In Vivo Evaluation of ECP Peptide Analogues for the Treatment of Acinetobacter baumannii Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria Strain, Cells, Mice and Other Materials
2.2. Peptides Synthesis
2.3. Circular Dichroism Assay
2.4. Minimum Inhibitory Concentration (MIC) Determination
2.5. LPS Affinity Assay
2.6. Cytotoxicity Assay
2.7. Tolerance Study of Peptides in Mouse
2.8. Mouse Systemic Infection Model
2.9. Efficacy Assay of Peptides in Infection Mice Model
2.10. Evaluation of Body Weight and Clinical Symptoms
2.11. Assay of CFU in Mice Tissues
2.12. Quantification of TNF-α and LPS in Mice Serum by ELISA
2.13. Stimulation of Human MNC by LPS and Endotoxin Neutralization Assay
2.14. Statistical Analysis
3. Results
3.1. Design and Structural Characterization of ECP Peptide Analogues
3.2. In Vitro Activities of ECP Peptides
3.3. Tolerance of Peptides in Mice
3.4. Murine Acute Infection Model by A. baumannii
3.5. Treatment with Peptides Improves the Survival Rate and Relieves Clinical Suffering of Infected Mice
3.6. ECP Peptides Reduce Bacterial Counts in Mice Organs and TNF-α Levels after 8 h of Treatment
3.7. ECP Peptides Reduce TNF-α Levels in LPS-Stimulated Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol. 2019, 27, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, X.; Saravanan, R.; Li, C.M.; Leong, S.S.J. Antimicrobial macromolecules: Synthesis methods and future applications. RSC Adv. 2012, 2, 4031–4044. [Google Scholar] [CrossRef]
- Sierra, J.M.; Fusté, E.; Rabanal, F.; Vinuesa, T.; Viñas, M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther. 2017, 17, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, C.; Haldar, J. Membrane-active small molecules: Designs inspired by antimicrobial peptides. ChemMedChem 2015, 10, 1606–1624. [Google Scholar] [CrossRef] [PubMed]
- Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, P.Y.; Khanum, R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J. Microbiol. Immunol. Infect. 2017, 50, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Sambanthamoorthy, K.; Palys, T.; Paranavitana, C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides 2013, 49, 131–137. [Google Scholar] [CrossRef]
- Hirsch, R.; Wiesner, J.; Marker, A.; Pfeifer, Y.; Bauer, A.; Hammann, P.E.; Vilcinskas, A. Profiling antimicrobial peptides from the medical maggot Lucilia sericata as potential antibiotics for MDR Gram-negative bacteria. J. Antimicrob. Chemother. 2019, 74, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Fernández-Millán, P.; Boix, E. Synergism between host defence peptides and antibiotics against bacterial infections. Curr. Top. Med. Chem. 2020, 20, 1238–1263. [Google Scholar] [CrossRef]
- Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L.C.; Maffia, P.C. Antimicrobial Peptides: Interaction with model and biological membranes and synergism with chemical antibiotics. Front. Chem. 2018, 6, 204. [Google Scholar] [CrossRef] [Green Version]
- Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov. 2012, 11, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Casciaro, B.; Cappiello, F.; Cacciafesta, M.; Mangoni, M.L. Promising approaches to optimize the biological properties of the antimicrobial peptide esculentin-1a(1-21)NH2: Amino acids substitution and conjugation to nanoparticles. Front. Chem. 2017, 5, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, C.; Zhu, Y.; Lai, Z.; Tan, P.; Shan, A. Antimicrobial peptides with protease stability: Progress and perspective. Future Med. Chem. 2019, 11, 2047–2050. [Google Scholar] [CrossRef]
- Oddo, A.; Thomsen, T.T.; Kjelstrup, S.; Gorey, C.; Franzyk, H.; Frimodt-Møller, N.; Løbner-Olesen, A.; Hansen, P.R. An amphipathic undecapeptide with all D-amino acids shows promising activity against colistin-resistant strains of Acinetobacter baumannii and a dual mode of action. Antimicrob. Agents Chemother. 2016, 60, 592–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmona, G.; Rodriguez, A.; Juarez, D.; Corzo, G.; Villegas, E. Improved protease stability of the antimicrobial peptide Pin2 substituted with D-amino acids. Protein J. 2013, 32, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, K.; Kida, Y.; Zhang, Y.; Shimizu, T.; Kuwano, K. Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiol. Immunol. 2002, 46, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Lee, K. Development of short antimicrobial peptides derived from host defense peptides or by combinatorial libraries. Curr. Pharm. Des. 2002, 8, 795–813. [Google Scholar] [CrossRef]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defence peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef]
- Koo, H.B.; Seo, J. Antimicrobial peptides under clinical investigation. Pept. Sci. 2019, 111, e24122. [Google Scholar] [CrossRef]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef]
- Vaara, M. Polymyxins and their potential next generation as therapeutic antibiotics. Front. Microbiol. 2019, 10, 1689. [Google Scholar] [CrossRef]
- Biswas, S.; Brunel, J.M.; Dubus, J.C.; Reynaud-Gaubert, M.; Rolain, J.M. Colistin: An update on the antibiotic of the 21st century. Expert Rev. Anti. Infect. Ther. 2012, 10, 917–934. [Google Scholar] [CrossRef] [PubMed]
- Tambadou, F.; Caradec, T.; Gagez, A.L.; Bonnet, A.; Sopéna, V.; Bridiau, N.; Thiéry, V.; Didelot, S.; Barthélémy, C.; Chevrot, R. Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster. Arch. Microbiol. 2015, 197, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Haigh, B.J.; Griffin, F.J.; Wheeler, T.T. The mammalian secreted RNases: Mechanisms of action in host defence. Innate Immun. 2013, 19, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.; Cohen, A.; Thomas, J.; Spencer, J.D. The immunomodulatory and antimicrobial properties of the vertebrate ribonuclease A superfamily. Vaccines 2018, 6, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulido, D.; Prats-Ejarque, G.; Villalba, C.; Albacar, M.; González-López, J.J.; Torrent, M.; Moussaoui, M.; Boix, E. A Novel RNase 3/ECP peptide for Pseudomonas aeruginosa biofilm eradication that combines antimicrobial, lipopolysaccharide binding, and cell-agglutinating Activities. Antimicrob. Agents Chemother. 2016, 60, 6313–6325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulido, D.; Prats-Ejarque, G.; Villalba, C.; Albacar, M.; Moussaoui, M.; Andreu, D.; Volkmer, R.; Torrent, M.; Boix, E. Positional scanning library applied to the human eosinophil cationic protein/RNase3 N-terminus reveals novel and potent anti-biofilm peptides. Eur. J. Med. Chem. 2018, 152, 590–599. [Google Scholar] [CrossRef]
- Sandín, D.; Valle, J.; Chaves-Arquero, B.; Prats-Ejarque, G.; Larrosa, M.N.; González-López, J.J.; Jiménez, M.Á.; Boix, E.; Andreu, D.; Torrent, M. Rationally modified antimicrobial peptides from the N-Terminal domain of human RNase 3 show exceptional serum stability. J. Med. Chem. 2021, 64, 11472–11482. [Google Scholar] [CrossRef]
- Perez, F.; Hujer, A.M.; Hujer, K.M.; Decker, B.K.; Rather, P.N.; Bonomo, R.A. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2007, 51, 3471–3484. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Bliziotis, I.A. Pandrug-resistant Gram-negative bacteria: The dawn of the post-antibiotic era? Int. J. Antimicrob. Agents 2007, 29, 630–636. [Google Scholar] [CrossRef]
- Gutsmann, T.; Razquin-Olazarán, I.; Kowalski, I.; Kaconis, Y.; Howe, J.; Bartels, R.; Hornef, M.; Schürholz, T.; Rössle, M.; Sanchez-Gómez, S.; et al. New antiseptic peptides to protect against endotoxin-mediated shock. Antimicrob. Agents Chemother. 2010, 54, 3817–3824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrent, M.; Pulido, D.; De La Torre, B.G.; García-Mayoral, M.F.; Nogués, M.V.; Bruix, M.; Andreu, D.; Boix, E. Refining the eosinophil cationic protein antibacterial pharmacophore by rational structure minimization. J. Med. Chem. 2011, 54, 5237–5244. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarayanan, R.; Tan, W.X.; Aung, T.T.; Goh, E.T.L.; Muruganantham, N.; Li, J.; Chang, J.Y.T.; Dikshit, N.; Saraswathi, P.; Lim, R.R.; et al. Branched peptide, B2088, disrupts the supramolecular organization of lipopolysaccharides and sensitizes the gram-negative bacteria. Sci. Rep. 2016, 6, 25905. [Google Scholar] [CrossRef] [Green Version]
- Kósa, N.; Zolcsák, Á.; Voszka, I.; Csík, G.; Horváti, K.; Horváth, L.; Bősze, S.; Herenyi, L. Comparison of the efficacy of two novel antitubercular agents in free and liposome-encapsulated formulations. Int. J. Mol. Sci. 2021, 22, 2457. [Google Scholar] [CrossRef]
- McConnell, M.J.; Actis, L.; Pachón, J. Acinetobacter baumannii: Human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol. Rev. 2013, 37, 130–155. [Google Scholar] [CrossRef] [Green Version]
- Jürgens, G.; Müller, M.; Koch, M.H.J.; Brandenburg, K. Interaction of hemoglobin with enterobacterial lipopolysaccharide and lipid A. Physicochemical characterization and biological activity. Eur. J. Biochem. 2001, 268, 4233–4242. [Google Scholar] [CrossRef]
- Bárcena-Varela, S.; Martínez-De-tejada, G.; Martin, L.; Schuerholz, T.; Gil-Royo, A.G.; Fukuoka, S.; Goldmann, T.; Droemann, D.; Correa, W.; Gutsmann, T.; et al. Coupling killing to neutralization: Combined therapy with ceftriaxone/Pep19-2.5 counteracts sepsis in rabbits. Exp. Mol. Med. 2017, 49, e345. [Google Scholar] [CrossRef]
- Lorenz, A.; Pawar, V.; Häussler, S.; Weiss, S. Insights into host–pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett. 2016, 590, 3941–3959. [Google Scholar] [CrossRef]
- Mardirossian, M.; Pompilio, A.; Crocetta, V.; De Nicola, S.; Guida, F.; Degasperi, M.; Gennaro, R.; Di Bonaventura, G.; Scocchi, M. In vitro and in vivo evaluation of BMAP-derived peptides for the treatment of cystic fibrosis-related pulmonary infections. Amino Acids 2016, 48, 2253–2260. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Li, L.; Zhou, Y.; Kraus, C.N. Efficacy of ARV-1502, a proline-rich antimicrobial peptide, in a murine model of bacteremia caused by multi-Drug resistant (MDR) Acinetobacter baumannii. Molecules 2019, 24, 2820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, A.; Duwadi, D.; Jukosky, J.; Fiering, S.N. Cecropin-like antimicrobial peptide protects mice from lethal E. coli infection. PLoS ONE 2019, 14, e0220344. [Google Scholar] [CrossRef]
- Rosenberg, H.F.; Dyer, K.D.; Lee Tiffany, H.; Gonzalez, M. Rapid evolution of a unique family of primate ribonuclease genes. Nat. Genet. 1995, 10, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rosenberg, H.F.; Nei, M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc. Natl. Acad. Sci. USA 1998, 95, 3708–3713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hicks, R.P.; Abercrombie, J.J.; Wong, R.K.; Leung, K.P. Antimicrobial peptides containing unnatural amino acid exhibit potent bactericidal activity against ESKAPE pathogens. Bioorgan. Med. Chem. 2013, 21, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Gentilucci, L.; De Marco, R.; Cerisoli, L. Chemical modifications designed to improve peptide stability: Incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des. 2010, 16, 3185–3203. [Google Scholar] [CrossRef]
- Nord, N.M.; Hoeprich, P.D. Polymyxin B and colistin. A Critical Comparison. N. Engl. J. Med. 1964, 270, 1030–1035. [Google Scholar] [CrossRef]
- Eadon, M.T.; Hack, B.K.; Alexander, J.J.; Xu, C.; Dolan, M.E.; Cunningham, P.N. Cell cycle arrest in a model of colistin nephrotoxicity. Physiol. Genom. 2013, 45, 877–888. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wiradharma, N.; Xu, K.; Ji, Z.; Bi, S.; Li, L.; Yang, Y.-Y.; Fan, W. Cationic amphiphilic alpha-helical peptides for the treatment of carbapenem-resistant Acinetobacter baumannii infection. Biomaterials 2012, 33, 8841–8847. [Google Scholar] [CrossRef]
- Bowers, D.R.; Cao, H.; Zhou, J.; Ledesma, K.R.; Sun, D.; Lomovskaya, O.; Tam, V.H. Assessment of minocycline and polymyxin B combination against Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 2720–2725. [Google Scholar] [CrossRef] [Green Version]
- Pichardo, C.; Pachón-Ibañez, M.E.; Docobo-Perez, F.; López-Rojas, R.; Jiménez-Mejías, M.E.; Garcia-Curiel, A.; Pachon, J. Efficacy of tigecycline vs. imipenem in the treatment of experimental Acinetobacter baumannii murine pneumonia. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Montero, A.; Ariza, J.; Corbella, X.; Doménech, A.; Cabellos, C.; Ayats, J.; Tubau, F.; Ardanuy, C.; Gudiol, F. Efficacy of colistin versus β-lactams, aminoglycosides, and rifampin as monotherapy in a mouse model of pneumonia caused by multiresistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2002, 46, 1946–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, S.-I.; Hakamada, H.; Yamamoto, S.; Sato, T.; Shiraishi, T.; Shinagawa, M.; Takahashi, S. Release of large amounts of lipopolysaccharides from Pseudomonas aeruginosa cells reduces their susceptibility to colistin. Int. J. Antimicrob. Agents 2018, 51, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Lindner, B.; Kusumoto, S.; Fukase, K.; Schromm, A.B.; Seydel, U. Aggregates are the biologically active units of endotoxin. J. Biol. Chem. 2004, 279, 26307–26313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peptides | MIC 1 | |||||
---|---|---|---|---|---|---|
E. coli | P. aeruginosa | A. baumannii | ||||
μM | μg/mL | μM | μg/mL | μM | μg/mL | |
ECPep-L | 10 | 37.57 | 10 | 37.57 | 10 | 37.57 |
ECPep-D | 10 | 37.57 | 10 | 37.57 | 10 | 37.57 |
ECPep-2D-Orn | >20 | >70.10 | >20 | >70.10 | 5 | 17.53 |
Colistin | 5 | 6.34 | 0.31 | 0.40 | 0.31 | 0.40 |
LPS Type | ECPep-L | ECPep-D | ECPep-2D-Orn | Colistin | ||
---|---|---|---|---|---|---|
EC502 | O-LPS | μM | 2.71 ± 0.17 | 2.46 ± 0.19 | 1.80 ± 0.08 | 7.87 ± 0.33 |
μg/mL | 10.17 ± 0.62 | 9.24 ± 0.71 | 6.30 ± 0.28 | 9.97 ± 0.42 | ||
LPSRa | μM | 8.87 ± 0.46 | 7.24 ± 0.70 | 9.27 ± 0.79 | 13.12 ± 0.40 | |
μg/mL | 33.32 ± 1.72 | 27.21 ± 2.62 | 32.50 ± 2.77 | 16.63 ± 0.50 | ||
LPSRc | μM | >20 | >20 | 16.56 ± 1.76 | 19.18 ± 0.34 | |
μg/mL | >75.15 | >75.15 | 58.05 ± 6.16 | 24.31 ± 0.42 |
ECPep-L | ECPep-D | ECPep-2D-Orn | Colistin | |||
---|---|---|---|---|---|---|
LD503 (MRC-5) | 4 h | μM | 276.23 ± 25.23 | N.D. | N.D. | N.D. |
μg/mL | >1000 | N.D. | N.D. | N.D. | ||
24 h | μM | N.D. | 43.51 ± 8.84 | >100 | >300 | |
μg/mL | N.D. | 163.50 ± 33.22 | >350.52 | >380.26 | ||
48 h | μM | N.D. | 23.52 ± 4.73 | >100 | >300 | |
μg/mL | N.D. | 88.37 ± 17.77 | >350.52 | >380.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Prats-Ejarque, G.; Torrent, M.; Andreu, D.; Brandenburg, K.; Fernández-Millán, P.; Boix, E. In Vivo Evaluation of ECP Peptide Analogues for the Treatment of Acinetobacter baumannii Infection. Biomedicines 2022, 10, 386. https://doi.org/10.3390/biomedicines10020386
Li J, Prats-Ejarque G, Torrent M, Andreu D, Brandenburg K, Fernández-Millán P, Boix E. In Vivo Evaluation of ECP Peptide Analogues for the Treatment of Acinetobacter baumannii Infection. Biomedicines. 2022; 10(2):386. https://doi.org/10.3390/biomedicines10020386
Chicago/Turabian StyleLi, Jiarui, Guillem Prats-Ejarque, Marc Torrent, David Andreu, Klaus Brandenburg, Pablo Fernández-Millán, and Ester Boix. 2022. "In Vivo Evaluation of ECP Peptide Analogues for the Treatment of Acinetobacter baumannii Infection" Biomedicines 10, no. 2: 386. https://doi.org/10.3390/biomedicines10020386
APA StyleLi, J., Prats-Ejarque, G., Torrent, M., Andreu, D., Brandenburg, K., Fernández-Millán, P., & Boix, E. (2022). In Vivo Evaluation of ECP Peptide Analogues for the Treatment of Acinetobacter baumannii Infection. Biomedicines, 10(2), 386. https://doi.org/10.3390/biomedicines10020386