Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Subjects and Experimental Design
2.2. Preparation of NPCs for Transplantation
2.3. Surgical Procedure
2.4. Cholera Toxin Subunit B (CTB) Labeling
2.5. Tissue Collection
2.6. Alkaline Phosphatase Histochemistry
2.7. Immunohistochemistry
2.8. Analysis of the Longest Length of Extending Axons from Transplant
2.9. Phenotypic Analysis of NPCs Transplant
2.10. Scar Assessment
2.11. Quantification of CTB-Labeled Axons
2.12. Statistical Analysis
3. Results
3.1. NPCs Survive in Chronic Spinal Cord Injury
3.2. NPCs Differentiate into Mature Neurons and Extent Axons
3.3. NPC Graft Modification of the Glial/Fibrotic Scar
3.4. NPC Transplants Promote Host Sensory Axon Regeneration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
AP | alkaline phosphatase |
BDNF | brain-derived neurotrophic factor |
bFGF | basic fibroblast growth factor |
BSA | bovine serum albumin |
cAMP | cyclic adenosine monophosphate |
CC-1 | the monoclonal antibody anti-adenomatous polyposis coli clone CC1 |
cNPCs | cultured NPCs |
CNS | central nervous system |
CSPGs | chondroitin sulfate proteoglycans |
CTB | cholera toxin subunit B |
DAPI | basic fibroblast growth factor |
DCN | dorsal column nuclei |
DMSO | dimethylsulfoxide |
dNPCs | dissociated NPCs |
E13.5 | embryonic day 13.5 |
ES/iPS | embryonic or induced pluripotent stem cells |
GAD65/67 | glutamate decarboxylase 65/67 |
GFAP | glial fibrillary acidic protein |
GRPs | glial restricted progenitors |
IACUC | Institutional Animal Care and Use Committee |
LN | laminin |
NeuN | neuronal nuclei |
NG2 | Neural/glial antigen 2 |
NPCs | neural progenitor cells |
NT-3 | neurotrophin-3 |
PBS | phosphate buffered saline |
PDGFRβ | platelet-derived growth factor receptor beta |
PFA | paraformaldehyde |
PLL | poly-l-lysine |
SCI | spinal cord injury |
SEM | standard error of the mean |
VGLUT1 and 2 | vesicular Glutamate Transporters 1 and 2 |
References
- Sun, F.; Park, K.K.; Belin, S.; Wang, D.; Lu, T.; Chen, G.; Zhang, K.; Yeung, C.; Feng, G.; Yankner, B.A.; et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 2011, 480, 372–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Tedeschi, A.; Park, K.K.; He, Z. Neuronal intrinsic mechanisms of axon regeneration. Annu. Rev. Neurosci. 2011, 34, 131–152. [Google Scholar] [CrossRef] [PubMed]
- Fagoe, N.D.; Eggers, R.; Verhaagen, J.; Mason, M.R. A compact dual promoter adeno-associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons. Gene Ther. 2014, 21, 242–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunge, M.B. Bridging areas of injury in the spinal cord. Neuroscientist 2001, 7, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Busch, S.A.; Silver, J. The role of extracellular matrix in CNS regeneration. Curr. Opin. Neurobiol. 2007, 17, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.R.; Lovett, S.J.; Majda, B.T.; Yoon, J.H.; Wheeler, L.P.; Hodgetts, S.I. Neurotrophic factors for spinal cord repair: Which, where, how and when to apply, and for what period of time? Brain Res. 2015, 1619, 36–71. [Google Scholar] [CrossRef]
- Fitch, M.T.; Silver, J. CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Exp. Neurol. 2008, 209, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Ohtake, Y.; Hayat, U.; Li, S. PTEN inhibition and axon regeneration and neural repair. Neural Regen. Res. 2015, 10, 1363–1368. [Google Scholar] [CrossRef]
- Curcio, M.; Bradke, F. Axon Regeneration in the Central Nervous System: Facing the Challenges from the Inside. Annu. Rev. Cell Dev. Biol. 2018, 34, 495–521. [Google Scholar] [CrossRef]
- He, Z.; Jin, Y. Intrinsic Control of Axon Regeneration. Neuron 2016, 90, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Tedeschi, A.; Popovich, P.G. The Application of Omics Technologies to Study Axon Regeneration and CNS Repair. F1000Research 2019, 8, F1000 Faculty Rev-311. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, J.W. The Struggle to Make CNS Axons Regenerate: Why Has It Been so Difficult? Neurochem. Res. 2020, 45, 144–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cregg, J.M.; DePaul, M.A.; Filous, A.R.; Lang, B.T.; Tran, A.; Silver, J. Functional regeneration beyond the glial scar. Exp. Neurol. 2014, 253, 197–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, C.E.; Beattie, M.S.; Bresnahan, J.C. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp. Neurol. 2001, 171, 153–169. [Google Scholar] [CrossRef] [PubMed]
- Houle, J.D.; Jin, Y. Chronically injured supraspinal neurons exhibit only modest axonal dieback in response to a cervical hemisection lesion. Exp. Neurol. 2001, 169, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Houle, J.D.; Tessler, A. Repair of chronic spinal cord injury. Exp. Neurol. 2003, 182, 247–260. [Google Scholar] [CrossRef]
- Tohda, C.; Kuboyama, T. Current and future therapeutic strategies for functional repair of spinal cord injury. Pharmacol. Ther. 2011, 132, 57–71. [Google Scholar] [CrossRef]
- Tetzlaff, W.; Okon, E.B.; Karimi-Abdolrezaee, S.; Hill, C.E.; Sparling, J.S.; Plemel, J.R.; Plunet, W.T.; Tsai, E.C.; Baptiste, D.; Smithson, L.J.; et al. A systematic review of cellular transplantation therapies for spinal cord injury. J. Neurotrauma 2011, 28, 1611–1682. [Google Scholar] [CrossRef]
- Li, J.; Lepski, G. Cell transplantation for spinal cord injury: A systematic review. Biomed. Res. Int. 2013, 2013, 786475. [Google Scholar] [CrossRef] [Green Version]
- Yousefifard, M.; Rahimi-Movaghar, V.; Nasirinezhad, F.; Baikpour, M.; Safari, S.; Saadat, S.; Moghadas Jafari, A.; Asady, H.; Razavi Tousi, S.M.; Hosseini, M. Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis. Neuroscience 2016, 322, 377–397. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, E.S.; Brock, J.H.; Lu, P.; Kumamaru, H.; Salegio, E.A.; Kadoya, K.; Weber, J.L.; Liang, J.J.; Moseanko, R.; Hawbecker, S.; et al. Restorative effects of human neural stem cell grafts on the primate spinal cord. Nat. Med. 2018, 24, 484–490. [Google Scholar] [CrossRef]
- Lu, P.; Jones, L.L.; Snyder, E.Y.; Tuszynski, M.H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 2003, 181, 115–129. [Google Scholar] [CrossRef]
- Busch, S.A.; Hamilton, J.A.; Horn, K.P.; Cuascut, F.X.; Cutrone, R.; Lehman, N.; Deans, R.J.; Ting, A.E.; Mays, R.W.; Silver, J. Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 944–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandner, B.; Prang, P.; Rivera, F.J.; Aigner, L.; Blesch, A.; Weidner, N. Neural stem cells for spinal cord repair. Cell Tissue Res. 2012, 349, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.; Woodruff, G.; Wang, Y.; Graham, L.; Hunt, M.; Wu, D.; Boehle, E.; Ahmad, R.; Poplawski, G.; Brock, J.; et al. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 2014, 83, 789–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonner, J.F.; Connors, T.M.; Silverman, W.F.; Kowalski, D.P.; Lemay, M.A.; Fischer, I. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 4675–4686. [Google Scholar] [CrossRef] [Green Version]
- Kadoya, K.; Lu, P.; Nguyen, K.; Lee-Kubli, C.; Kumamaru, H.; Yao, L.; Knackert, J.; Poplawski, G.; Dulin, J.N.; Strobl, H.; et al. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nat. Med. 2016, 22, 479–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Li, Y.; Song, B.; Zhang, Y.; Jiang, X.; Wang, M.; Tumbleson, R.; Liu, C.; Wang, P.; Hao, X.Q.; et al. Intra- and intermolecular self-assembly of a 20-nm-wide supramolecular hexagonal grid. Nat. Chem. 2020, 12, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Ceto, S.; Sekiguchi, K.J.; Takashima, Y.; Nimmerjahn, A.; Tuszynski, M.H. Neural Stem Cell Grafts Form Extensive Synaptic Networks that Integrate with Host Circuits after Spinal Cord Injury. Cell Stem Cell 2020, 27, 430–440 e435. [Google Scholar] [CrossRef]
- Dulin, J.N.; Adler, A.F.; Kumamaru, H.; Poplawski, G.H.D.; Lee-Kubli, C.; Strobl, H.; Gibbs, D.; Kadoya, K.; Fawcett, J.W.; Lu, P.; et al. Injured adult motor and sensory axons regenerate into appropriate organotypic domains of neural progenitor grafts. Nat. Commun. 2018, 9, 84. [Google Scholar] [CrossRef]
- Haas, C.; Fischer, I. Transplanting neural progenitors to build a neuronal relay across the injured spinal cord. Neural Regen. Res. 2014, 9, 1173–1176. [Google Scholar] [CrossRef]
- Bonner, J.F.; Haas, C.J.; Fischer, I. Preparation of neural stem cells and progenitors: Neuronal production and grafting applications. Methods Mol. Biol. 2013, 1078, 65–88. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.; Fischer, I. Human astrocytes derived from glial restricted progenitors support regeneration of the injured spinal cord. J. Neurotrauma 2013, 30, 1035–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujtaba, T.; Han, S.S.; Fischer, I.; Sandgren, E.P.; Rao, M.S. Stable expression of the alkaline phosphatase marker gene by neural cells in culture and after transplantation into the CNS using cells derived from a transgenic rat. Exp. Neurol. 2002, 174, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medalha, C.C.; Jin, Y.; Yamagami, T.; Haas, C.; Fischer, I. Transplanting neural progenitors into a complete transection model of spinal cord injury. J. Neurosci. Res. 2014, 92, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Reier, P.J.; Houle, J.D.; Jakeman, L.; Winialski, D.; Tessler, A. Transplantation of fetal spinal cord tissue into acute and chronic hemisection and contusion lesions of the adult rat spinal cord. Prog. Brain Res. 1988, 78, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Lepore, A.C.; Fischer, I. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Exp. Neurol. 2005, 194, 230–242. [Google Scholar] [CrossRef]
- Bonner, J.F.; Blesch, A.; Neuhuber, B.; Fischer, I. Promoting directional axon growth from neural progenitors grafted into the injured spinal cord. J. Neurosci. Res. 2010, 88, 1182–1192. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.L.; Tuszynski, M.H. Spinal cord injury elicits expression of keratan sulfate proteoglycans by macrophages, reactive microglia, and oligodendrocyte progenitors. J. Neurosci. 2002, 22, 4611–4624. [Google Scholar] [CrossRef] [Green Version]
- Soderblom, C.; Luo, X.; Blumenthal, E.; Bray, E.; Lyapichev, K.; Ramos, J.; Krishnan, V.; Lai-Hsu, C.; Park, K.K.; Tsoulfas, P.; et al. Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 13882–13887. [Google Scholar] [CrossRef] [Green Version]
- Leonard, A.V.; Thornton, E.; Vink, R. The relative contribution of edema and hemorrhage to raised intrathecal pressure after traumatic spinal cord injury. J. Neurotrauma 2015, 32, 397–402. [Google Scholar] [CrossRef]
- Mitsui, T.; Shumsky, J.S.; Lepore, A.C.; Murray, M.; Fischer, I. Transplantation of neuronal and glial restricted precursors into contused spinal cord improves bladder and motor functions, decreases thermal hypersensitivity, and modifies intraspinal circuitry. J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 9624–9636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutt, S.E.; Chang, E.A.; Suhr, S.T.; Schlosser, L.O.; Mondello, S.E.; Moritz, C.T.; Cibelli, J.B.; Horner, P.J. Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model. Exp. Neurol. 2013, 248, 491–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salewski, R.P.; Mitchell, R.A.; Li, L.; Shen, C.; Milekovskaia, M.; Nagy, A.; Fehlings, M.G. Transplantation of Induced Pluripotent Stem Cell-Derived Neural Stem Cells Mediate Functional Recovery Following Thoracic Spinal Cord Injury Through Remyelination of Axons. Stem Cells Transl. Med. 2015, 4, 743–754. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, C.C.; Li, J.; Guan, X.Y.; Gao, L.; Ma, L.X.; Li, R.X.; Peng, Y.W.; Zhu, G.P. Transplantation of oligodendrocyte precursor cells improves locomotion deficits in rats with spinal cord irradiation injury. PLoS ONE 2013, 8, e57534. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Bouyer, J.; Shumsky, J.S.; Haas, C.; Fischer, I. Transplantation of neural progenitor cells in chronic spinal cord injury. Neuroscience 2016, 320, 69–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, P.; Blesch, A.; Graham, L.; Wang, Y.; Samara, R.; Banos, K.; Haringer, V.; Havton, L.; Weishaupt, N.; Bennett, D.; et al. Motor axonal regeneration after partial and complete spinal cord transection. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 8208–8218. [Google Scholar] [CrossRef]
- Lu, P.; Wang, Y.; Graham, L.; McHale, K.; Gao, M.; Wu, D.; Brock, J.; Blesch, A.; Rosenzweig, E.S.; Havton, L.A.; et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012, 150, 1264–1273. [Google Scholar] [CrossRef] [Green Version]
- Ketschek, A.R.; Haas, C.; Gallo, G.; Fischer, I. The roles of neuronal and glial precursors in overcoming chondroitin sulfate proteoglycan inhibition. Exp. Neurol. 2012, 235, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Tran, A.P.; Warren, P.M.; Silver, J. New insights into glial scar formation after spinal cord injury. Cell Tissue Res. 2021. [Google Scholar] [CrossRef]
- Bradbury, E.J.; Burnside, E.R. Moving beyond the glial scar for spinal cord repair. Nat. Commun. 2019, 10, 3879. [Google Scholar] [CrossRef]
- Hill, C.E.; Proschel, C.; Noble, M.; Mayer-Proschel, M.; Gensel, J.C.; Beattie, M.S.; Bresnahan, J.C. Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: Survival, differentiation, and effects on lesion environment and axonal regeneration. Exp. Neurol. 2004, 190, 289–310. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Neuhuber, B.; Singh, A.; Bouyer, J.; Lepore, A.; Bonner, J.; Himes, T.; Campanelli, J.T.; Fischer, I. Transplantation of human glial restricted progenitors and derived astrocytes into a contusion model of spinal cord injury. J. Neurotrauma 2011, 28, 579–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcox, J.T.; Satkunendrarajah, K.; Zuccato, J.A.; Nassiri, F.; Fehlings, M.G. Neural precursor cell transplantation enhances functional recovery and reduces astrogliosis in bilateral compressive/contusive cervical spinal cord injury. Stem Cells Transl. Med. 2014, 3, 1148–1159. [Google Scholar] [CrossRef] [PubMed]
- McCall, J.; Weidner, N.; Blesch, A. Neurotrophic factors in combinatorial approaches for spinal cord regeneration. Cell Tissue Res. 2012, 349, 27–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haggerty, A.E.; Oudega, M. Biomaterials for spinal cord repair. Neurosci. Bull. 2013, 29, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Lu, Y.; Lee, J.K.; Samara, R.; Willenberg, R.; Sears-Kraxberger, I.; Tedeschi, A.; Park, K.K.; Jin, D.; Cai, B.; et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci. 2010, 13, 1075–1081. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Cai, D.; Dai, H.; McAtee, M.; Hoffman, P.N.; Bregman, B.S.; Filbin, M.T. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 2002, 34, 895–903. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.A.; O’Shea, T.M.; Burda, J.E.; Ao, Y.; Barlatey, S.L.; Bernstein, A.M.; Kim, J.H.; James, N.D.; Rogers, A.; Kato, B.; et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 2018, 561, 396–400. [Google Scholar] [CrossRef]
- Lu, P.; Yang, H.; Jones, L.L.; Filbin, M.T.; Tuszynski, M.H. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J. Neurosci. 2004, 24, 6402–6409. [Google Scholar] [CrossRef] [Green Version]
- Tan, A.M.; Colletti, M.; Rorai, A.T.; Skene, J.H.; Levine, J.M. Antibodies against the NG2 proteoglycan promote the regeneration of sensory axons within the dorsal columns of the spinal cord. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 4729–4739. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Nicholson, L.; van Niekerk, E.; Motsch, M.; Blesch, A. Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery. J. Neurosci. Off. J. Soc. Neurosci. 2012, 32, 13206–13220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtine, G.; Song, B.; Roy, R.R.; Zhong, H.; Herrmann, J.E.; Ao, Y.; Qi, J.; Edgerton, V.R.; Sofroniew, M.V. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 2008, 14, 69–74. [Google Scholar] [CrossRef] [PubMed]
Name | Type | Dilution | Source |
---|---|---|---|
AP | Mouse IgG1 | 1:400 | Chemicon (Temecula, CA, USA) |
AP | Rabbit IgG | 1:1000 | Serotec (Hercules, CA, USA) |
NeuN | Mouse IgG1 | 1:100 | Chemicon |
GFAP | Mouse IgG1 | 1:1000 | Chemicon |
GFAP | Rabbit | 1:2000 | Chemicon |
CC-1 | Mouse IgG | 1:100 | Chemicon |
Nestin | Mouse IgG1 | 1:1000 | BD Pharmigen (San Diego, CA, USA) |
VGLUT1 | Guinea Pig IgG | 1:10,000 | Chemicon |
VGLUT2 | Guinea Pig IgG | 1:2500 | Chemicon |
GAD65/67 | Rabbit IgG | 1:500 | Chemicon |
Tuj1 | Rabbit IgG | 1:1000 | Covance (Princeton, NJ, USA) |
PDGFR | Rabbit IgG | 1:200 | Abcam (Waltham, MA, USA) |
Choleragenoid (CTB) | Goat | 1:2000 | List Biological Laboratories (Campbell, CA, USA) |
Synaptophysine | Guinea Pig IgG | 1:500 | Sy synaptic system (Goettingen, Germany) |
goat anti mouse IgG Alexa Fluor 594 | 1:400 | Life technologies (Carlsbad, CA, USA) | |
goat anti rabbit Rhodamin Red | 1:400 | Jackson (West Grove, PA, USA) | |
goat anti mouse-IgG FITC | 1:400 | Jackson | |
goat anti rabbit FITC | 1:400 | Jackson | |
goat anti mouse-IgG Alexa Fluor 647 | 1:400 | Life technologies | |
donkey anti goat-IgG Rhodamin Red | 1:400 | Jackson | |
donkey anti guinea pig-IgG Rhodamin Red | 1:400 | Jackson | |
donkey anti mouse-IgG Alexa Fluor 488 | 1:400 | Life technologies | |
donkey anti rabbit-IgG Alexa Fluor 488 | 1:400 | Jackson | |
donkey anti mouse-IgG Alexa Fluor 647 | 1:400 | Life technologies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayakawa, K.; Jin, Y.; Bouyer, J.; Connors, T.M.; Otsuka, T.; Fischer, I. Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model. Biomedicines 2022, 10, 350. https://doi.org/10.3390/biomedicines10020350
Hayakawa K, Jin Y, Bouyer J, Connors TM, Otsuka T, Fischer I. Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model. Biomedicines. 2022; 10(2):350. https://doi.org/10.3390/biomedicines10020350
Chicago/Turabian StyleHayakawa, Kazuo, Ying Jin, Julien Bouyer, Theresa M. Connors, Takanobu Otsuka, and Itzhak Fischer. 2022. "Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model" Biomedicines 10, no. 2: 350. https://doi.org/10.3390/biomedicines10020350
APA StyleHayakawa, K., Jin, Y., Bouyer, J., Connors, T. M., Otsuka, T., & Fischer, I. (2022). Transplanting Neural Progenitor Cells into a Chronic Dorsal Column Lesion Model. Biomedicines, 10(2), 350. https://doi.org/10.3390/biomedicines10020350