki, Y.; Hiki, M.; Naito, T.; Takahashi, K.; Tabe, K. Circulating tumor necrosis factor receptors are associated with mortality and disease severity in COVID-19 patients. PLoS ONE 2022, 17, e0275745. [Google Scholar] [CrossRef] [PubMed]
- Pine, A.B.; Meizlish, M.L.; Goshua, G.; Chang, C.H.; Zhang, H.; Bishai, J.; Bahel, P.; Patel, A.; Gbyli, R.; Kwan, J.M.; et al. Circulating markers of angiogenesis and endotheliopathy in COVID-19. Pulm. Circ. 2020, 10, 2045894020966547. [Google Scholar] [CrossRef]
- Thomas, T.; Stefanoni, D.; Reisz, J.A.; Nemkov, T.; Bertolone, L.; Francis, R.O.; Hudson, K.E.; Zimring, J.C.; Hansen, K.C.; Hod, E.A.; et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight 2020, 5, e140327. [Google Scholar] [CrossRef]
- Wang, K.; Long, Q.X.; Deng, H.J.; Hu, J.; Gao, Q.Z.; Zhang, G.J.; He, C.L.; Huang, L.Y.; Hu, J.L.; Chen, J.; et al. Longitudinal dynamics of the neutralizing antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Clin. Infect. Dis. 2021, 73, e531–e539. [Google Scholar] [CrossRef]
- Takeshita, H.; Yamamoto, K. Tryptophan Metabolism and COVID-19-induced skeletal muscle damage: Is ACE2 a key regulator? Front. Nutr. 2022, 9, 868845. [Google Scholar] [CrossRef]
(A) | ||||
---|---|---|---|---|
Characteristic | All Patients | eGFR ≥ 45 mL/min | eGFR < 45 mL/min | p |
(n = 77) | (n = 44) | (n = 33) | ||
Sex. male | 40 (52) | 25 (57) | 15 (46) | 0.36 |
Age (years) | 79 {70–86} | 78 {69–86} | 79 {73–86} | 0.45 |
Ethnicity | ||||
Caucasian | 72 (94) | 42 (96) | 30 (91) | 0.65 |
Middle east | 1 (1) | 0 (0) | 1 (3) | 0.43 |
Latin American | 3 (4) | 2 (5) | 1 (3) | 1.00 |
East Asian | 1 (1) | 0 (0) | 1 (3) | 0.43 |
BMI (Kg/m2) | 25.9 ± 5.1 | 26.9 ± 5.3 | 23.9 ± 4.3 | 0.33 |
Medical history | ||||
Hypertension | 51 (66) | 25 (57) | 26 (79) | 0.05 |
Cardio-vascular disease | 38 (49) | 20 (46) | 18 (55) | 0.49 |
Myocardial infarction | 17 (22) | 9 (21) | 8 (24) | 0.78 |
Heart failure | 11 (14) | 6 (14) | 5 (15) | 1.00 |
Arrythmias | 15 (19) | 9 (21) | 6 (18) | 1.00 |
Valvulopathies | 4 (5) | 3 (7) | 1 (3) | 0.63 |
Vascular disease | 16 (21) | 6 (14) | 10 (30) | 0.09 |
Cerebrovascular disease | 8 (10) | 7 (16) | 1 (3) | 0.13 |
Dementia | 17 (22) | 8 (18) | 9 (27) | 0.41 |
COPD | 9 (12) | 6 (14) | 3 (9) | 0.72 |
Asthma | 1 (1) | 1 (2) | 0 (0) | 1.00 |
Cancer | 9 (12) | 5 (11) | 4 (12) | 1.00 |
CKD | 20 (26) | 2 (5) | 18 (55) | <0.001 |
Maintenance hemodialysis | 4 (5) | 0 (0) | 4 (12) | 0.03 |
Rheumatologic disease | 2 (3) | 1 (2) | 1 (3) | 1.00 |
Diabetes mellitus | 25 (32) | 10 (23) | 15 (46) | 0.05 |
Chronic liver disease | 4 (5) | 2 (5) | 2 (6) | 1.00 |
Age-adjusted CCI | 3 {3–4} | 3 {2–4} | 3 {3–4} | 0.58 |
(B) | ||||
Characteristic | All Patients | eGFR ≥ 45 mL/min | eGFR < 45 mL/min | p |
(n = 77) | (n = 44) | (n = 33) | ||
Laboratory findings | ||||
Hemoglobin (g/dL) | 12.0 {11.2–13.3} | 12.5 {11.4–13.8} | 11.6 {10.7–12.6} | 0.07 |
White blood cells (×10³/uL) | 7.00 {5.42–9.71} | 6.69 {4.93–9.03} | 7.58 {6.01–10.22} | 0.13 |
Neutrophils (×10³/uL) | 4.93 {3.93–7.51} | 4.67 {3.60–6.35} | 5.87 {4.15–9.14} | 0.05 |
Lymphocytes (×10³/uL) | 1.04 {0.64–1.34} | 1.05 {0.64–1.49} | 1.01 {0.67–1.21} | 0.61 |
N/L ratio | 5.16 {3.12–9.81} | 4.28 {2.89–8.20} | 6.73 {3.77–11.47} | 0.07 |
Platelets (×10³/uL) | 204 {162–304} | 222 {170–299} | 192 {151–306} | 0.52 |
C reactive protein (mg/L) | 69 {27–99} | 68 {27–102} | 73 {27–98} | 0.94 |
Procalcitonin (ng/mL) | 0.13 {0.07–1.21} | 0.11 {0.05–0.61} | 0.21 {0.08–4.00} | 0.315 |
Creatinine (mg/dL) | 1.3 {1.0–2.2} | 1.1 {0.7–1.2} | 2.3 {1.6–3.8} | <0.001 |
Symptoms | ||||
Fever | 53 (69) | 31 (71) | 22 (67) | 0.81 |
Anosmia/Disgeusia | 3 (4) | 2 (5) | 1 (3) | 1.00 |
Arthromyalgias | 2 (3) | 2 (5) | 0 (0) | 0.50 |
Cough | 26 (34) | 13 (30) | 13 (39) | 0.47 |
Dyspnoea | 43 (56) | 22 (50) | 21 (64) | 0.26 |
Abdominal pain | 4 (5) | 2 (5) | 2 (6) | 1.00 |
Nausea/vomiting | 2 (3) | 2 (5) | 0 (0) | 0.50 |
Diarrhea | 3 (4) | 2 (5) | 1 (3) | 1.00 |
Pneumonia on X-ray | 67 (87) | 38 (86) | 29 (88) | 1.00 |
P/F at admission | 302 ± 99 | 297 ± 114 | 309 ± 77 | 0.96 |
SpO2 at admission | 96 {91–97} | 96 {90–97} | 95 {93–97} | 0.79 |
ARDS | 36 (47) | 19 (43) | 17 (52) | 0.50 |
Time (days) | ||||
Symptoms ⟶ admission | 4 {2–8} | 4 {2–9} | 5 {3–7} | 0.88 |
Symptoms ⟶ Discharge/death | 18 {11–35} | 18 {11–29} | 17 {11–52} | 0.51 |
Admission ⟶ Discharge/death | 12 {6–25} | 10 {6–20} | 16 {7–35} | 0.07 |
Therapy | ||||
Lopinavir/Ritonavir | 10 (13) | 6 (14) | 4 (12) | 1.00 |
Hydroxychloroquine | 57 (74) | 32 (73) | 25 (76) | 0.80 |
Remdesevir | 1 (1) | 1 (2) | 0 (0) | 1.00 |
Steroids | 17 (22) | 7 (16) | 10 (30) | 0.17 |
Heparin | 58 (75) | 33 (75) | 25 (76) | 1.00 |
Biological | 10 (13) | 4 (9) | 6 (18) | 0.31 |
Need for intensive care | 2 (3) | 1 (2) | 1 (3) | 1.00 |
Need for ventilation | 42 (55) | 25 (57) | 17 (52) | 0.65 |
Survivors | 42 (55) | 25 (57) | 17 (52) | 0.65 |
Variable | All Patients | eGFR ≥ 45 mL/min | eGFR < 45 mL/min | |||
---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |
eGFR < 45 mL/min | 0.58 (0.28–1.19) | 0.14 | - | - | - | - |
Age ≥ 75 years | 2.79 (1.19–6.59) | 0.02 | 2.31 (0.75–7.09) | 0.14 | 3.61 (0.95–13.79) | 0.06 |
Fever | 3.75 (1.38–10.17) | 0.009 | 2.83 (0.63–12.74) | 0.18 | 4.78 (1.17–19.56) | 0.03 |
Dyspnea | 1.78 (0.81–3.94) | 0.15 | 2.22 (0.76–6.51) | 0.15 | 1.21 (0.37–3.95) | 0.75 |
P/F < 300 | 1.67 (0.82–3.41) | 0.16 | 1.82 (0.65–5.09) | 0.25 | 1.64 (0.56–4.77) | 0.36 |
GDF-15. quartiles | 2.28 (1.53–3.39) | <0.001 | 1.99 (1.17–3.39) | 0.01 | 2.53 (1.34–4.79) | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galassi, A.; Ciceri, P.; Bono, V.; Magagnoli, L.; Sala, M.; Artioli, L.; Rovito, R.; Hadla, M.; Yellenki, V.; D’Arminio Monforte, A.; et al. Growth Differentiation Factor 15 (GDF-15) Levels Associate with Lower Survival in Chronic Kidney Disease Patients with COVID-19. Biomedicines 2022, 10, 3251. https://doi.org/10.3390/biomedicines10123251
Galassi A, Ciceri P, Bono V, Magagnoli L, Sala M, Artioli L, Rovito R, Hadla M, Yellenki V, D’Arminio Monforte A, et al. Growth Differentiation Factor 15 (GDF-15) Levels Associate with Lower Survival in Chronic Kidney Disease Patients with COVID-19. Biomedicines. 2022; 10(12):3251. https://doi.org/10.3390/biomedicines10123251
Chicago/Turabian StyleGalassi, Andrea, Paola Ciceri, Valeria Bono, Lorenza Magagnoli, Matteo Sala, Luisa Artioli, Roberta Rovito, Mohamad Hadla, Vaibhav Yellenki, Antonella D’Arminio Monforte, and et al. 2022. "Growth Differentiation Factor 15 (GDF-15) Levels Associate with Lower Survival in Chronic Kidney Disease Patients with COVID-19" Biomedicines 10, no. 12: 3251. https://doi.org/10.3390/biomedicines10123251
APA StyleGalassi, A., Ciceri, P., Bono, V., Magagnoli, L., Sala, M., Artioli, L., Rovito, R., Hadla, M., Yellenki, V., D’Arminio Monforte, A., Tincati, C., Cozzolino, M., & Marchetti, G. (2022). Growth Differentiation Factor 15 (GDF-15) Levels Associate with Lower Survival in Chronic Kidney Disease Patients with COVID-19. Biomedicines, 10(12), 3251. https://doi.org/10.3390/biomedicines10123251