Perspectives in Sports Genomics
Abstract
:1. Introduction
2. Literature Research
3. Sports Genomics: Actuality and Prospects
3.1. Genetic Research in Sports
3.2. High-Throughput and Collaborative Approaches
3.3. Multiple Omics Approaches to Physical Performance Research
3.4. Injury Prevention and Pre-Participation Screening
3.5. The Use of Bioinformatics and Data Analysis Methods in Sport Genomics
3.6. New Genetic Technologies and Gene Doping in Sports
4. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouchard, C.; Rankinen, T.; Timmons, J.A. Genomics and Genetics in the Biology of Adaptation to Exercise. Compr. Physiol. 2011, 1, 1603–1648. [Google Scholar] [CrossRef] [Green Version]
- Tucker, R.; Collins, M. What makes champions? A review of the relative contribution of genes and training to sporting success. Br. J. Sports Med. 2012, 46, 555–561. [Google Scholar] [CrossRef]
- Pickering, C.; Kiely, J. The Development of a Personalised Training Framework: Implementation of Emerging Technologies for Performance. J. Funct. Morphol. Kinesiol. 2019, 4, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchard, C.; Malina, R.M.; Pérusse, L. Genetics of Fitness and Physical Performance, 1st ed.; Human Kinetics: Champaign, IL, USA, 1997; pp. 120–320. [Google Scholar]
- Roth, S.M. Genetics Primer for Exercise Science and Health, 1st ed.; Human Kinetics: Champaign, IL, USA, 2007; pp. 90–170. [Google Scholar]
- Montgomery, H.E.; Marshall, R.; Hemingway, H.; Myerson, S.; Clarkson, P.; Dollery, C.; Hayward, M.; Holliman, D.E.; World, M.; Thomas, E.L.; et al. Human gene for physical performance. Nature 1998, 393, 221–222. [Google Scholar] [CrossRef]
- Rivera, M.A.; Dionne, F.T.; Simoneau, J.A.; Pérusse, L.; Chagnon, M.; Chagnon, Y.; Gagnon, J.; Leon, A.S.; Rao, D.C.; Skinner, J.S.; et al. Muscle-specific creatine kinase gene polymorphism and VO2max in the HERITAGE Family Study. Med. Sci. Sports Exerc. 1997, 29, 1311–1317. [Google Scholar] [CrossRef]
- Rivera, M.A.; Wolfarth, B.; Dionne, F.T.; Chagnon, M.; Simoneau, J.A.; Boulay, M.R.; Song, T.M.; Perusse, L.; Gagnon, J.; Leon, A.S.; et al. Three mitochondrial DNA restriction polymorphisms in elite endurance athletes and sedentary controls. Med. Sci. Sports Exerc. 1998, 30, 687–690. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Lucía, A. Introduction to genetics of sport and exercise. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 3–22. [Google Scholar]
- Ahmetov, I.I.; Hall, E.C.R.; Semenova, E.A.; Pranckevičienė, E.; Ginevičienė, V. Advances in sports genomics. Adv. Clin. Chem. 2022, 107. [Google Scholar] [CrossRef]
- Wackerhage, H.; Miah, A.; Harris, R.C.; Montgomery, H.E.; Williams, A.G. Genetic research and testing in sport and exercise science: A review of the issues. J. Sports Sci. 2009, 27, 1109–1116. [Google Scholar] [CrossRef]
- De Moor, M.H.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; De Geus, E.J. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res. Hum. Genet. 2007, 10, 812–820. [Google Scholar] [CrossRef] [Green Version]
- Kambouris, M.; Ntalouka, F.; Ziogas, G.; Maffulli, N. Predictive Genomics DNA Profiling for Athletic Performance. Recent Pat. DNA Gene Seq. 2012, 6, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Baumert, P.; Lake, M.J.; Stewart, C.E.; Drust, B.; Erskine, R.M. Genetic variation and exercise induced muscle damage: Implications for athletic performance, injury and ageing. Eur. J. Appl. Physiol. 2016, 116, 1595–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodlin, G.T.; Roos, A.K.; Roos, T.R.; Hawkins, C.; Beache, S.; Baur, S.; Kim, S. Applying Personal Genetic Data to Injury Risk Assessment in Athletes. PLoS ONE 2015, 10, e0122676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.K.; Roos, T.R.; Roos, A.K.; Kleimeyer, J.P.; Ahmed, M.A.; Goodlin, G.T.; Fredericson, M.; Ioannidis, J.P.A.; Avins, A.L.; Dragoo, J.L. Genome-wide association screens for Achilles tendon and ACL tears and tendinopathy. PLoS ONE 2017, 12, e0170422. [Google Scholar] [CrossRef] [PubMed]
- Pruna, R.; Artells, R. New Tendencies in Risk Factors for Soft Tissue Injuries: Genetic Biomakers. Int. J. Orthop. 2015, 2, 307–311. [Google Scholar] [CrossRef]
- Rahim, M.; Collins, M.; September, A. Genes and Musculoskeletal Soft-Tissue Injuries. In Genetics and Sports, 2nd ed.; Medicine and Sport Science Karger: Basel, Switzerland, 2016; Volume 61, pp. 68–91. [Google Scholar] [CrossRef]
- Díaz Ramírez, J.; Álvarez-Herms, J.; Castañeda-Babarro, A.; Larruskain, J.; Ramírez de la Piscina, X.; Borisov, O.V.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Andryushchenko, O.N.; et al. The GALNTL6 Gene rs558129 Polymorphism is Associated with Power Performance. J. Strength Cond. Res. 2020, 34, 3031–3036. [Google Scholar] [CrossRef]
- Turner, D.C.; Gorski, P.P.; Maasar, M.F.; Seaborne, R.A.; Baumert, P.; Brown, A.D.; Kitchen, M.O.; Erskine, R.M.; Dos-Remedios, I.; Voisin, S.; et al. DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: The role of HOX genes and physical activity. Sci. Rep. 2020, 10, 15360. [Google Scholar] [CrossRef]
- Seaborne, R.A.; Strauss, J.; Cocks, M.; Shepherd, S.; O’Brien, T.D.; van Someren, K.A.; Bell, P.G.; Murgatroyd, C.; Morton, J.P.; Stewart, C.E.; et al. Human Skeletal Muscle Possesses an Epigenetic Memory of Hypertrophy. Sci. Rep. 2018, 8, 1898. [Google Scholar] [CrossRef]
- Turner, D.C.; Seaborne, R.A.; Sharples, A.P. Comparative Transcriptome and Methylome Analysis in Human Skeletal Muscle Anabolism, Hypertrophy and Epigenetic Memory. Sci. Rep. 2019, 9, 4251. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.C.R.; Murgatroyd, C.; Stebbings, G.K.; Cunniffe, B.; Harle, L.; Salter, M.; Ramadass, A.; Westra, J.W.; Hunter, E.; Akoulitchev, A.; et al. The Prospective Study of Epigenetic Regulatory Profiles in Sport and Exercise Monitored Through Chromosome Conformation Signatures. Genes 2020, 11, 905. [Google Scholar] [CrossRef]
- Pokrywka, A.; Kaliszewski, P.; Majorczyk, E.; Zembro-Łacny, A. Genes in sport and doping. Biol. Sport 2013, 30, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciejewska-Skrendo, A.; Sawczuk, M.; Cięszczyk, P.; Ahmetov, I.I. Genes and Power Athlete Status. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 41–72. [Google Scholar]
- Semenova, E.A.; Fuku, N.; Ahmetov, I.I. Genetic profile of elite endurance athletes. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 73–104. [Google Scholar]
- Valeeva, E.V.; Ahmetov, I.I.; Rees, T. Psychogenetics and sport. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 147–165. [Google Scholar]
- Cagnin, S.; Chemello, F.; Ahmetov, I.I. Genes and response to aerobic training. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 169–188. [Google Scholar]
- Massidda, M.; Calò, C.M.; Cięszczyk, P.; Kikuchi, N.; Ahmetov, I.I.; Williams, A.G. Genetics of Team Sports. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 105–128. [Google Scholar]
- Ma, F.; Yang, Y.; Li, X.; Zhou, F.; Gao, C.; Li, M.; Gao, L. The association of sport performance with ACE and ACTN3 genetic polymorphisms: A systematic review and meta-analysis. PLoS ONE 2013, 8, e54685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gineviciene, V.; Jakaitiene, A.; Aksenov, M.O.; Aksenova, A.V.; Astratenkova, A.D.; Egorova, E.S.; Gabdrakhmanova, L.J.; Tubelis, L.; Kucinskas, V.; Utkus, A. Association analysis of ACE, ACTN3 and PPARGC1A gene polymorphisms in two cohorts of European strength and power athletes. Biol. Sport 2016, 33, 199. [Google Scholar] [CrossRef] [PubMed]
- Ginevičienė, V.; Jakaitienė, A.; Pranculis, A.; Milašius, K.; Tubelis, L.; Utkus, A. AMPD1 rs17602729 is associated with physical performance of sprint and power in elite Lithuanian athletes. BMC Genet. 2014, 15, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmetov, I.I.; Hakimullina, A.M.; Popov, D.V.; Lyubaeva, E.V.; Missina, S.S.; Vinogradova, O.L.; Williams, A.G.; Rogozkin, V.A. Association of the VEGFR2 gene His472Gln polymorphism with endurance-related phenotypes. Eur. J. Appl. Physiol. 2009, 107, 95–103. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Bosnyák, E.; Semenova, E.A.; Szmodis, M.; Griff, A.; Móra, Á.; Almási, G.; Trájer, E.; Udvardy, A.; Kostryukova, E.S.; et al. The MCT1 gene Glu490Asp polymorphism (rs1049434) is associated with endurance athlete status, lower blood lactate accumulation and higher maximum oxygen uptake. Biol. Sport 2021, 38, 465–474. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Semenova, E.A.; Zempo, H.; Martins, G.L.; Lancha-Junior, A.H.; Miyamoto-Mikami, E.; Kumagai, H.; Tobina, T.; Shiose, K.; Kakigi, R.; et al. Are Genome-Wide Association Study Identified Single-Nucleotide Polymorphisms Associated with Sprint Athletic Status? A Replication Study with 3 Different Cohorts. Int. J. Sports Physiol. Perform. 2021, 16, 489–495. [Google Scholar] [CrossRef]
- Moreland, E.; Borisov, O.V.; Semenova, E.A.; Larin, A.K.; Andryushchenko, O.N.; Andryushchenko, L.B.; Generozov, E.V.; Williams, A.G.; Ahmetov, I.I. Polygenic Profile of Elite Strength Athletes. J. Strength Cond. Res. 2020. [Google Scholar] [CrossRef]
- Al-Khelaifi, F.; Yousri, N.A.; Diboun, I.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Andryushchenko, L.B.; Larin, A.K.; Generozov, E.V.; et al. Genome-Wide Association Study Reveals a Novel Association between MYBPC3 Gene Polymorphism, Endurance Athlete Status, Aerobic Capacity and Steroid Metabolism. Front. Genet. 2020, 11, 595. [Google Scholar] [CrossRef]
- Semenova, E.A.; Miyamoto-Mikami, E.; Akimov, E.B.; Al-Khelaifi, F.; Murakami, H.; Zempo, H.; Kostryukova, E.S.; Kulemin, N.A.; Larin, A.K.; Borisov, O.V.; et al. The association of HFE gene H63D polymorphism with endurance athlete status and aerobic capacity: Novel findings and a meta-analysis. Eur. J. Appl. Physiol. 2020, 120, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Ginevičienė, V.; Jakaitienė, A.; Pranckevičienė, E.; Milašius, K.; Utkus, A. Variants in the Myostatin Gene and Physical Performance Phenotype of Elite Athletes. Genes 2021, 12, 757. [Google Scholar] [CrossRef]
- Jespersen, J.; Kjaer, M.; Schjerling, P. The possible role of myostatin in skeletal muscle atrophy and cachexia. Scand. J. Med. Sci. Sports 2006, 16, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Boulygina, E.A.; Borisov, O.V.; Valeeva, E.V.; Semenova, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Larin, A.K.; Nabiullina, R.M.; Mavliev, F.A.; Akhatov, A.M.; et al. Whole genome sequencing of elite athletes. Biol. Sport 2020, 37, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Ahmetov, I.; Kulemin, N.; Popov, D.; Naumov, V.; Akimov, E.; Bravy, Y.; Egorova, E.; Galeeva, A.; Generozov, E.; Kostryukova, E.; et al. Genome-wide association study identifies three novel genetic markers associated with elite endurance performance. Biol. Sport 2015, 32, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Rankinen, T.; Fuku, N.; Wolfarth, B.; Wang, G.; Sarzynski, M.A.; Alexeev, D.G.; Ahmetov, I.I.; Boulay, M.R.; Cieszczyk, P.; Eynon, N.; et al. No Evidence of a Common DNA Variant Profile Specific to World Class Endurance Athletes. PLoS ONE 2016, 11, e0147330. [Google Scholar] [CrossRef]
- Pickering, C.; Suraci, B.; Semenova, E.A.; Boulygina, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Khabibova, S.A.; Larin, A.K.; Pavlenko, A.V.; et al. A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. J. Strength Cond. Res. 2019, 33, 2344–2351. [Google Scholar] [CrossRef]
- Wang, G.; Tanaka, M.; Eynon, N.; North, K.N.; Williams, A.G.; Collins, M.; Moran, C.N.; Britton, S.L.; Fuku, N.; Ashley, E.A.; et al. The Future of Genomic Research in Athletic Performance and Adaptation to Training. Med. Sport Sci. 2016, 61, 55–67. [Google Scholar] [CrossRef]
- Pitsiladis, Y.P.; Tanaka, M.; Eynon, N.; Bouchard, C.; North, K.N.; Williams, A.G.; Collins, M.; Moran, C.N.; Britton, S.L.; Fuku, N.; et al. Athlome Project Consortium: A concerted effort to discover genomic and other “omic” markers of athletic performance. Physiol. Genom. 2016, 48, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Al-Khelaifi, F.; Diboun, I.; Donati, F.; Botrè, F.; Abraham, D.; Hingorani, A.; Albagha, O.; Georgakopoulos, C.; Suhre, K.; Yousri, N.A.; et al. Metabolic GWAS of elite athletes reveals novel genetically-influenced metabolites associated with athletic performance. Sci. Rep. 2019, 9, 19889. [Google Scholar] [CrossRef]
- Mohr, A.E.; Jäger, R.; Carpenter, K.C.; Kerksick, C.M.; Purpura, M.; Townsend, J.R.; West, N.P.; Black, K.; Gleeson, M.; Pyne, D.B.; et al. The athletic gut microbiota. J. Int. Soc. Sports Nutr. 2020, 17, 24. [Google Scholar] [CrossRef]
- Stępień-Słodkowska, M.; Ficek, K.; Maciejewska-Karłowska, A.; Sawczuk, M.; Ziętek, P.; Król, P.; Zmijewski, P.; Pokrywka, A.; Cięszczyk, P. Overrepresentation of the COL3A1 AA genotype in Polish skiers with anterior cruciate ligament injury. Biol. Sport 2015, 32, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Maffulli, N.; Margiotti, K.; Longo, U.G.; Loppini, M.; Fazio, V.M.; Denaro, V. The genetics of sports injuries and athletic performance. Muscles Ligaments Tendons J. 2013, 3, 173–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emery, M.S.; Kovacs, R.J. Sudden Cardiac Death in Athletes. JACC Heart Fail. 2018, 6, 30–40. [Google Scholar] [CrossRef] [PubMed]
- D’Silva, A.; Papadakis, M. Sudden Cardiac Death in Athletes. Eur. Cardiol. 2015, 10, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Thiene, G. Sudden cardiac death in the young: A genetic destiny? Clin. Med. 2018, 18, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Kerksick, C.M.; Tsatsakis, A.M.; Hayes, A.W.; Kafantaris, I.; Kouretas, D. How can bioinformatics and toxicogenomics assist the next generation of research on physical exercise and athletic performance. J. Strength Cond. Res. 2015, 29, 270–278. [Google Scholar] [CrossRef]
- Buniello, A.; MacArthur, J.A.L.; Cerezo, M.; Harris, L.W.; Hayhurst, J.; Malangone, C.; McMahon, A.; Morales, J.; Mountjoy, E.; Sollis, E.; et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019, 47, D1005–D1012. [Google Scholar] [CrossRef] [Green Version]
- NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018, 46, D8–D13. [Google Scholar] [CrossRef] [Green Version]
- Guilherme, J.P.L.F.; Semenova, E.A.; Borisov, O.V.; Kostryukova, E.S.; Vepkhvadze, T.F.; Lysenko, E.A.; Andryushchenko, O.N.; Andryushchenko, L.B.; Lednev, E.M.; Larin, A.K.; et al. The BDNF-Increasing Allele is Associated with Increased Proportion of Fast-Twitch Muscle Fibers, Handgrip Strength, and Power Athlete Status. J. Strength Cond. Res. 2020. [CrossRef]
- Skinner, J.S.; Gaskill, S.E.; Rankinen, T.; Leon, A.S.; Rao, D.C.; Wilmore, J.H.; Bouchard, C. Heart rate versus % VO2max: Age, sex, race, initial fitness, and training response—HERITAGE. Med. Sci. Sports Exerc. 2003, 35, 1908–1913. [Google Scholar] [CrossRef]
- Ginevičienė, V.; Pranckevičienė, E.; Milašius, K.; Kučinskas, V. Relating fitness phenotypes to genotypes in Lithuanian elite athletes. Acta Med. Litu. 2010, 17, 1–10. [Google Scholar]
- Jones, N.; Kiely, J.; Suraci, B.; Collins, D.J.; De Lorenzo, D.; Pickering, C.; Grimaldi, K.A. A genetic-based algorithm for personalized resistance training. Biol. Sport 2016, 33, 117. [Google Scholar] [CrossRef] [PubMed]
- Grishina, E.E.; Zmijewski, P.; Semenova, E.A.; Cieszczyk, P.; Huminska-Lisowska, K.; Michałowska-Sawczyn, M.; Maculewicz, E.; Crewther, B.; Orysiak, J.; Kostryukova, E.S.; et al. Three DNA polymorphisms previously identified as markers for handgrip strength are associated with strength in weightlifters and muscle fiber hypertrophy. J. Strength Cond. Res. 2019, 33, 2602–2607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, A.G.; Folland, J.P. Similarity of polygenic profiles limits the potential for elite human physical performance. J. Physiol. 2008, 586, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Coso, J.D.; Salinero, J.J.; Lara, B.; Gallo-Salazar, C.; Areces, F.; Herrero, D.; Puente, C. Polygenic Profile and Exercise-Induced Muscle Damage by a Competitive Half-Ironman. J. Strength Cond. Res. 2020, 34, 1400–1408. [Google Scholar] [CrossRef]
- He, L.; Van Roie, E.; Bogaerts, A.; Morse, C.I.; Delecluse, C.; Verschueren, S.; Thomis, M. Genetic predisposition score predicts the increases of knee strength and muscle mass after one-year exercise in healthy elderly. Exp. Gerontol. 2018, 111, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Pranckeviciene, E.; Gineviciene, V.; Jakaitiene, A.; Januska, L.; Utkus, A. Total Genotype Score Modelling of Polygenic Endurance-Power Profiles in Lithuanian Elite Athletes. Genes 2021, 12, 1067. [Google Scholar] [CrossRef]
- Guilherme, J.P.L.F.; Semenova, E.A.; Borisov, O.V.; Larin, A.K.; Moreland, E.; Generozov, E.V.; Ahmetov, I.I. Genomic predictors of testosterone levels are associated with muscle fiber size and strength. Eur. J. Appl. Physiol. 2022, 122, 415–423. [Google Scholar] [CrossRef]
- Ben-Zaken, S.; Meckel, Y.; Nemet, D.; Eliakim, A. Genetic score of power-speed and endurance track and field athletes. Scand. J. Med. Sci. Sports 2015, 25, 166–174. [Google Scholar] [CrossRef]
- Płóciennik, Ł.A.; Zaucha, J.; Zaucha, J.M.; Łukaszuk, K.; Jóźwicki, M.; Płóciennik, M.; Cięszczyk, P. Detection of epistasis between ACTN3 and SNAP-25 with an insight towards gymnastic aptitude identification. PLoS ONE 2020, 15, e0237808. [Google Scholar] [CrossRef]
- Weyerstraß, J.; Stewart, K.; Wesselius, A.; Zeegers, M. Nine genetic polymorphisms associated with power athlete status—A Meta-Analysis. J. Sci. Med. Sport 2018, 21, 213–220. [Google Scholar] [CrossRef]
- Tharabenjasin, P.; Pabalan, N.; Jarjanazi, H. Association of the ACTN3 R577X (rs1815739) polymorphism with elite power sports: A meta-analysis. PLoS ONE 2019, 14, e0217390. [Google Scholar] [CrossRef] [Green Version]
- Brzeziańska, E.; Domańska, D.; Jegier, A. Gene doping in sport—Perspectives and risks. Biol. Sport 2014, 31, 251–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, R.; Dhillon, M.S.; Dhillon, S. Genetics and the Elite Athlete: Our Understanding in 2020. Indian J. Orthop. 2020, 54, 256–263. [Google Scholar] [CrossRef] [PubMed]
- The World Anti-Doping Agency (WADA). Who We Are? Available online: https://www.wada-ama.org/en/who-we-are (accessed on 30 September 2021).
- World Anti-Doping Agency. Play True: Gene Doping. Available online: https://www.wada-ama.org/sites/default/files/resources/files/PlayTrue_2005_1_Gene_Doping_EN.pdf (accessed on 30 September 2021).
- World Anti-Doping Agency. The World Anti-Doping Code. The 2014 Prohibited List: International Standard, Version 2.0. 2014. Available online: https://www.wada-ama.org/sites/default/files/resources/files/WADA-Revised-2014-Prohibited-List-EN.PDF (accessed on 30 September 2021).
- The World Anti-Doping Agency (WADA). The World Anti-Doping Code International Standard Prohibited List 2021; WADA: Montreal, QC, Canada, 2021. [Google Scholar]
- Paßreiter, A.; Thomas, A.; Grogna, N.; Delahaut, P.; Thevis, M. First steps toward uncovering gene doping with CRISPR/Cas by identifying SpCas9 in plasma via HPLC-HRMS/MS. Anal. Chem. 2020, 92, 16322–16328. [Google Scholar] [CrossRef] [PubMed]
- Thevis, M.; Kuuranne, T.; Geyer, H. Annual banned-substance review: Analytical approaches in human sports drug testing 2020/2021. Drug Test. Anal. 2021, 14, 7–30. [Google Scholar] [CrossRef] [PubMed]
- World Anti-Doping Agency. Gene Doping Detection Based on Polymerase Chain Reaction (PCR). 2021. Available online: https://www.wada-ama.org/sites/default/files/resources/files/wada_guidelines_for_gene_doping_pcr_test_v1_jan_2021_eng.pdf (accessed on 20 November 2021).
- Aoki, K.; Sugasawa, T.; Yanazawa, K.; Watanabe, K.; Takemasa, T.; Takeuchi, Y.; Aita, Y.; Yahagi, N.; Yoshida, Y.; Kuji, T.; et al. The detection of trans gene fragments of hEPO in gene doping model mice by Taqman qPCR assay. PeerJ 2020, 8, e8595. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.Y.; Kim, M.; Min, H.; Kim, B.-G.; Son, J.; Kwon, O.-S.; Sung, C. New application of the CRISPR-Cas9 system for site-specific exogenous gene doping analysis. Drug Test. Anal. 2021, 13, 871–875. [Google Scholar] [CrossRef]
Gene(s) | Molecular Mechanisms and Physiological Functions | Athletic Performance Enhancement (Phenotype) | Adverse Health Effects |
---|---|---|---|
Erythropoietin (EPO) and EPO receptor (EPOR) genes | Stimulates erythropoiesis, increases hemoglobin and hematocrit levels, enhances blood oxygenation and oxygen delivery to tissues | Endurance | Hyperviscosity, restricted blood flow, severe immune response, stroke, thrombosis, hypertension, myocardial infarction, heart failure |
Peroxisome Proliferator Activated Receptor Gamma Coactivator 1-Alpha (PPARGC1A) and -Beta (PPARGC1B) genes | Stimulates the activity of transcription factors and nuclear receptors; regulates the genes involved in energy metabolism and mitochondrial biogenesis; regulates muscle fiber type determination | Strength and endurance, greater resistance to fatigue | Metabolic disorders, mitochondrial diseases |
Peroxisome Proliferator Activated Receptor Delta (PPARD) gene | Regulates energy homeostasis, muscle fiber type composition and fatty acid catabolism (with a broad role in fat metabolism) | Sprint and endurance | Metabolic disorders, colorectal cancer, overexpression of sex hormones |
Vascular Endothelial Growth Factor A (VEGFA) gene | Induces proliferation and migration of vascular endothelial cells, and is essential for angiogenesis | Endurance | Abnormal blood vessel formation, cancer, immune system disorders |
Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A) gene | Regulates metabolic adaptation to hypoxia, energy metabolism, angiogenesis and apoptosis | Endurance | Hyperviscosity, hypertension, heart failure, neoplastic and ischemic disease |
Insulin-Like Growth Factor 1 (IGF1) and Growth Hormone (GH) genes | Involved in mediating growth and development of bones and tissue mass, muscle hypertrophy and hyperplasia, homeostasis of carbohydrates, proteins and lipids; regulates muscle regeneration and increased release of glucose from liver | Strength, power, increase in muscle mass, positive effect on muscle regeneration | Hypertension, neoplastic disease, cardiomyopathy, insulin resistance and diabetes, overgrowth of the cartilage of the nose and jaw, abnormal vision, peripheral oedema, carpal tunnel syndrome, nausea and vomiting, headache, musculoskeletal pain |
Myostatin (MSTN or Growth Differentiation Factor 8, GDF8) gene | Negatively regulates skeletal muscle cell proliferation and differentiation | Strength, increase in muscle mass | Musculoskeletal disorders |
Angiotensin-Converting Enzyme (ACE) gene | Involved in blood pressure regulation and electrolyte balance | Endurance and/or sprint | Kidney and cardiovascular disease, angioedema |
Alpha-Actinin 3 (ACTN3, Skeletal Muscle Isoform) gene | Expressed in skeletal muscle (fast-twitch myofibers) and functions as a structural component of sarcomeric Z line | Sprint and/or endurance | Data currently unavailable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ginevičienė, V.; Utkus, A.; Pranckevičienė, E.; Semenova, E.A.; Hall, E.C.R.; Ahmetov, I.I. Perspectives in Sports Genomics. Biomedicines 2022, 10, 298. https://doi.org/10.3390/biomedicines10020298
Ginevičienė V, Utkus A, Pranckevičienė E, Semenova EA, Hall ECR, Ahmetov II. Perspectives in Sports Genomics. Biomedicines. 2022; 10(2):298. https://doi.org/10.3390/biomedicines10020298
Chicago/Turabian StyleGinevičienė, Valentina, Algirdas Utkus, Erinija Pranckevičienė, Ekaterina A. Semenova, Elliott C. R. Hall, and Ildus I. Ahmetov. 2022. "Perspectives in Sports Genomics" Biomedicines 10, no. 2: 298. https://doi.org/10.3390/biomedicines10020298
APA StyleGinevičienė, V., Utkus, A., Pranckevičienė, E., Semenova, E. A., Hall, E. C. R., & Ahmetov, I. I. (2022). Perspectives in Sports Genomics. Biomedicines, 10(2), 298. https://doi.org/10.3390/biomedicines10020298