Asymmetric Interaction of Neuropeptidase Activities between Cortico-Limbic Structures, Plasma and Cardiovascular Function after Unilateral Dopamine Depletions of the Nigrostriatal System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. 6-Hydroxydopamine and Saline Intrastriatal Injections
2.3. Obtaining Blood and Brain Samples
2.4. Enzymatic and Protein Determinations
2.5. Statistical Analysis
3. Results
3.1. Systolic Blood Pressure
3.2. Brain Neuropeptidase and Plasma Aminopeptidase Activities
3.3. Sham Left Correlations
3.4. Sham Right Correlations
3.5. Lesioned Left Correlations
3.6. Lesioned Right Correlations
3.7. Comparisons between Groups
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pert, C.B.; Snyder, S.H. Opiate receptor: Demonstration in nervous tissue. Science 1973, 179, 1011–1014. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; Smith, T.W.; Kosterlitz, H.W.; Fothergill, L.A.; Morgan, B.A.; Morris, H.R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 1975, 258, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Merighi, A. Neuropeptides; Humana Press: Totowa, NJ, USA, 2011; ISSN 1064-3745. [Google Scholar]
- Rawlings, N.; Auld, D. Handbook of Proteolytic Enzymes, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 9780128235874. [Google Scholar]
- Ramírez, M.; Prieto, I.; Vives, F.; de Gasparo, M.; Alba, F. Neuropeptides, neuropeptidases and brain asymmetry. Curr. Protein Pept. Sci. 2004, 5, 497–506. [Google Scholar] [CrossRef]
- Ramírez, M.; Prieto, I.; Banegas, I.; Segarra, A.B.; Alba, F. Neuropeptidases; Humana Press: Totowa, NJ, USA, 2011; Volume 789, pp. 287–294. [Google Scholar]
- Chinta, S.J.; Andersen, J.K. Dopaminergic neurons. Int. J. Biochem. Cell Biol. 2005, 37, 942–946. [Google Scholar] [CrossRef]
- Han, L.N.; Zhang, L.; Li, L.B.; Sun, Y.N.; Wang, Y.; Chen, L.; Guo, Y.; Zhang, Y.M.; Zhang, Q.J.; Liu, J. Activation of serotonin(2C) receptors in the lateral habenular nucleus increases the expression of depression-related behaviors in the hemiparkinsonian rat. Neuropharmacology 2015, 93, 68–79. [Google Scholar] [CrossRef]
- Merighi, A. Costorage and coexistence of neuropeptides in the mammalian CNS. Prog. Neurobiol. 2002, 66, 161–190. [Google Scholar] [CrossRef]
- Molochnikov, I.; Cohen, D. Hemispheric differences in the mesostriatal dopaminergic system. Front. Syst. Neurosci. 2014, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Djaldetti, R.; Ziv, I.; Melamed, E. The mystery of motor asymmetry in Parkinson’s disease. Lancet Neurol. 2006, 5, 796–802. [Google Scholar] [CrossRef]
- Ramírez-Sánchez, M.; Prieto, I.; Segarra, A.B.; Banegas, I.; Martínez-Cañamero, M.; Domínguez-Vías, G.; de Gasparo, M. Brain Asymmetry: Towards an Asymmetrical Neurovisceral Integration. Symmetry 2021, 13, 2409. [Google Scholar] [CrossRef]
- Banegas, I.; Prieto, I.; Vives, F.; Alba, F.; de Gasparo, M.; Duran, R.; Segarra, A.B.; Ramírez, M. Lateralized response of oxytocinase activity in the medial prefrontal cortex of a unilateral rat model of Parkinson’s disease. Behav. Brain Res. 2010, 213, 328–331. [Google Scholar] [CrossRef]
- Banegas, I.; Prieto, I.; Segarra, A.B.; Vives, F.; de Gasparo, M.; Duran, R.; de Dios Luna, J.; Ramírez-Sánchez, M. Bilateral distribution of enkephalinase activity in the medial prefrontal cortex differs between WKY and SHR rats unilaterally lesioned with 6-hydroxydopamine. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 75, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Banegas, I.; Segarra, A.B.; Prieto, I.; Vives, F.; de Gasparo, M.; Duran, R.; de Dios Luna, J.; Ramírez-Sánchez, M. Asymmetrical response of aminopeptidase A in the medial prefrontal cortex and striatum of 6-OHDA-unilaterally-lesioned Wistar Kyoto and spontaneously hypertensive rats. Pharmacol. Biochem. Behav. 2019, 182, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Jolicoeur, F.B.; Rivest, R. Rodent model of Parkinson’s disease. In Animal Models of Neurological Disease, I; Boulto, A.A., Bakerand, G.B., Butterworth, R.F., Eds.; Neuromethods 21; Humana Press: Totowa, NJ, USA, 1992; pp. 135–158. [Google Scholar]
- Banegas, I.; Prieto, I.; Vives, F.; Alba, F.; De Gasparo, M.; Duran, R.; Luna, J.D.D.; Segarra, A.B.; Hermoso, F.; Ramírez, M. Asymmetrical response of aminopeptidase A and nitric oxide in plasma of normotensive and hypertensive rats with experimental hemiparkinsonism. Neuropharmacology 2009, 56, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 4th ed.; Academic Press: London, UK, 1998. [Google Scholar]
- Deumens, R.; Blokland, A.; Prickaerts, J. Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 2002, 175, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Arias-Carrión, O.; Stamelou, M.; Murillo-Rodríguez, E.; Menéndez-González, M.; Pöppel, E. Dopaminergic reward system: A short integrative review. Int. Arch. Med. 2010, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Rentería, M.E. Cerebral asymmetry: A quantitative, multifactorial, and plastic brain phenotype. Twin Res. Hum. Genet. 2012, 15, 401–413. [Google Scholar] [CrossRef] [Green Version]
- Löscher, W. Abnormal circling behavior in rat mutants and its relevance to model specific brain dysfunctions. Neurosci. Biobehav. Rev. 2010, 34, 31–49. [Google Scholar] [CrossRef]
- Uvnäs Moberg, K.; Handlin, L.; Kendall-Tackett, K.; Petersson, M. Oxytocin is a principal hormone that exerts part of its effects by active fragments. Med. Hypotheses 2019, 133, 109394. [Google Scholar] [CrossRef]
- Lubben, N.; Ensink, E.; Coetzee, G.A.; Labrie, V. The enigma and implications of brain hemispheric asymmetry in neurodegenerative diseases. Brain Commun. 2021, 3, fcab211. [Google Scholar] [CrossRef]
- Ma, R.; Xie, Q.; Li, Y.; Chen, Z.; Ren, M.; Chen, H.; Li, H.; Li, J.; Wang, J. Animal models of cerebral ischemia: A review. Biomed. Pharmacother. 2020, 131, 110686. [Google Scholar] [CrossRef] [PubMed]
- Toutain, T.G.L.O.; Alba, G.; Miranda, J.G.V.; do Rosário, R.S.; Munõz, M.; de Sena, E.P. Brain Asymmetry in Pain Affective Modulation. Pain Med. 2021, pnab232. [Google Scholar] [CrossRef] [PubMed]
SHAM LEFT WKY | ||
---|---|---|
Sham Left WKY Left Side | Sham Left WKY Right Side | Sham Left WKY Left Side vs |
Brain vs Brain | Brain vs Brain | LPAla vs RPCys r = −0.654 p = 0.04 |
LHAla vs LHCys r = +0.705 p = 0.022 | RPGlu vs RPAla r = +0.710 p = 0.021 | LPCys vs RAAla r = −0.679 p = 0.03 |
LPAla vs LAAsp r = +0.632 p = 0.049 | RPAsp vs RAGlu r = −0.641 p = 0.045 | LAGlu vs RHCys r = +0.772 p = 0.0089 |
LPGlu vs LPAsp r = +0.670 p = 0.034 | RAGlu vs RACys r = −0.839 p = 0.0024 | LAAla vs RAAla r = +0.760 p = 0.01 |
RACys vs RHAsp r = −0.644 p = 0.044 | LHGlu vs LPGlu r = −0.680 p = 0.03 | |
RHAla vs RHCys r = +0.725 p = 0.017 | LHAla vs RHCys r = +0.827 p = 0.0031 | |
LHAsp vs RHCys r = −0.701 p = 0.023 | ||
Plasma vs Brain Left Side | Plasma vs Brain Right Side | Sham Left WKY Plasma |
PlAla vs LAGlu r = −0.789 p = 0.0066 | NO CORRELATIONS | Plasma vs Plasma |
PlCys vs LAGlu r = −0.733 p = 0.0157 | PlGlu vs PlAla r = +0.888 p = 0.0006 | |
Pl Glu vs LAGlu r = −0.756 p = 0.0113 | PlGlu vs PlCys r = +0.812 p = 0.0043 | |
PlGlu vs PlAsp r = +0.705 p = 0.0226 | ||
Brain Left Side vs SBP | Brain Right Side vs SBP | PlAla vs PlCys r = +0.782 p = 0.0074 |
LACys vs SBP r = −0.699 p = 0.02 | NO CORRELATIONS | PlAla vs PlAsp r = +0.734 p = 0.0155 |
PlCys vs PlAsp r = +0.649 p = 0.04 |
SHAM RIGHT WKY | ||
---|---|---|
Sham Right WKY Left Side | Sham Right WKY Right Side | Sham Right WKY Left Side vs |
Right Side | ||
Brain vs Brain | Brain vs Brain | LPGlu vs RPAla r = +0.667 p = 0.034 |
LPGlu vs LPAsp r = +0.673 p = 0.032 | RPGlu vs RPCys r = −0.635 p = 0.048 | LPGlu vs RAAla r = −0.670 p = 0.034 |
LPAla vs LPCys r = +0.838 p = 0.0024 | RPGlu vs RHGlu r = +0.650 p = 0.041 | LPAla vs RAAla r = −0.639 p = -0.046 |
LPAla vs LHCys r = +0.669 p = 0.034 | RPCys vs RHGlu r = −0.719 p = 0.018 | LPAla vs RHAsp r = +0.705 p = 0.022 |
LAAla vs LACys r = +0.914 p = 0.0002 | RPAsp vs RAAla r = +0.650 p = 0.041 | LAGlu vs RPGlu r = +0.649 p = 0.042 |
RAGlu vs RAAsp r = +0.644 p = 0.044 | LACys vs RHAla r = +0.640 p = 0.046 | |
LHGlu vs RPGlu r = +0.687 p = 0.028 | ||
LHGlu vs RAGlu r = −0.664 p = 0.035 | ||
LHGlu vs RAAla r = −0.652 p = 0.04 | ||
LHGlu vs RAAsp r = −0.684 p = 0.028 | ||
Plasma vs Brain Left Side | Plasma vs Brain Right Side | Sham Right WKY Plasma |
PlCys vs LAAla r = +0.651 p = 0.041 | PlAla vs RAAla r = −0.636 p = 0.047 | Plasma vs Plasma |
PlGlu vs PlAla r = +0.685 p = 0.028 | ||
Brain Left Side vs SBP | Brain Right Side vs SBP | PlGlu vs PlAsp r = +0.692 p = 0.026 |
NO CORRELATIONS | RAGlu vs SBP r = +0.650 p = 0.04 | PlAla vs PlAsp r = +0.815 p = 0.004 |
LESIONED LEFT WKY | ||
---|---|---|
Lesioned Left WKY Left Side | Lesioned Left WKY Right Side | Lesioned Left WKY Left Side vs |
Right Side | ||
Brain vs Brain | Brain vs Brain | LPGlu vs RPGlu r = −0.760 p = 0.01 |
LPAla vs LHAsp r = +0.688 p = 0.027 | RPAsp vs RHAla r = +0.667 p = 0.034 | LPGlu vs RAAsp r = +0.698 p = 0.024 |
LPAsp vs LACys r = −0.871 p = 0.001 | RAGlu vs RHGlu r = +0.724 p = 0.017 | LPAla vs RHCys r = +0.635 p = 0.048 |
LPAsp vs LHGlu r = −0.641 p = 0.045 | RHAla vs RHCys r = +0.745 p = 0.013 | LPAsp vs RPCys r = +0.714 p = 0.02 |
LAGlu vs LHGlu r = +0.737 p = 0.014 | LPAsp vs RAGlu r = +0.796 p = 0.005 | |
LAAla vs LACys r = +0.643 p = 0.044 | LACys vs RPCys r = −0.718 p = 0.019 | |
LACys vs RAGlu r = −0.658 p = 0.038 | ||
LAAsp vs RHAsp r = +0.843 p = 0.0022 | ||
LHAla vs RAAsp r = −0.658 p = 0.038 | ||
LHAla vs RHAla r = +0.775 p = 0.0084 | ||
LHCys vs RAGlu r = +0.703 p = 0.023 | ||
LHCys vs RHAsp r = −0.646 p = 0.043 | ||
LHAsp vs RHAsp r = +0.655 p = 0.039 | ||
Plasma vs Brain Left Side | Plasma vs Brain Right Side | Lesioned Left WKY Plasma |
PlAla vs LPAla r = +0.635 p = 0.048 | PlAsp vs RHAla r = −0.687 p = 0.027 | Plasma vs Plasma |
PlAla vs LHAsp r = +0.843 p = 0.0021 | PlGlu vs PlCys r = +0.854 p = 0.0016 | |
PlCys vs LAGlu r = −0.665 p = 0.035 | ||
PlAsp vs LHAla r = −0.715 p = 0.019 | ||
Brain Left Side vs SBP | Brain Right Side vs SBP | |
LHCys vs SBP r = −0.723 p = 0.01 | RAGlu vs SBP r = −0.688 p = 0.02 | |
RACys vs SBP r = +0.882 p = 0.0007 |
LESIONED RIGHT WKY | ||
---|---|---|
Lesioned Right WKY Left Side | Lesioned Right WKY Right Side | Lesioned Right WKY Left Side vs |
Right Side | ||
Brain vs Brain | Brain vs Brain | LPAla vs RAAla r = +0.662 p = 0.051 |
LPGlu vs LHAla r = +0.742 p = 0.021 | RPAla vs RPCys r = +0.736 p = 0.023 | LPCys vs RPAsp r = −0.787 p = 0.011 |
LPAla vs LPAsp r = −0.647 p = 0.059 | RPAla vs RPAsp r = +0.741 p = 0.022 | LPAsp vs RAAla r = −0.762 p = 0.016 |
RPCys vs RACys r = +0.748 p = 0.02 | LAGlu vs RPCys r = +0.741 p = 0.022 | |
RAAla vs RHCys r = −0.651 p = 0.057 | LAGlu vs RACys r = +0.741 p = 0.022 | |
RAAsp vs RHGlu r = −0.688 p = 0.04 | LHGlu vs RHAsp r = +0.667 p = 0.049 | |
LHAsp vs RAAla r = −0.659 p = 0.053 | ||
LHAsp vs RHAsp r = +0.747 p = 0.02 | ||
Plasma vs Brain Left Side | Plasma vs Brain Right Side | Lesioned Right WKY Plasma |
NO CORRELATIONS | PlGlu vs RPGlu r = −0.901 p = 0.0008 | Plasma vs Plasma |
PlGlu vs RAGlu r = −0.773 p = 0.014 | PlGlu vs PlAla r = +0.847 p = 0.003 | |
PlAla vs RPGlu r = −0.690 p = 0.039 | PlGlu vs PlCys r = +0.839 p = 0.004 | |
PlAla vs RAGlu r = −0.767 p = 0.015 | PlGlu vs PlAsp r = +0.817 p = 0.007 | |
PlCys vs RPGlu r = −0.653 p = 0.056 | PlAla vs PlCys r = +0.986 p < 0.0001 | |
PlCys vs RAGlu r = −0.802 p = 0.009 | PlAla vs PlAsp r = +0.855 p = 0.003 | |
PlAsp vs RPGlu r = −0.637 p = 0.064 | PlCys vs PlAsp r = +0.871 p = 0.002 | |
PlAsp vs RAGlu r = −0.745 p = 0.021 | ||
Brain Left Side vs SBP | Brain Right Side vs SBP | |
LHCys vs SBP r = −0.722 p = 0.02 | RPAsp vs SBP r = +0.676 p = 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banegas, I.; Prieto, I.; Segarra, A.B.; Vives, F.; Martínez-Cañamero, M.; Durán, R.; Luna, J.d.D.; de Gasparo, M.; Domínguez-Vías, G.; Ramírez-Sánchez, M. Asymmetric Interaction of Neuropeptidase Activities between Cortico-Limbic Structures, Plasma and Cardiovascular Function after Unilateral Dopamine Depletions of the Nigrostriatal System. Biomedicines 2022, 10, 326. https://doi.org/10.3390/biomedicines10020326
Banegas I, Prieto I, Segarra AB, Vives F, Martínez-Cañamero M, Durán R, Luna JdD, de Gasparo M, Domínguez-Vías G, Ramírez-Sánchez M. Asymmetric Interaction of Neuropeptidase Activities between Cortico-Limbic Structures, Plasma and Cardiovascular Function after Unilateral Dopamine Depletions of the Nigrostriatal System. Biomedicines. 2022; 10(2):326. https://doi.org/10.3390/biomedicines10020326
Chicago/Turabian StyleBanegas, Inmaculada, Isabel Prieto, Ana Belén Segarra, Francisco Vives, Magdalena Martínez-Cañamero, Raquel Durán, Juan de Dios Luna, Marc de Gasparo, Germán Domínguez-Vías, and Manuel Ramírez-Sánchez. 2022. "Asymmetric Interaction of Neuropeptidase Activities between Cortico-Limbic Structures, Plasma and Cardiovascular Function after Unilateral Dopamine Depletions of the Nigrostriatal System" Biomedicines 10, no. 2: 326. https://doi.org/10.3390/biomedicines10020326
APA StyleBanegas, I., Prieto, I., Segarra, A. B., Vives, F., Martínez-Cañamero, M., Durán, R., Luna, J. d. D., de Gasparo, M., Domínguez-Vías, G., & Ramírez-Sánchez, M. (2022). Asymmetric Interaction of Neuropeptidase Activities between Cortico-Limbic Structures, Plasma and Cardiovascular Function after Unilateral Dopamine Depletions of the Nigrostriatal System. Biomedicines, 10(2), 326. https://doi.org/10.3390/biomedicines10020326